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Background: Melanoma is one of the deadliest skin cancers that originate

from melanocytes due to sun exposure, causing mutations. Early detection

boosts the cure rate to 90%, but misclassification drops survival to 15–

20%. Clinical variations challenge dermatologists in distinguishing benign nevi

and melanomas. Current diagnostic methods, including visual analysis and

dermoscopy, have limitations, emphasizing the need for Artificial Intelligence

understanding in dermatology.

Objectives: In this paper, we aim to explore dermoscopic structures for

the classification of melanoma lesions. The training of AI models faces a

challenge known as brittleness, where small changes in input images impact

the classification. A study explored AI vulnerability in discerning melanoma

from benign lesions using features of size, color, and shape. Tests with artificial

and natural variations revealed a notable decline in accuracy, emphasizing the

necessity for additional information, such as dermoscopic structures.

Methodology: The study utilizes datasets with clinically marked dermoscopic

images examined by expert clinicians. Transformers and CNN-based models

are employed to classify these images based on dermoscopic structures.

Classification results are validated using feature visualization. To assess model

susceptibility to image variations, classifiers are evaluated on test sets with

original, duplicated, and digitally modified images. Additionally, testing is done

on ISIC 2016 images. The study focuses on three dermoscopic structures crucial

for melanoma detection: Blue-white veil, dots/globules, and streaks.

Results: In evaluating model performance, adding convolutions to Vision

Transformers proves highly e�ective for achieving up to 98% accuracy.

CNN architectures like VGG-16 and DenseNet-121 reach 50–60% accuracy,

performing best with features other than dermoscopic structures. Vision

Transformers without convolutions exhibit reduced accuracy on diverse test

sets, revealing their brittleness. OpenAI Clip, a pre-trained model, consistently

performswell across various test sets. To address brittleness, amitigationmethod

involving extensive data augmentation during training and 23 transformed

duplicates during test time, sustains accuracy.

Conclusions: This paper proposes a melanoma classification scheme utilizing

three dermoscopic structures across Ph2 and Derm7pt datasets. The study

addresses AI susceptibility to image variations. Despite a small dataset, future
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work suggests collecting more annotated datasets and automatic computation

of dermoscopic structural features.

KEYWORDS

dermoscopic structures, melanoma, Vision Transformers, medical imaging, PH2,

Derm7pt

1 Introduction

Melanoma, cited as the most lethal form of skin cancer,

originates in cells known as melanocytes, responsible for imparting

color to our skin through the synthesis of the pigment melanin.

Excessive exposure to ultraviolet radiation from the sun is the

primary cause of the disease, leading to mutations in melanocytes

and resulting in melanoma genesis. The incidence of this disease is

on the rise annually in both males and females. As one of the most

prevalent cancer types, the Cancer Society estimates that in the

United States for the year 2023, approximately 97,610 individuals

will be diagnosed with melanoma (60% males and 40% females),

with an 8%mortality rate (6.7% inmen and 3.3% in women) (Team

TACSm and editorial content, 2023). Encouragingly, melanoma

is curable in up to 90% of cases if detected at the earliest

stage (El-Khatib et al., 2020). However, if left undetected or

misclassified, the chances of survival plummet to only 15–20%.

Globally, countries with a very high Human Development Index

account for approximately 85.7% of melanoma-based skin cancers

and 67.2% of melanoma-related deaths. Projections suggest that by

2040, new cases of melanoma will see an increase of over 50%.

The task of differentiating between typical benign nevi and

advanced melanomas remains a challenging issue. As melanoma

develops in melanocytes, the detection of these pigmented lesions

poses a challenge for dermatologists due to clinical variations

(Stiff et al., 2022). Clinical variation refers to differences in the

type, frequency, and costs of medical care provided to patients,

irrespective of their condition. Resolving the considerable clinical

variability in this area requires focused study. Enhancing the quality

and effectiveness of healthcare for all patients becomes possible by

identifying the causes of clinically divergent conditions and taking

steps to reduce them. Concerning melanoma, the standard method

for examining lesions is a visual analysis by experts, who consider

asymmetry, border, color, diameter, and evolution commonly

known as the ABCDEmethod, a manual diagnostic approach. This

method can be time-consuming and may lead to misdiagnosis due

to the lack of experience and fatigue of dermatological specialists

(Vestergaard et al., 2008).

Although biopsy is the conventional method for detecting
cancer, it is essential to anticipate that biopsy provides information
confined to scar tissue, covering only the site where the disease

begins (Nelson et al., 2019). Without the use of epiluminescence
microscopy, also known as dermoscopy, dermatologists have

achieved 65–80% accuracy, facing difficulties due to cosmetically

sensitive features of the face (Stiff et al., 2022). However, in

most cases, the utilization of dermoscopic images has improved

diagnostic accuracy by up to 84%, which falls short of desirable

medical diagnostic standards (Ali and Deserno, 2012; Fabbrocini

et al., 2011). Due to the challenges in diagnosis, dermatologists

have found assistance in Computer-Aided Diagnosis (CAD)

systems incorporating dermoscopic images, necessitating a basic

understanding of AI (Artificial Intelligence) (Nelson et al., 2019).

Computer-aided diagnosis (CAD) represents a type of medical

technology using computers to aid healthcare professionals in

diagnosing diseases. CAD systems employ algorithms to analyze

medical imaging, such as X-rays, MRIs, and CT scans, for the

detection of potential abnormalities. Overall, CAD-based systems

have the potential to enhance the accuracy and effectiveness

of diagnosis.

In modern image analysis, a drawback in training AI-based

models arises from slight alterations in input images, such as

scaling or rotation, which are commonly encountered based on

the conditions of image acquisition. However, even these minor

changes in input images can significantly impact the classification

capabilities of the training models. This adverse effect on the

training models is referred to as brittleness. It is important to

note that brittleness differs from adversarial attacks, which are

specifically crafted to deceive deep learning models; instead, it

represents fluctuations occurring during image acquisition. This

vulnerability of AI tools has been disclosed within the machine

learning community (Azulay and Weiss, 2018; Engstrom et al.,

2019). This uncertainty has a substantial effect on clinical routines;

therefore, addressing it is crucial for the successful integration of

AI diagnostic tools into everyday clinical practice. Color constancy,

as a pre-processing step in dermatological image analysis, offers

significant benefits by effectively compensating for color shift

variations in AI frameworks. Numerous studies have demonstrated

its efficacy in standardizing image illumination sources, addressing

the impact of variable illumination conditions on skin lesion

diagnosis (Barata et al., 2014; Salvi et al., 2022). By mitigating

the effects of color variations during image acquisition, color

constancy enhances the accuracy of computer-aided diagnosis

systems. In Salvi et al. (2022), Dermatological Color Constancy

Generative Adversarial Network (DermoCC-GAN) is proposed to

standardize image illumination sources, surpassing existing color

constancy algorithms. The GAN is trained to perform domain

transfer from original to color-standardized images, demonstrating

superior performance in dermatological image analysis compared

to state-of-the-art algorithms. The approach achieves high accuracy

in lesion classification (79.2%) and segmentation (dice score:

90.9%), with validation on external datasets. The study highlights

the potential of the proposed strategy for broader applications

beyond dermatology.

Additionally, the susceptibility of AI to image variations was

investigated in Argenziano et al. (2003) by training deep learning-

based models to discriminate between melanoma and benign

lesions using typical features such as size, color, and shape. The

testing set was divided into two categories: one with minor artificial
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changes, including rotation and zooming, and the other with

minor natural variations, such as capturing images of the same

lesion with changes in angles and lighting conditions, etc. The

analysis revealed that artificial changes caused the outputted class

to vary from melanoma to benign or vice versa, with a probability

ranging from 3.5% to 12.2% (Argenziano et al., 2003). This

significant reduction in classification accuracy with simple image

transformations indicates the necessity of incorporating additional

detailed information, such as dermoscopic structures. We propose

a technique based on Transformer-based classification models

that utilize dermoscopic structures as features. The Transformers-

based model was trained with convolutions, and the results were

compared with traditional CNN (Convolutional Neural Networks)

based models employing dermoscopic structures as features.

Various dermoscopic structures specific to melanoma classification

are illustrated in Figure 1.

Our contributions are outlined as follows:

1. We conducted a comprehensive study on dermoscopic

structures as features in melanocytic lesions.

