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Toward the design of persuasive
systems for a healthy workplace:
a real-time posture detection

Grace Ataguba* and Rita Orji

Department of Computer Science, Dalhousie University, Halifax, NS, Canada

Persuasive technologies, in connection with human factor engineering

requirements for healthy workplaces, have played a significant role in ensuring a

change in human behavior. Healthy workplaces suggest di�erent best practices

applicable to body posture, proximity to the computer system, movement,

lighting conditions, computer system layout, and other significant psychological

and cognitive aspects. Most importantly, body posture suggests how users

should sit or stand in workplaces in line with best and healthy practices. In this

study, we developed two study phases (pilot and main) using two deep learning

models: convolutional neural networks (CNN) and Yolo-V3. To train the two

models, we collected posture datasets from creative common license YouTube

videos and Kaggle. We classified the dataset into comfortable and uncomfortable

postures. Results show that our YOLO-V3model outperformed CNNmodel with

a mean average precision of 92%. Based on this finding, we recommend that

YOLO-V3 model be integrated in the design of persuasive technologies for a

healthy workplace. Additionally, we provide future implications for integrating

proximity detection taking into consideration the ideal number of centimeters

users should maintain in a healthy workplace.

KEYWORDS

persuasive technology, healthy workplace, posture, machine learning, YOLO-V3,
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1 Introduction

The importance of persuasive technologies in influencing changes in human behavior

is significant and cannot be overemphasized. Persuasive technologies have an impact on

users’ behavior and the choices they make (Rapoport, 2017; Orji et al., 2018; Darioshi

and Lahav, 2021; Wang et al., 2023). As a result, persuasive technologies prioritize user-

centered design, and they can assist users in leading a healthy lifestyle. Considering this,

research has demonstrated the valuable roles these technologies play in preventing and

aiding the management of illnesses (Schnall et al., 2015; Karppinen et al., 2016; Sonntag,

2016; Bartlett et al., 2017; Faddoul and Chatterjee, 2019; Fukuoka et al., 2019; Kim M. T.

et al., 2019; Oyibo and Morita, 2021), promoting fitness and exercise (Bartlett et al., 2017;

Schooley et al., 2021), and other significant ones (Jafarinaimi et al., 2005; Anagnostopoulou

et al., 2019; Beheshtian et al., 2020).

The workplace, a location, setting, or environment where people engage in work,

have recorded significant unhealthy practices, including bad posture, over the years

(Nanthavanij et al., 2008; Ko Ko et al., 2020; Roy, 2020; van de Wijdeven et al., 2023).

In the context of this study, we consider work-from-home (WFH) contexts, offices, and

other spaces where computers are employed to be workplaces. Best workplace practices

are significant for a healthy working style. These practices cover the need to ensure that

computer users maintain the right posture, follow the right movement practices, take
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regular breaks from computer systems, ensure they have proper

lighting conditions, adhere to computer system layout, and other

significant psychological and cognitive aspects. Poor workplace

practices can lead to various health issues, such as repetitive strain

injuries, eyestrain, and postural problems (Ofori-Manteaw et al.,

2015; Workineh and Yamaura, 2016; Alaydrus and Nusraningrum,

2019). Research has shown that over 70% of stress, neck injuries,

other types of sprains and pains (for example, arm sprains and

back pain), and stress are work-related (Tang, 2022). This study

presents the design of a persuasive system based on the best

posture practices. In addition, this study presents implications for

designing persuasive systems based on their proximity to computer

system requirements.

Machine learning, a subfield of artificial intelligence (AI), deals

with developing models. These models assist computers in learning

and detecting patterns of objects in the real world (Mahesh,

2020; Sarker, 2021). Hence, machine learning has contributed to

several studies that have significantly detected patterns in human

behaviors (Cheng et al., 2017; Krishna et al., 2018; Xu et al., 2019;

Chandra et al., 2021; Jupalle et al., 2022; Cob-Parro et al., 2023),

human emotions (Jaiswal and Nandi, 2020; Gill and Singh, 2021),

and health-related behaviors (Reddy et al., 2018; Mujumdar and

Vaidehi, 2019; Ahmad et al., 2021). In this study, we leverage the

opportunity of machine learning algorithms to design a persuasive

system for detecting patterns of unhealthy postures and proximity

to computers in workplaces.

As part of persuasive technology’s goal to provide users with

real-time feedback on their actions (which, in turn, influences

their behavior), we report on our experiment comparing the

convolutional neural networks (CNN) and Yolo-V3 models.

Research has shown the success of these models in real-time

object detection (Tan et al., 2021; Alsanad et al., 2022). One of

the significant drawbacks of CNN compared with Yolo-V3 from

research is its requirement for a large number of training sets (Han

et al., 2018). On the other hand, the Yolo-V3 model generates

regions or boxes around objects and returns its accuracy values

within these boxes. This implies that several boxes are marked

within an object, and its performance can be implied from the

confidence of predictions (Figure 1). For example, in Figure 1, the

YOLO-V3model predicted the hardhat with 95% confidence. Yolo-

V3 and CNN work in real time by analyzing images extracted

from frames per second and providing a consistent update as these

images change.

Though we found significant studies in the application of

persuasive systems to encourage computer users to take regular

breaks from workplaces (Jafarinaimi et al., 2005; Reeder et al., 2010;

Ludden and Meekhof, 2016; Ren et al., 2019), little is yet known

about how they maintain the right posture before these regular

breaks. Based on this limitation, the overarching goal of our study is

to explore how people can be conscious of their unhealthy posture

practices in workplaces (while sitting or standing). This connects

with the main research question we seek to answer (RQ): RQ:

Can we design persuasive computers to detect unhealthy posture

practices (such as sitting and standing) in workplaces?

People in workplaces have two types of posture positions:

sitting and standing (Botter et al., 2016). The sitting position

affords the computer user space to relax the back correctly on

a chair (Figure 2, L). This, compared with the standing position,

FIGURE 1

A YOLO-V3 detection on a sample image. Reproduced from

“YOLOv3 on custom dataset,” YouTube, uploaded by “Aman Jain,” 22

July 2021, https://www.youtube.com/watch?v=D4RQ7Rkrass,

Permissions: YouTube Terms of Service.

allows computer users to stand while using the computer system

(Figure 3). It is significant to recall that before COVID-19, these

workplaces were office spaces. However, most recently, after

COVID-19, workplaces have extended to home spaces (Abdullah

et al., 2020; Javad Koohsari et al., 2021). People now work

from home, and the posture practices in these spaces have not

been evaluated.

The scientific contributions of this research are in 4-folds:

1. Provision of ground truth posture datasets:

We are contributing ground-truth posture datasets for

the research community to explore related concepts in the

future. These datasets can be increased in future work to

enhance the accuracy and effectiveness of future technological

interventions. Hence, this contribution will support researchers

and designers in developing more robust and context-aware

persuasive technologies.

2. Implementation of deep learning models for

posture detection:

We present the development and implementation of deep

learning models for detecting the posture practices of computer

users. These models leverage advanced techniques to interpret

and classify diverse body positions, contributing to the evolving

landscape of human–computer interaction. The models offer

a technological solution to the challenge of real-time posture

detection in the workplace. This contribution aligns with the

forefront of research in machine learning and computer vision.

3. Real-time persuasive design for healthy workplace behavior:

Frontiers in BigData 02 frontiersin.org

https://doi.org/10.3389/fdata.2024.1359906
https://www.youtube.com/watch?v=D4RQ7Rkrass
https://www.youtube.com/t/terms
https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org


Ataguba and Orji 10.3389/fdata.2024.1359906

FIGURE 2

Correct ergonomics (L) and incorrect ergonomics (R) in a sitting workstation. Reproduced from “Computer Ergonomics,” YouTube, uploaded by

“Pearls Classroom,” 5 October 2021, https://www.youtube.com/watch?v=XQTQ578wLzo, Permissions: YouTube Terms of Service.

FIGURE 3

Edited scenes. Reproduced from “Libertyville IL neck pain—prevent bad posture with the right workstation,” YouTube, uploaded by “Functional Pain

Relief,” 22 August 2018, https://www.youtube.com/watch?v=0M5C1BJdVsA, Permissions: YouTube Terms of Service.

We present a real-time persuasive design based on posture

practices, thereby introducing a novel approach to promoting

healthy workplace behavior. This contribution has practical

implications for addressing issues related to sedentary work

habits, discomfort, and potential health impacts associated with

poor posture.