2. We explored various approaches ranging from traditional

Convolutional Neural Networks to Vision Transformers and

OpenAI CLIP. Moreover, we enhanced the Vision Transformers

by introducing convolutions for melanoma lesion classification.

3. We investigated the robustness of the models against image

variations by assessing their performance on diverse versions of

test sets.

4. We performed a comparative analysis of CNN-based models

and Vision Transformers when utilizing dermoscopic structures

as features, instead of the commonly employed features such

as color, size, and shape of lesions. Additionally, we tested

the highest accuracy model on ISIC 2016 images to detect the

presence of dermoscopic structures.

The following sections of this paper are organized as follows.

In Section 2, we delve into the related literature. Section 3 outlines

the proposed technique, while Section 4 provides details on the

datasets and evaluation matrices used to assess performance. We

examine various models, including Vision Transformers, Clip,

and CNN-based architectures like Vgg-16, DenseNet-121, and

ResNet-50, along with the approach of training Transformers

with convolutions using dermoscopic structures as features. The

experimental setup is also thoroughly discussed. Subsequently, we

compared the experimental results with existing work that relies on

features other than dermoscopic structures. The paper concludes

with Section 5, where the key findings are summarized.

2 Related work

To automate the skin cancer classification process, various

artificial intelligence-based systems have been proposed,

encompassing standard phases of pre-processing, feature

extraction, segmentation, and classification. Many of these

classification approaches relied solely on hand-crafted features,

which, despite their deep understanding of biological patterns,

exhibited limited capacity for generalizing to dermoscopic images

(Xie et al., 2016; Barata et al., 2018). Moreover, the high correlation

among lesions in terms of size, color, and shape, coupled with

their substantial visual resemblance, resulted in degraded feature

information (Celebi et al., 2007). This leads to the conclusion that

hand-crafted features are unsuitable for classification purposes.

Deep learning techniques offer the advantage of direct application

to classification problems without the need for any pre-processing

steps. In comparison to shallow networks, deep learning techniques

prove more efficient in calculating features for lesion classification

purposes. Esteva et al. (2017) introduced the first application of

DCCNs (Deep Convolutional Neural Networks) to skin cancer

classification, utilizing a pre-trained Inceptionv3 model on 129,450

clinical images to classify 2032 different diseases. A comparison

with a board of 21 medical specialists was conducted, focusing

on the classification of the two most common and deadliest types

of skin cancers: malignant and nevus. Experts approved that

their network exhibited high-performance lesion classification.

Li and Shen (2018) proposed LICU (Lesion Index Calculation

Unit), evaluated on the ISIC 2017 dataset, which filtered coarse

classification by computing heat maps of outcomes from the FCRN

(Fully Convolutional Residual Networks) model. This unit, for

classification computation, predicted the contribution of each pixel

from the segmented map.

The intrinsic self-attention ability of DCNNs was explored by

Zhang J. et al. (2019). For the purpose of skin lesion classification,

Attention Residual Learning (ARL) was implemented using CNNs,

which featured multiple ARL blocks followed by global average

pooling and classification layers. The classification performance

was enhanced by employing a residual learning mechanism against

each ARL block, generating attention maps at lower layers. Iqbal

et al. (2021) designed a multi-class classification model for skin

lesion assessment using DCNNs, evaluated on datasets of ISIC

2017, 2018, and 2019. Their model comprised multiple blocks

with 68 convolutional layers to transmit feature information

from the top to the bottom of the network. Similarly, Jinnai

et al. (2020) employed Faster Region-Based Convolutional Neural

Network (FRCNN) to classify melanoma using 5846 clinical

images instead of dermoscopy. They prepared the training dataset

by manually creating bounding boxes around the lesion areas;

however, FRCNN outperformed ten certified dermatologists and

ten trainee dermatologists by providing high accuracy.

A technique for improving performance metrics, including
accuracy, AUC (AreaUnder the Curve), and others, using ensemble

CNN models was studied by Barata et al. (2018). To conduct
a three-class classification, the outputs from the classification

layers of four distinct models: GoogleNet, AlexNet, ResNet, and

VGG were fused. To further enhance classification performance,

Yap et al. (2018) proposed a model incorporating various

image modalities, including patients’ metadata. On dermoscopic

and macroscopic images, ResNet50 was applied differently, and

the features were fused to predict classification. Using only

macroscopy, their multimodal ResNet50 outperformed the basic

model, showing an AUC of 0.866. Similarly, an ensemble model

for multi-class classification, designed from EfficientNets, SENet,

and ResNeXt WSL, was proposed by Gessert et al. (2019) on

ISIC 2019 dataset. To handle multimodal input resolutions, a

cropping strategy on input images was applied, and a loss-balancing

approach was implemented for imbalanced datasets. Srinivasu et al.

(2021) presented a DCNN based on MobileNetv2 and LSTM

(Long Short-Term Memory), performing lesion classification on
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FIGURE 1

Literature survey for the presence of various dermoscopic structures for melanoma classification and recognition (Argenziano et al., 2003; Braun

et al., 2005, 2002; Scope et al., 2006; Stricklin et al., 2011).

HAM10000 dataset. Compared to other CNNmodels,MobileNetv2

resulted in a reduced network size and low computational cost,

providing compatibility with mobile devices. LSTM retained the

timestamp information of features calculated by MobileNetv2,

enhancing system accuracy by 85.34%. Conversely, ensemble-

based deep learning models are computationally more expensive,

requiring considerable training time. Their interpretation is

challenging due to multiple layers of abstraction. Such models are

sensitive to data quality and prone to degraded performance and

overfitting in the presence of noisy or biased data and complex base

models, respectively.

Ahmed et al. (2023) proposed a hybrid method integrating

RetinaNet and MaskRCNN with a pyramid module for spatial

feature compensation. Tested on Melanoma-ISIC-2018 and PH2

datasets, their approach demonstrates superior generalization,

outperforming Encoder-Decoder, GAN, DCNN-SVM, EFCN,

ECDNs, UNet, and Handcrafted methods by 7.7%, 12.9%, 11.4%,

14.4%, 14.9%, 18.6%, and 25.1%, respectively, in accuracy. With its

promising accuracy, their method holds potential for future clinical

application. Vocaturo et al. (2020) explored the application of

multiple-instance learning (MIL) to discriminate melanoma from

dysplastic nevi and further classified dysplastic nevi from common

ones using the PH2 dataset among others. Specifically, they

proposed using MIL with spherical separation surfaces, showing

promising results. This suggested that MIL techniques could form

the foundation for advanced tools in lesion detection.

Wang et al. (2021) proposed another method called STCN

(Self-supervised Topology Clustering Network). This method

contributes to classifying unlabeled data without the need for any

prior class information. Depending on maximizing modularity,

the clustering-based algorithm organizes the anonymous data

into clusters. At different levels, STCN learns features such as

illumination, background, and point of view. Several pre-trained

models, including Xception, AlexNet, VGGNet, and ResNet,

were studied using transfer learning, and their performance

was compared in Kassani and Kassani (2019) and Jojoa Acosta

et al. (2021). The hyperparameters were fine-tuned to enhance

performance, and the fully connected layers were modified to

use existing networks for skin lesion classification. For a deep

understanding of using CNNs for skin cancer classification,

systematic review articles (Haggenmüller et al., 2021; Höhn et al.,

2021) can be referred to. The possible solutions for automatic

skin cancer detection are included in the survey article (Okur

and Turkan, 2018), considering different challenges for skin

cancer problems, and some research directions are provided

along with. To aid comprehension, a general outline of a

computer-assisted diagnosis system was revisited in Vocaturo

et al. (2019). Consequently, a roadmap of classification algorithms

was presented, incorporating emerging paradigms of artificial

intelligence. Specifically, Multiple Instance Learning approaches

and the Deep Learning paradigm were highlighted as noteworthy

for implementing more robust and effective solutions. Moreover,

AI algorithms are powerful but often opaque, lacking transparency

and explanations for their decisions. The need for Explainable

AI (XAI) is recognized, particularly in the medical field where

decisions impact lives. Caroprese et al. (2022) examined the benefits

of using logic approaches for XAI, focusing on argumentation

theory in Medical Informatics. Three categories were identified:

Argumentation for Medical Decision Making, Explanations,

and Dialogues.

It is evident that, based on the extraction of quantitative

features, CNNs surpass human observations. However, the main
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FIGURE 2

Proposed technique block diagram based on dermoscopic structure features: the clinically annotated dataset is labeled according to dermoscopic

structure features, divided into training and testing sets for training models for detection based on these features. Subsequently, performance,

training losses, and the susceptibility of training models to image variations are evaluated. Feature visualization is applied to determine where the

model focuses during detection. The models are then tested for brittleness on di�erent versions of test sets. In the final step, trial-and-error testing is

conducted on the ISIC 2016 dataset to detect dermoscopic structures within it.

challenge with CNNs lies in their inability to differentiate between

significant and insignificant biological features, including artifacts.

During CNN training, correlations with the training dataset

that are unnecessary may be chosen, hindering generalization

(Zech et al., 2018; Lapuschkin et al., 2019; Schmitt et al., 2021).

Conversely, input images are crafted with deception, capable of

deceiving CNNs, a phenomenon known as adversarial attacks

(Heaven, 2019). In dermatology, both scenarios are encountered

(Fawzi and Frossard, 2015; Finlayson et al., 2019; Winkler et al.,

2019; Zhang, 2019). In this paper, we address these issues by

focusing primarily on utilizing features of dermoscopic structures,

rather than typical features such as color, size, and shape.

Subsequently, our models are tested on various versions of test

sets to analyze their performances and assess their resilience

against brittleness.

In the field of dermatology, dermatologist experts use a criteria
known as the three-point checklist of dermatology, or 3PCLD,
for assessing lesions, which is considered a superior method for

examining lesions (Argenziano et al., 2003; Soyer et al., 2004).

According to this method, the criteria for lesion assessment include
asymmetry in shape, hue, and distribution of a specific structure
called the blue-white veil; the presence or absence of which is

indicated by specific values such as 0, 1, or 2 (Argenziano et al.,
2003; Soyer et al., 2004; Carrera et al., 2016). Another criterion,

the seven-point checklist of dermatology or 7PCLD, includes,
in addition to the blue-white veil, various other structures like
dots, globules, streaks, and regression structures, etc. (Argenziano

et al., 1998; Carrera et al., 2016; Kawahara et al., 2018). To date,
limited research has been conducted to explore the potential use of

dermoscopic structures (Soyer et al., 2004).

3 Methodology

Considering the datasets containing clinically marked images

by expert clinicians and dermatologists for the presence of a

particular dermoscopic structure, the training images undergo

processing through Transformers and CNN-based models to

classify them based on the detection of dermoscopic structures

as features. The results of the classification undergo validation

using feature visualization or explainable AI, illustrating where

the model is directing its attention. Furthermore, to assess

the models’ susceptibility to image variations, all classifiers

under examination are evaluated on test sets comprising both

original and duplicated images with digital modifications. As the

transformations applied to the test sets are artificial, the models

under study are also tested on ISIC 2016 images. The proposed

technique is presented in Figure 2 and is discussed in detail in the

subsequent subsections.

We conducted our study on three distinct dermoscopic

structures, namely Blue-white veil, dots/globules, and streaks

(crucial dermoscopic structures for melanoma detection and

classification are depicted in Figure 1). The blue-white veil

manifests as blue pigmentation in certain ill-defined areas of

the lesion, while streaks represent pigmented projections at the

lesion’s outer margins. Globules are round to oval structures larger

than 0.1mm. Figure 3 displays dermoscopic images containing

these three structures, accompanied by their illustrations. In

our technique, we assess these dermoscopic structures in

terms of their presence, absence, and sub-categories of regular

and irregular.
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FIGURE 3

Dermoscopic structures can be observed in dermoscopic images of various melanocytic lesions, accompanied by their computerized illustrations. In

our study, these dermoscopic structures are assessed based on features categorized as present, absent, regular, and irregular.

3.1 Convolutional neural networks

In this paper, to facilitate a comparison between transformers-

based and CNN-based architectures, we evaluate the classification

performance of several CNN architectures by utilizing dermoscopic

structures as features instead of relying on typical features such

as color, size, or shape. For this purpose, three widely used

architectures, namely ResNet-50, VGG-16, and DenseNet-121, are

considered. The CNN architectures and training techniques chosen

for this study are commonly employed for melanoma classification

tasks using features other than dermoscopic structures (Esteva

et al., 2017; Barata et al., 2018; Yap et al., 2018; Kassani and Kassani,

2019).

3.1.1 ResNet-50
ResNet-50 (He et al., 2016), a significant advancement in

deep learning, has transformed the realm of convolutional neural

networks (CNNs) through its revolutionary design and training

approach. Created by Microsoft Research, ResNet-50 belongs

to the ResNet series, bringing forth the novel idea of residual

learning to address issues related to training extremely deep

neural networks. ResNet-50 is distinguished by its 50 layers,

surpassing its predecessors in depth. The core components of

ResNet-50 are its residual blocks, which enable the network to grasp

residual functions.

3.1.2 VGG-16
VGG-16 (Simonyan and Zisserman, 2014), an abbreviation

for Visual Geometry Group 16, stands as a convolutional neural

network architecture designed specifically for image classification.

Conceived by the Visual Geometry Group at the University of

Oxford, VGG-16 has garnered acclaim for its simplicity and

effectiveness, solidifying its status as a benchmark architecture in

the realm of computer vision. The architecture of VGG-16 exhibits

a consistent and structured framework, comprising a total of 16

layers, as implied by its name. This includes 13 convolutional layers,

succeeded by three fully connected layers, and culminating in an

output layer.

3.1.3 DenseNet-121
DenseNet-121 (Huang et al., 2017), a member of the DenseNet

family or Dense Convolutional Networks, presents a convolutional

neural network (CNN) architecture distinct from conventional

CNNs. It introduces dense connectivity patterns, where each layer

receives input from all preceding layers, fostering feature reuse,

parameter reduction, and improved information flow within the

network. The fundamental components of DenseNet-121 are dense

blocks, comprising multiple interconnected layers. Each layer

receives input from all preceding layers by concatenating their

feature maps. This approach promotes feature reuse, addressing the

vanishing gradient problem and encouraging the network to learn

more discriminative features.
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FIGURE 4

Overview of the zero-shot detector as a melanoma classifier based on dermoscopic structures as features: Textual prompts are processed by the text

encoder, a language model, while input images are handled by the image encoder, a CNN model. Both text and image encoders produce vector

representations for text and images, respectively. Subsequently, the similarity between the vector representations of text and images is computed

through contrastive loss during pre-training. This process endows CLIP with the capability to generate a descriptive caption for an image.

Conversely, CLIP can retrieve images that match the textual prompt provided to it.

3.2 OpenAI CLIP

Contrastive Language Image Pre-training (CLIP) (Radford

et al., 2021) serves as a zero-shot classifier, utilizing English

language knowledge to categorize images without necessitating

prior training on a specific dataset. Exhibiting an accuracy of 41%

across 400 million images, in contrast to the 16% accuracy of the

Transformers model and 27% achieved by Bag of Words, CLIP

demonstrates the capability of faster training in comparison to

other models within the same domain. The CLIP model undergoes

training across a diverse array of image styles, enabling superior

generalization and flexibility compared to ImageNet. Functioning

as a zero-shot detector, CLIP exhibits the ability to generalize

to entities it has not encountered previously. The program is

trained on an extensive database comprising both text and images,

facilitating diverse tasks such as image search, caption generation,

format transfer, and text-to-image generation. Although still

in its early stages, the CLIP project harbors the potential to

become a pivotal tool across a broad spectrum of applications.

Employing a contrastive learning objective, CLIP learns to discern

between connected and unconnected pairs of images and text.

For specific tasks, CLIP can undergo refinement aimed at

enhancing its performance, thus presenting a robust tool applicable

to various undertakings. Despite being under development,

CLIP emerges as a promising resource for both researchers

and developers.

In traditional classifiers, integers replace class labels internally.

CLIP generates an encoding for its text-to-image pairs. Therefore,

to classify the presence of dermoscopic structures, the ability to

encode classes utilizes transformers’ capacity to classify images by

extracting meaning from text without the need to fine-tune custom

data. All that is required is to define a list of potential classes,

along with necessary image descriptions, etc., and CLIP will classify

images belonging to specific classes based on its prior knowledge.

In other words, we can interpret this as asking the model which

captions best match the given images (Radford et al., 2021). The

operation of a zero-shot detector in terms of the structural classifier

is illustrated in Figure 4.

CLIP establishes a collective embedding space where the

representations of images and corresponding text are close

when they express comparable semantic meanings. This space is

deliberately trained to carry semantic significance, empowering

the model to understand the connection between images and text.

In the context of zero-shot melanoma detection using CLIP, the

procedure involves defining the task by supplying a textual prompt

that characterizes the dermoscopic structure targeted for detection.

Subsequently, CLIP generates visual embeddings based on this

prompt and examines its embedding space to identify images

demonstrating semantic relevance to the specified concept. The

model generates a similarity score for each image in the dataset

in relation to the provided textual prompt. Applying a threshold

to this score allows the identification of images where the model
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suggests the presence of the specified structure. Adjusting this

threshold provides control over the balance between precision

and recall.

3.3 Vision Transformers

Vision Transformers (ViTs) are a type of artificial neural

network with the capability to be utilized in computer vision tasks,

such as image classification and object detection. ViTs are built

upon the transformer architecture, originally designed for tasks

related to natural language processing. Transformers analyze the

various components of an input sequence and learn to predict the

next words in those sequences. ViTs follow a similar approach, but

instead of focusing on words, they examine different parts of an

image. Demonstrations have shown that ViTs are highly effective

for a variety of computer vision tasks, particularly excelling in

image classification tasks such as the ImageNet dataset, achieving

a remarkable accuracy of 84.4%. ViTs do not necessitate spatial

convolutions, which can be computationally expensive. Moreover,

scaling ViTs to larger models does not compromise accuracy. ViTs

prove beneficial for specific tasks like image classification, object

detection, or segmentation. Motivated by their recent performance

advancements, we have selected ViTs for our study.

Vision Transformers (Dosovitskiy et al., 2020) leverage

potent natural language embeddings for images. When input

images are introduced to the model, they undergo splitting into

linearly embedded patches, followed by the addition of positional

embeddings. Subsequently, these patches are sequentially inputted

into the transformer encoder. To facilitate image classification

based on the presence of dermoscopic structures, a class token

is appended at the beginning of each image sequence. Figure 5

illustrates the architecture of the Vision Transformer model

for melanoma classification, considering dermoscopic structures

as features. The hyperparameters employed for ViTs in our

experimentation have been elucidated in the results section.

3.4 Introducing convolutions to Vision
Transformers

Two fundamental modifications have been implemented in

Vision Transformers (Wu et al., 2021): the incorporation of

convolutions in a new token embedding block, and the utilization

of a transformer-convolution block that capitalizes on projections

through convolutions. These alterations imbue Transformers with

the distinctive traits of Convolutional Neural Networks.

As depicted in Figure 6, the design borrowed from CNNs

incorporates a multi-stage hierarchy consisting of a total of 3

stages, each comprising 2 parts. In the initial stage, the input

image undergoes processing in the convolutional embedding

layer, where convolution operations are applied using overlapping

patches. The tokens are then reshaped into 2D grids mirroring the

input image, followed by the application of layer normalization.

Layer normalization serves to decrease the number of tokens,

referred to as feature resolution, and augment their width, known

as feature dimension. This aids in downsampling the spatial

representation, akin to the CNNs design. The remainder of each

stage encompasses a Convolution-Transformer Block, wherein a

distinct depth-wise convolutional operation is employed instead of

a linear projection as seen in Vision Transformers. The ultimate

token for classification is introduced solely at the conclusion of

the last stage, with a fully connected MLP head attached to the

classification token. This MLP head connects to the output of the

final stage for the purpose of predicting classes.

Given the 2D input image or 2D token map from the previous

stage, convolution is applied to obtain the new token map, with the

height and width being determined by:

Hi = ⌊
Hi − 1+ 2p − s

s− o
+ 1⌋,Wi = ⌊

Wi − 1+ 2p − s

s− o
+ 1⌋

Where, s is the size of the kernel, s−o is stride and p is padding.

3.5 Methods to reduce brittleness of
models

To enhance the effectiveness of the models under study against

brittleness caused by the utilization of dermoscopic structures

as features, two methods were tested: dataset augmentation and

test time augmentation. During the training phase, an extensive

level of data augmentation was applied to the training sets.

The types of transformations applied were those commonly

encountered in daily clinical examinations of skin lesions. In test

time augmentation, 23 transformed duplicates, in addition to the

input image (a total of 24 images), were evaluated during the

inference stage, and their average was considered as the final result.

The transformed duplicates for a single test image are illustrated in

Figure 7 and are further discussed in detail in the results section.

In deep learning, the original dataset is sometimes expanded by

generating multiple copies of the original data. The tools employed

for data augmentation create unique, fresh duplicates of the data

by altering certain parameters of the original dataset. While data

augmentation can be applied to various inputs such as text, audio,

and video, our study specifically focuses on augmenting image-

based datasets. There are two types of data augmentation: offline

and online. In offline data augmentation, augmented images are

combined with the original data and stored on a disk drive. In

the online mode of data augmentation, augmentation steps are

randomly applied to selected images, which are then combined with

the original data for training purposes. In our study, we utilized

data augmentation in offline mode, applying augmentation steps to

the entire original dataset, resulting in the dataset being expanded

up to 23 times, with each image having 23 copies.

The applied transformations were divided into two categories:

geometric and non-geometric variations. They include (as shown

in Figure 7):

• Geometric variations: Crop: 0% Minimum Zoom, 20%

Maximum Zoom, Flip: Horizontal, Vertical, Rotation:

Between –45◦ and +45◦, 90 Rotate: Clock-wise, Counter-

Clockwise, Upside Down, and Shear: 15◦ Horizontal, 15◦

Vertical.
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FIGURE 5

Overview of the architecture of Vision Transformers for melanoma classification based on dermoscopic structures as features: The input image is

divided into a grid of patches. These patches are then embedded in vector form, which is subsequently fed into the transformer encoder—a stack of

self-attention layers. The transformer encoder attends to all patches in the input image, regardless of their positions. The final output class label is

generated from the classification head, represented by a linear layer.

FIGURE 6

Overview of applying convolutions to Vision Transformers as melanoma classifiers based on dermoscopic structures as features: an additional

convolution layer is employed to transform patches of input images into vectors. A supplementary convolutional transformer block is utilized to

ascertain the similarity among patches that are in close proximity within the input image. This entire process is segmented into multiple stages to

produce token maps.
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FIGURE 7

Exemplary section of images with their transformed counterparts: the specified transformations are applied to each image in the dataset, which is

subsequently grouped into geometric and non-geometric variation categories.

• Non-Geometric variations: Blur: Up to 5px, Brightness:

Between –10% and +10%, Exposure: Between –25% and +25%,

Grayscale: Applied to 100% of images, Hue: Between –25◦ and

+25◦, Noise: Up to 5% of pixels and Saturation: Between –25%

and +25%.

The augmented dataset was then utilized for training to

mitigate the brittleness observed in the models, as discussed in

the results section. Data augmentation, for example, represents

one of several methods through which we can expand the size

of the original dataset. Additionally, it can serve as a tool for

regularization, enhancing themodels’ resilience tominor variations

in input images.

There are various ways to enhance the performance of
deep learning models by modifying the training procedures. As

previously discussed, one such method is data augmentation.
However, improvements can also be achieved by altering how
we evaluate models. Test time augmentations represent one

such approach. Similar to the impact of data augmentation on

training sets, test time augmentation involvesmodifying test images

presented to the model during evaluation. Instead of presenting

only the original test image to the model for result calculation,

multiple copies of the input image are shown to the model, each

digitally altered. Consequently, artificial modifications employed

for test time augmentation precisely mirror those applied to the

original dataset for data augmentation. These modifications are

detailed in the preceding subsection and depicted in Figure 7.

Predictions for all digitally modified versions of a particular image

are then averaged to derive a final prediction.

4 Experiments and results

4.1 Datasets details

We explored the Ph2 (Mendonça et al., 2013) and Derm7pt

(Kawahara et al., 2018) datasets, which consist of RGB dermoscopic

imagesmarkedwith the presence or absence of certain dermoscopic
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TABLE 1 Clinically annotated dermoscopic structures based datasets

used in our experiments.

Datasets Training
images

Blue-
white
veil

Dots/
globules

Streaks

Ph2
(Mendonça
et al., 2013)

200
Dermoscopic

164 (A),
36 (P)

87 (A), 59
(AT), 54 (T)

170 (A), 30 (P)

Derm7pt
(Kawahara
et al., 2018)

1,006
Dermoscopic

812 (A),
194 (P)

228 (A), 447
(Irr), 332 (R)

649 (A), 250
(Irr), 106 (R)

A, Absent; P, Present; Irr, Irregular; R, Regular; AT, Atypical; T, Typical.

structures by expert clinicians. To train and evaluate the models

under study, these RGB dermoscopic images, along with their

labels, were used as training data.We classified the training datasets

according to clinical markings for dermoscopic structures and

passed them to Vision Transformers (Dosovitskiy et al., 2020),

OpenAI CLIP (Radford et al., 2021), and CNN-based architectures

for model learning. The details of datasets, organized according to

the features of dermoscopic structures, are presented in Table 1.

4.2 Experimental setup

All classifiers under study (Vision Transformers, OpenAI

CLIP, ResNet-50, VGG-16, and DenseNet-121) were trained and

evaluated using the same training and testing sets, as well as

protocols. All experimentation was conducted in Python 3.7.7,

utilizing Fastai in conjunction with PyTorch on online-available

GPU machines.

The Vision Transformer model (Dosovitskiy et al., 2020) can be

divided into three layers: ViTModel, provided by the transformers

library, serves as the base model. Additionally, there is a dropout

layer used for regularization, and a linear layer that takes the input

image size, equal to the number of hidden nodes on the ViTModel.

The output of this linear layer corresponds to the number of

classes. The linear layer functions as the final layer (Dosovitskiy

et al., 2020). The ViTModel employed for Vision Transformers is

a standard PyTorch model, utilizing a dropout value of 0.1. We

conducted training for our Vision Transformers over 30 epochs,

employing a batch size of 10. The learning rate was set to 2e−5, and

we utilized a custom ViT feature extractor in conjunction with the

Adam optimizer. As a pre-processing step, all images were rescaled

to dimensions of 224 × 224. Convolutions were introduced to

Vision Transformers through CvT-13, a basic model consisting of

19.98 million parameters.

CLIP functions as a zero-shot image classifier, indicating that it

requires no training. For classification oncology, experiments have

been conducted using various class captions. CLIP was pre-trained

to distinguish between images and caption pairs. In the realm of

vision, CLIP incorporates recent advancements, such as those seen

in large-scale transformers like GPT-3.

ResNet-50, VGG-16, and DenseNet-121 are convolutional

neural networks commonly employed for image classification tasks.

As suggested by their names, ResNet-50 comprises 50 layers,

VGG-16 consists of 16 layers, and DenseNet-121 incorporates

121 layers. For all 3 models kernel size of 3 × 3 is used and

we have used cross-entropy as the loss function. These models

have been implemented using Fastai, a low-code deep learning

framework.

In the initial phase, all models under study were trained on

natural datasets without applying any augmentations and were

tested on various versions of test sets. The training datasets

were divided in an 80:20 ratio into training and validation sets.

The artificial test sets were duplicated 23 times, and the applied

transformations included cropping, flipping, rotation, and changes

in brightness, among others. All these transformations were divided

into two categories: geometric and non-geometric variations. The

cropped test sets were analyzed manually afterward to ensure that

the lesion information wasn’t compromised. Moreover, testing was

also conducted on the natural test sets and on combined test

sets that included all transformations. Some exemplary images

from the natural and artificial test sets, along with the applied

transformations, are shown in Figure 7. After the calculation of

results, methods were applied to reduce the brittleness exhibited

by a few models under study, as discussed in the methodology

section.

4.3 Evaluation metrics: loss and accuracy

Choosing loss function is significantly important in

dermoscopic structures-based melanoma lesion classification

as there is an imbalance between the samples of positive and

negative classes. By not considering the class imbalance in the

loss function, the model can diverge to a sub-optimal solution.

Moreover, in terms of medically applicated CAD-based systems,

reductions in false positive predictions are always preceded by

reductions in false negative predictions. Concretely, predicting the

presence of dermoscopic structures is more important than falsely

predicting their absence. Therefore, we have used cross-entropy

loss in our experimentation.

Cross entropy or log loss, is used to analyze the performance

of classification models whose output values lie within the

probability range of 0 and 1. This cross-probability increases

as the model prediction diverges from the actual value. Log

loss and cross-entropy loss are somewhat different up to

a certain extent but in machine learning or deep learning,

for calculation of errors between 0 and 1, they almost

conclude to the same thing. Cross entropy loss is given

by:

LCE = −

n∑

i=1

tilog(pi)

for n classes.

Where ti is truth label and softmax probability for the ith class

is pi.

The performance of the classification tasks was assessed using

the cross-entropy loss function and accuracy (A). Initially, these

metrics were calculated for each class of dermoscopic structures

separately for both datasets, and the final result was obtained by
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averaging them. The aforementioned criteria is defined as follows:

A =
TP + TN

TP + TN + FP + FN

Here, TP (True Positive) represents the samples predicted

and classified as actually true based on dermoscopic structures as

features. FP (False Positive) denotes the samples predicted as true

but classified as wrong positives, while TN (True Negative) includes

samples predicted as false and are indeed false.

4.4 Results and discussion

In this subsection, we present the findings from our

classification tasks, which are based on the models under

investigation. We utilize dermoscopic structures as features for

assessing Melanoma Lesions. To achieve this, we provide a

comprehensive report for each model, detailing its training

on natural datasets and testing on various versions of test

sets. Subsequently, we present the outcomes of all models

by considering the collective impact of the three dermoscopic

structures. Additionally, we conduct an analysis to identify where

the model focuses during classification, employing Grad-cams.

In the following stage, we implement methods to mitigate

brittleness observed in models across diverse versions of artificially

transformed test sets. We then compare the results obtained from

both stages.

4.4.1 Classification results using dermoscopic
structures as features

The dermoscopic structures under study have already been

discussed in the literature section. The results of classification for

melanocytic lesions, considering these structures, are shown in

Table 2. The table represents the cross-entropy loss and accuracy

of classification obtained from all models against each dataset

under study. To quantify prediction accuracy, the accuracy for each

individual category is calculated.

For the blue-white veil, results are predicted for the

subcategories of presence and absence, while streaks and

dots/globules are tested in terms of absence, regular, and irregular

subcategories. The result accuracies of all dermoscopic structures

under study are then averaged to calculate the final results.

These results are presented in Table 2 as STATS NATURAL.

The table shows that introducing convolutions to Vision

Transformers provides the highest accuracy when dermoscopic

structures are used as features for both datasets. However, the

accuracies depicted by CNN architectures, particularly VGG-16

and DenseNet-121, range between 50–60%, indicating the highest

accuracies when features other than dermoscopic structures are

used. In Table 2, the results are stated for models according to

the datasets under study. However, the training loss and accuracy

graphs obtained by training Vision Transformers are shown in

Figure 8.

TABLE 2 Results of classification obtained on natural testsets: STATS

NATURAL.

Models (averaged for
all 3 dermoscopic
structures)

Datasets Accuracy Training
loss

ResNet-50 PH2 0.68 1.52

VGG-16 PH2 0.48 1.32

DenseNet-121 PH2 0.45 1.05

OpenAI CLIP PH2 0.51 –

Vision Transformers PH2 0.94 0.53

Vision Transformers with

convolutions

PH2 0.95 0.50

ResNet-50 DERM7 0.6 0.77

VGG-16 DERM7 0.59 0.86

DenseNet-121 DERM7 0.66 0.76

OpenAI CLIP DERM7 0.43 –

Vision Transformers DERM7 0.96 0.59

Vision Transformers with

convolutions

DERM7 0.97 0.53

The bold selections have been highlighted to showcase our implemented technique/model or

to underscore its exceptional accuracy.

4.4.2 Testing on varied versions of artificially
transformed testsets

To assess the susceptibility of all models under study, the

models trained on natural datasets are subjected to testing

using artificially varied versions of test sets. These artificial

transformations simulate conditions commonly encountered in the

clinical examination of lesions. Tables 3, 4 present the classification

results obtained through testing on diverse versions of test sets.

These varied versions are categorized into two groups: Geometric

variations (Crop: 0% Minimum Zoom, 20% Maximum Zoom,

Flip: Horizontal, Vertical, Rotation: Between –45◦ and +45◦,

90◦◦ Rotate: Clock-wise, Counter-Clockwise, Upside Down and

Shear: 15◦ Horizontal, 15◦ Vertical) and Non-Geometric variations

(Blur: Up to 5px, Brightness: Between –10% and +10%, Exposure:

Between –25% and +25%, Grayscale: Apply to 100% of images,

Hue: Between –25◦ and +25◦, Noise: Up to 5% of pixels and

Saturation: Between –25% and +25%). The testing results for

classification based on the features of dermoscopic structures in

these geometrically and non-geometrically varied test sets are

presented in Tables 3, 4, respectively.

It is evident from Tables 2–4 that classification accuracy

deteriorates on varied versions of test sets when tested using Vision

Transformers, and remains approximately the same or increases for

some CNN-based architectures, including VGG-16 and DenseNet-

121. When convolutions are applied to Vision Transformers,

the accuracy increases for the Ph2 dataset and is equal for a

dataset of Derm7pt. OpenAI Clip provides approximately the same

accuracies on all-natural, geometric, and non-geometric varied test

sets, as the Clip is a pre-trainedmodel and predicts the results based

on matching image-to-caption pairs. These three tables show that

Vision Transformers (without convolutions) are more prone to AI

variations, predicting the brittleness of the model.
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FIGURE 8

Training accuracy and loss graphs as obtained by Vision Transformers.

TABLE 3 Results of classification obtained on geometrically varied

testsets: STATS GEOMETRIC VARIATIONS.

Models (averaged for all 3
dermoscopic structures)

Datasets Accuracy

ResNet-50 PH2 0.64 ↓

VGG-16 PH2 0.54 ↑

DenseNet-121 PH2 0.63 ↑

OpenAI CLIP PH2 0.40 ↓

Vision Transformers PH2 0.89 ↓

Vision Transformers with convolutions PH2 0.96 ↑

ResNet-50 DERM7 0.62≈

VGG-16 DERM7 0.63 ↑

DenseNet-121 DERM7 0.65≈

OpenAI CLIP DERM7 0.41≈

Vision Transformers DERM7 0.89 ↓

Vision Transformers with convolutions DERM7 0.97≈

The text in red signifies a decrease in accuracy. The text in green indicates either an increase

or maintained accuracy.

4.4.3 Localization/explainable AI
To develop a classification model with outputs that are

understandable to humans, the visualization of image areas is

crucial in contributing to label predictions. This involves examining

the learned h × w responses that impact the outcome of a

specific lth label. For instance, Figure 9 illustrates classification

responses related to the blue-white veil. To ascertain the presence

of these features, users can visualize these influential areas, thereby

enhancing their confidence in deep learning models. For this

visualization purpose, we employed a class activation maps-based

approach, specifically known as Grad-CAMs (Zhou et al., 2016).

Notably, this technique offers the additional advantage of inferring

labels from images labeled by experts, surpassing reliance solely on

a classification system and proving more interpretable than other

localization or classification systems.

TABLE 4 Results of classification obtained on geometrically varied

testsets: STATS NON-GEOMETRIC VARIATIONS.

Models (averaged for all 3
dermoscopic structures)

Datasets Accuracy

ResNet-50 PH2 0.58 ↓

VGG-16 PH2 0.55 ↑

DenseNet-121 PH2 0.59 ↑

OpenAI CLIP PH2 0.40 ↓

Vision Transformers PH2 0.87 ↓

Vision Transformers with convolutions PH2 0.96 ↑

ResNet-50 DERM7 0.61 ↑

VGG-16 DERM7 0.66 ↑

DenseNet-121 DERM7 0.64≈

OpenAI CLIP DERM7 0.41≈

Vision Transformers DERM7 0.90 ↓

Vision Transformers with convolutions DERM7 0.97≈

The text in red signifies a decrease in accuracy. The text in green indicates either an increase

or maintained accuracy.

4.4.4 Results of methods applied to reduce
brittleness of models

As demonstrated in Tables 2–4, Vision Transformers (without

convolutions) exhibit greater susceptibility to brittleness,

characterized by a decline in performance when subjected to

artificial changes in the test images. Consequently, to enhance the

resilience of the models under investigation against brittleness

induced by dermoscopic structures used as features, two methods

were assessed: dataset augmentation and test time augmentation,

extensively discussed in the methodology section. During the

training phase, an extensive level of data augmentation is applied

to the training sets, employing transformations commonly

encountered in daily clinical examinations of skin lesions. In test

time augmentation, 23 transformed duplicates, along with the

input image, are evaluated at the inference stage, and their average

is considered the final result, as illustrated in Figure 7.
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FIGURE 9

Some examples of feature visualization for blue white veil showing corresponding regions considered for classification by Vision Transformers.

TABLE 5 Results of classification obtained on natural testsets by applying

dataset augmentation and test-time augmentation: STATS NATURAL.

Models (averaged for all 3
dermoscopic structures)

Datasets Accuracy

OpenAI CLIP PH2 0.55

Vision Transformers PH2 0.96

OpenAI CLIP DERM7 0.46

Vision Transformers DERM7 0.98

The bold selections have been highlighted to showcase our implemented technique/model or

to underscore its exceptional accuracy.

The outcomes obtained by applying these two augmentation

methods, namely data augmentation and test time augmentation,

in the context of Vision Transformers and OpenAI Clip for various

versions of natural test sets are presented in Tables 5–7. The

Tables 5–7 clearly indicate that the accuracy of the results does not

deteriorate when tested on multiple versions of test sets, thanks

to the application of these two methods to mitigate brittleness.

Notably, OpenAI Clip exhibits increased accuracy, benefiting from

its lack of prior training requirements, while data augmentation

leads to an expanded dataset, ultimately contributing to heightened

accuracy. In the case of Vision Transformers, the training loss

remains consistent when augmentations are applied, mirroring the

scenario observed in training without augmentations.

4.5 Comparisons of results

In this subsection, we compare the results of all models

utilized in our experimentation based on the individual

TABLE 6 Results of classification obtained on geometrically varied

testsets by applying dataset augmentation and test-time augmentation:

STATS GEOMETRIC VARIATIONS.

Models (averaged for all 3
dermoscopic structures)

Datasets Accuracy

OpenAI CLIP PH2 0.56 ↑

Vision Transformers PH2 0.95≈

OpenAI CLIP DERM7 0.57 ↑

Vision Transformers DERM7 0.97≈

The text in green indicates either an increase or maintained accuracy.

TABLE 7 Results of classification obtained on geometrically varied

testsets by applying dataset augmentation and test-time augmentation:

STATS NON-GEOMETRIC VARIATIONS.

Models (averaged for all 3
dermoscopic structures)

Datasets Accuracy

OpenAI CLIP PH2 0.55≈

Vision Transformers PH2 0.94≈

OpenAI CLIP DERM7 0.47 ↑

Vision Transformers DERM7 0.96≈

The text in green indicates either an increase or maintained accuracy.

dermoscopic structures under study. The accuracy obtained

for each dermoscopic structure is subsequently averaged to

calculate the final result for a particular model and dataset, as

depicted in Tables 2–7. This detailed comparison will be discussed

in the upcoming sections.
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TABLE 8 Ablation study of all models on natural versions of testsets after

applying methods to reduce brittleness: STATS NATURAL.

Models Datasets Structure and accuracy

ResNet-50 PH2 BW: 0.65, D/G: 0.5, Sks: 0.88

VGG-16 PH2 BW: 0.75, D/G: 0.45, Sks:0.25

DenseNet-121 PH2 BW: 0.83, D/G: 0.28, Sks: 0.25

OpenAI CLIP PH2 BW: 0.63, D/G: 0.27, Sks: 0.75

Vision Transformers PH2 BW: 1.00, D/G: 0.87, Sks: 1.00

Vision Transformers

with convolutions

PH2 BW: 1.00, D/G: 0.89, Sks: 1.00

ResNet-50 DERM7 BW: 0.62, D/G: 0.52, Sks: 0.67

VGG-16 DERM7 BW: 0.80, D/G: 0.48, Sks: 0.49

DenseNet-121 DERM7 BW: 0.82, D/G: 0.55, Sks: 0.61

OpenAI CLIP DERM7 BW: 0.4, D/G: 0.37, Sks: 0.61

Vision Transformers DERM7 BW: 1.00, D/G: 0.97, Sks: 0.97

Vision Transformers

with convolutions

DERM7 BW: 1.00, D/G: 0.97, Sks: 0.98

BW, Blue-White Veil; D/G, Dots/Globules; Sks, Streaks. The bold selections have been

highlighted to showcase our implemented technique/model or to underscore its exceptional

accuracy.

4.5.1 Ablation study of all models under study on
features of dermoscopic structures

We conducted an ablation study comparing CNN, CLIP, and

Vision Transformers to identify the optimal dermoscopic detector

for melanoma structures. Detecting melanoma poses a challenge

due to the diverse natural and artificial variations present in the

dermoscopic images under examination. Therefore, we maintained

a consistent experimental environment and assessed the effects

of various versions of each model on the study of melanoma

dermoscopic structures. The Vision Transformers model yielded

superior results, leveraging robust natural language embeddings for

images. The introduction of convolutions to Transformers further

enhanced accuracy. In contrast, CLIP functions as a zero-shot

classifier, utilizing knowledge of the English language to classify

images without the need for prior training on a specific dataset.

The comparison results for each dermoscopic structure studied,

encompassing datasets such as Ph2 and Derm7pt, are presented in

Table 8.

To gain a deeper understanding of the specific transformations

impacting each model’s degraded performance, we conducted a

thorough analysis of each applied transformation individually.

This approach offers valuable insights into the unique challenges

encountered by AI models in distinguishing melanoma from

benign lesions and facilitates the development of targeted strategies

to enhance their performance.

As detailed in Table 9, we have taken a more nuanced approach

by identifying specific variations responsible for the degraded

performance of each individual model under scrutiny. We have

selectively included variations that have a significant impact on

a network’s performance degradation. Our findings reveal that

the most significant impact on the performance of classification

models is attributed to Hue variations ranging between –25◦ and

+25◦, and by Brightness variations between –10% and +10%,

TABLE 9 Ablation study of all models for specific transformations

impacting each model’s degraded performance.

Models Variation Decrease in
accuracy

Vision
Transformers

Grayscale 0.05

Vision
Transformers

Hue: between –25◦ and +25◦ 0.2

ResNet-50 Noise: up to 5% of pixels 0.37

ResNet-50 Hue: between –25◦ and +25◦ 0.2

VGG-16 Rotation: between –45◦ and
+45◦

0.4

VGG-16 Crop: 0% Minimum Zoom,
20% Maximum Zoom

0.4

DenseNet-121 Hue: between –25◦ and +25◦ 0.4

DenseNet-121 Crop: 0% Minimum Zoom,
20% Maximum Zoom

0.45

OpenAI CLIP Brightness: between –10% and
+10%

0.49

both falling under the category of non-geometric transformations.

Additionally, Rotation variations between –45◦ and +45◦ and

Crop: 0% Minimum Zoom, 20% Maximum Zoom, categorized as

geometric transformations, demonstrate a notable effect on the

networks’ performance.

4.5.2 Comparison with state-of-the-art methods
based on features other than dermoscopic
structures

In this subsection, we compared the performance of our

technique, which is based on features of dermoscopic structures,

with that of techniques relying on features other than dermoscopic

structures, such as color, size, and shape of lesions. All these

techniques are founded on models comprising CNN architectures

or combinations thereof. In the ISIC challenges of 2018 and 2019,

numerous teams participated in the melanoma classification task,

and the results of their techniques are presented in Table 10.

Referring to Table 10, Gessert et al. (2019) utilized a pre-trained

model on the ImageNet dataset known as EfficientNets in

their technique. They applied scaling rules to make the model

adaptable to any image size. Zhou et al. (2019) employed a

transfer learning technique by using an ensemble of state-of-the-art

deep learning-based models, including se-resnext50, se-resnext101,

densenet121, and efficient net-b2, b3, and b4. Pacheco et al.

(2019) implemented another ensemble-based approach with CNN

models, incorporating SENet, PNASNet, ResNet-50, 101, and 152,

InceptionV4, DenseNet-121, 169, and 201, as well as MobileNetV2,

GoogleNet, and VGG-16, 19. Sreena and Lijiya (2019) adopted

DenseNet-161 for skin lesion classification, fine-tuning the model

on a pre-trained ImageNet dataset. Tô et al. (2019) addressed

dataset imbalance and overfitting issues by employing EfficientNet

and Inception ResNet.

Zhang P. et al. (2019) utilized a 169-layer dense attention

network backbone to formulate a model named MelaNet.
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This model’s output layers comprised eight units designed for

constructing a multi-class classifier. Adegun and Viriri (2021)

proposed an ensembling model by employing the mean softmax

vector for the probability distribution and training them on

the same hyperparameters. Adegun and Viriri (2021) applied a

combination of EfficientNets, DenseNet161, and Se-ResNext101,

training these models independently. Adegun and Viriri (2021)

employed both softmax and sigmoid activation layers for

predictions, utilizing seven models with top-1 accuracy. Adegun

and Viriri (2021) utilized the Diversity Generator for generating

and combining results from diverse ensembling-based models.

Ahmed et al. (2020) proposed a fine-tuning-based technique for

ensemble-based models, including Xception, Inception-ResNet-

V2, andNasNetLarge, trained on 1.2million images of 1,000 classes.

Although the models employed in the ISIC challenge demonstrated

strong performance, they proved to be time-consuming and

demanded extensive resources for training, making it impractical

for fine-tuning numerous models.

In recent approaches, images undergo segmentation as an

initial step, followed by feeding these segmented images into

improved deep learning-based classification models. According to

Table 10, the Large Ensemble method by Gessert et al. (2018)

achieved an accuracy score of 97.2%. A notable observation

is that the results of ISIC 2018, as presented in the table,

exhibit significantly better performance compared to the methods

employed in ISIC 2019. It can be deduced from Table 9 that certain

ISIC 2018 models display commendable classification accuracy in

contrast to their ISIC 2019 counterparts. This improvement is

attributed to the positive effects arising from the segmentation

of lesion images, a crucial aspect in contemporary classification

methods. Prior to their utilization in models for classification,

these lesion images undergo preprocessing and segmentation. The

results suggest that classifying segmented lesions outperforms

the classification of non-segmented lesions. Additionally, the

inference can be drawn that less complex models are more suitable

for classifying segmented lesion images, given that the models

in ISIC 2018 techniques are notably simpler than their ISIC

2019 counterparts.

4.6 Significance of using dermoscopic
structures as features

In the field of dermatology, slight variations in skin color,

size, and shape have historically been crucial factors contributing

significantly to the diagnosis of melanocytic lesions. This is evident

in dermoscopic examinations where considerable importance has

been placed on the color, size, and shape of lesions. However,

dermoscopy allows for the visualization of multiple layers of

skin structures on the body’s surface, such as lines, clods, circles,

and dots, providing diagnostic clues independent of color, size,

and shape of the lesions. In essence, while it is feasible to

categorize melanocytic lesions based on color, they are often

more accurately differentiated by their distinctive morphological

characteristics and the distribution of specific structures over the

lesions. For instance, the characteristic “ovoid nests” of basal cell

carcinomas, traditionally perceived as blue-grey, may appear brown

TABLE 10 Performance evaluation results of participants’ algorithms in

skin lesion classification of ISIC 2018 and 2019.

Techniques Dataset A

Ensemble of multi-res efficientNets with SEN154
(Gessert et al., 2019)

ISIC 2019 0.92

Ensemble of EfficienetB3-B4-Seresnext101 (Zhou
et al., 2019)

ISIC 2019 0.91

Ensemble classifiers (Pacheco et al., 2019) ISIC 2019 0.91

Densenet-161 (Sreena and Lijiya, 2019) ISIC 2019 0.91

CNNs based on inception-resnet, exception net,
and EfficientNet (Tô et al., 2019)

ISIC 2019 0.91

Malanet based on DenseNet (Zhang P. et al., 2019) ISIC 2019 0.89

Class-centroid-based openset ensemble CNNs
(Adegun and Viriri, 2021)

ISIC 2019 0.91

Long-tail distribution based classifiers (Adegun
and Viriri, 2021)

ISIC 2019 0.91

Softmax ensemble and sigmoid ensemble classifier
model (Adegun and Viriri, 2021)

ISIC 2019 0.92

Test time augmentation on ensemble models
(Adegun and Viriri, 2021)

ISIC 2019 0.92

Xception, Inception-ResNet-V2, and NasNetLarge
(Ahmed et al., 2020)

ISIC 2019 0.92

Top 10 models averaged (Nozdryn-Plotnicki et al.,
2018)

ISIC 2018 0.95

Large ensemble with heavy multi-cropping and
loss weighting (Gessert et al., 2018)

ISIC 2018 0.97

Emsemble Of SENET and PNANET with Data
Augmentation (Li and Shen, 2018)

ISIC 2018 0.96

Densenet (Li and Shen, 2018) ISIC 2018 0.96

Models average (Amro et al., 2018) ISIC 2018 0.95

Average of 15 deep learning models (Bissoto et al.,
2018)

ISIC 2018 0.95

FV+Res101 (Pan and Xia, 2018) ISIC 2018 0.95

WonDerM: skin lesion classification with
fine-tuned neural networks (Lee et al., 2018)

ISIC 2018 0.95

Resnext101 and DPN92, Snapshot ensamble, D4
TTA (Adegun and Viriri, 2021)

ISIC 2018 0.96

Emsemble Of ResNet-152 (Li and Shen, 2018) ISIC 2018 0.95

Our technique [ViTs with convolutions (data

augmentation)]

DERM7 0.98

The bold selections have been highlighted to showcase our implemented technique/model or

to underscore its exceptional accuracy.

under non-polarized dermoscopy, illustrating the significance of

morphological features over color.

Supporting this interpretation, our tests on various versions

of test sets have revealed no significant differences in accurately

diagnosing melanoma in artificially altered images. These tests

suggest that melanoma diagnosis can be facilitated by focusing

on the characteristics of dermoscopic structures, even when color

remains unchanged or is absent.

Compared to a diagnosis based on the color, size, and shape of

lesions, a more objective and accurate diagnosis may be achievable

by considering dermatologic structures and patterns. Establishing
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color standards may prove challenging due to the diverse range of

dermatoscopes available, each with its unique visual characteristics

and light spectrum. Beyond experience, memory, and context, the

perception of color, size, and shape is influenced by differences

in retinal photoreceptors, as seen in cases of color blindness. In

the context of dermatological diagnosis, this suggests that while

color, size, and shape may offer utility for diagnostic purposes,

they inherently harbor a degree of subjective bias that varies

among observers.

Delving into future treatment methodologies, the clinical

implications of comprehending dermoscopic patterns will lie

in their role in characterizing melanomas based on specific

features. This understanding will empower future clinicians to craft

personalized treatment plans tailored to the unique characteristics

of individual lesions. The practical application will manifest in

the realm of automated systems leveraging dermoscopic features.

These systems will aid in the stratification of melanomas, providing

valuable guidance to clinicians in determining themost appropriate

and personalized treatment strategies for their patients.

4.7 Testing on ISIC 2016

For evaluation purposes, Vision Transformers were also tested

on the ISIC 2016 dataset to determine their classification ability on

unseen images, relying on features of dermoscopic structures. This

trial-and-error testing provided us with the insight that the models

can be employed to infer labels on datasets that lack structural

clinical annotations.

5 Conclusions

In this paper, we present a scheme for melanoma classification

using three different dermoscopic structures with two clinically

labeled datasets, namely Ph2, and Derm7pt. Our proposed

technique comprises five phases: classification of datasets for

training based on dermoscopic structures, obtaining classification

results, which include dermoscopic structures, from five models–

Vision Transformers, OpenAI Clip, ResNet-50, Vgg-16, and

DenseNet-121. We then implement methods to reduce the

brittleness of themodels and visualize features and, finally, compare

the classification results obtained by training the models.

The classification accuracy achieved for various dermoscopic

structures by Vision Transformers surpasses that of OpenAI Clip,

delivering results between 80–100% for all three dermoscopic

structures, as depicted in Table 7. Additionally, the key areas

in classifying melanoma lesions are identified as a blue-white

veil, dots/globules, and streaks, based on feature visualization

that correlates with dermoscopic structures in melanoma

detection. Furthermore, research involving dermoscopic structures

addresses the susceptibility of AI to image variations. By training

Convolutional Neural Networks (CNNs) to differentiate between

melanoma and benign lesions, the presence of specific dermoscopic

structures remains invariant to natural and artificial changes in

images, such as rotation and zooming, thereby significantly

enhancing detection accuracy.

However, the number of images in the utilized datasets was

limited. Small datasets, like Ph2, may lack the diversity required

to represent the full spectrum of dermoscopic variations in

melanoma cases. This limitation could hinder the model’s ability

to generalize to unseen cases. With a small dataset, there’s an

increased risk of overfitting. Models may memorize patterns

specific to the dataset rather than learning generalizable features,

resulting in poor performance on new data. Also, small datasets

might not adequately represent the variety of skin types, ages,

and melanoma types. This can introduce bias and affect the

model’s ability to generalize to a broader population. Still, we

advocate for collecting more clinically annotated datasets based on

dermoscopic structures.

In the future, automatic computation of dermoscopic structural

features can be achieved by applying deep learning and semantic

segmentation, followed by extracting measurements from the

segmented results. Another effective approach involves leveraging

transfer learning, where pre-trained models on larger datasets,

such as ImageNet, are fine-tuned on the smaller melanoma

dataset. This allows the model to initialize with knowledge

acquired from a more extensive dataset, potentially improving

its performance in the specific task of melanoma detection.

Additionally, Generative Adversarial Networks (GANs) can be

utilized to generate synthetic dermoscopic images. This addresses

the lack of diversity in the original dataset by creating realistic

images that complement the available data. GANs play a crucial

role in broadening the model’s exposure to a wider range of

melanoma variations. Ensemble methods provide another avenue

for enhancement by combining predictions from multiple models.

This contributes to overall performance improvement, helping

to mitigate overfitting issues and bolstering the generalization

capabilities of the melanoma detection model. Exploring biopsy-

level analysis is essential for incorporating histopathological

information along with dermoscopic features. This integration

offers a more comprehensive understanding of melanoma,

potentially leading to improved classification accuracy. Lastly,

continual learning strategies should be implemented to adapt the

model over time as new data becomes available. This dynamic

approach ensures that the model remains relevant and effective,

evolving alongside the constantly expanding knowledge about

melanoma dermoscopic structures.

Data availability statement

Publicly available datasets were analyzed in this study.

This data can be found here: Mendonça et al. (2013) and

Kawahara et al. (2018).

Author contributions

FM: Data curation, Formal analysis, Investigation,

Methodology, Software, Validation, Writing—original draft.

MY: Conceptualization, Formal analysis, Funding acquisition,

Project administration, Resources, Supervision, Visualization,

Writing—review & editing. HS: Data curation, Investigation,

Supervision, Validation, Visualization, Writing—review &

Frontiers in BigData 17 frontiersin.org

https://doi.org/10.3389/fdata.2024.1366312
https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org


Malik et al. 10.3389/fdata.2024.1366312

editing. SV: Resources, Supervision, Validation, Visualization,

Writing—review & editing.

Funding

The author(s) declare that financial support was received for

the research, authorship, and/or publication of this article. This

research work has been carried out at Swarm Robotics Lab under

National Centre of Robotics and Automation (NCRA). MY secured

funding for the lab from Higher Education Commission Pakistan.

Acknowledgments

We express our gratitude to the creators of the Ph2 (Mendonça

et al., 2013) and Derm7pt (Kawahara et al., 2018) datasets, which

have been clinically annotated based on dermoscopic structures

and are publicly available for research. These datasets play a

significant role in enabling this study.

Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

References

Adegun, A., and Viriri, S. (2021). Deep learning techniques for skin lesion analysis
and melanoma cancer detection: a survey of state-of-the-art. Artif. Intell. Rev. 54,
811–841. doi: 10.1007/s10462-020-09865-y

Ahmed, N., Tan, X., and Ma, L. (2023). A new method proposed to melanoma-
skin cancer lesion detection and segmentation based on hybrid convolutional neural
network.Multim. Tools Applic. 82, 11873–11896. doi: 10.1007/s11042-022-13618-0
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