4. Integrating real-time feedback and persuasive elements:

Our design presents the potential and feasibility of

persuasive technology to positively influence user behavior,

fostering increased awareness and conscious efforts toward

maintaining proper posture. This interdisciplinary contribution

merges insights from computer science, psychology, and

workplace health.

Collectively, these scientific contributions play a significant role

in the advancement of knowledge in the fields of human–computer

interaction, machine learning, and persuasive technology, with

direct applications for improving workplace wellbeing and

behavior. The rest of the study is structured as follows: First,

we reviewed significant scholarly works on workplace practices,

user health, and productivity; persuasive technologies and the

workplace; machine learning and workplace practices; and

accessibility technologies and healthy practices. Second, we present

the methodology based on data collection and deep learning model

deployment for the pilot study and the main study. Third, we

report on the results of the pilot and main studies. In addition,

we compare outcomes for deploying CNN and Yolo-V3 models

toward persuasive, healthy workplace designs. Fourth, we present

a discussion on the results from the pilot and main studies. Fifth,

we report on the limitations of the study and present design

recommendations to guide future research. Sixth, we conclude by

summarizing the study and drawing an inference based on the

results, limitations, and recommendations for future studies.

2 Related work

This section provides an in-depth exploration of related

work comparing the relationship between workplace practices,

user health and productivity, and other significant ones such

as persuasive technologies and workplace practices, machine
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TABLE 1 Relationship between the human head anatomy and exerted

force leading to spine damage.a

S/N Degrees Force (lb) Spine damage risk level

1. 0 10–12 Low or no risk

2. 15 27 Medium

3. 30 40 High

4. 60 50 Very high

ahttps://www.youtube.com/watch?v=0M5C1BJdVsA.

learning andworkplace practices, and accessibility technologies and

healthy practices.

2.1 Workplace practices, user health, and
productivity

Workplace practices cover significant areas such as the proper

chair and desk height, appropriate monitor placement, ergonomic

keyboard and mouse usage, reduction of glare and reflection,

importance of regular breaks, and promoting movement through

sit-stand workstations (Dainoff et al., 2012; , 2023). Research

has established a relationship between failing to adhere to good

workplace practices and the consequences for computer users’

health. These include the potential for musculoskeletal disorders,

eye strain, and other common health issues related to prolonged

computer use (Dainoff et al., 2012; Woo et al., 2016; Boadi-Kusi

et al., 2022). According to Nimbarte et al. (2013), Shahidi et al.

(2015), and Barrett et al. (2020), the force on the neck increases

proportionately as the head angle tilts at a higher degree. The long-

term impact of this, as shown in Table 1, is a spine damage risk.

In addition, computer users’ health is typically at risk due to

repetitive stress injuries (Borhany et al., 2018; Mowatt et al., 2018;

Iyengar et al., 2020; Roy, 2020; Steiger et al., 2021). Repetitive strain

injury (RSI) is defined as “a chronic condition that develops because

of repetitive, forceful, or awkward hand movements for prolonged

periods leading to damage to muscles, tendons, and nerves of the

neck, shoulder, forearm, and hand, which can cause pain, weakness,

numbness, or impairment of motor control” (Sarla, 2019). This

implies that computer use involving extended periods of typing

and mouse use without proper ergonomics can increase the risk

of RSIs. In addition, maintaining poor posture and not adhering

to ergonomic requirements when setting up workstations can

contribute to this risk. For example, Borhany et al. (2018) carried

out a study to examine common musculoskeletal problems arising

from the repetitive use of computers. They conducted a survey

with 150 office workers and found that 67 of these workers suffer

from repetitive stress injuries on the low back, neck, shoulder, and

wrist/hand. In addition, they found that these injuries were caused

by continuous use of computers without breaks, bad lighting, bad

posture, and poorly designed ergonomics in offices. While it is

typical that workplace tasks are characterized by repetitive tasks and

actions, it has become imperative to design workplace technologies

to support users in carrying out repetitive tasks without straining

any part of the body (Moore, 2019; Johnson et al., 2020).

It is important to state that research has found the impact of

computer users’ health due to repetitive stress injuries and other

related health issues on the productivity of users in workplaces.

In other words, a well-designed workplace not only improves the

user’s comfort but also enhances work efficiency and overall job

satisfaction (Pereira et al., 2019; Baba et al., 2021; Franke and

Nadler, 2021). Pereira et al. (2019) examined 763 office workers in

a 12-week study. They interpreted office productivity to be relative

to absenteeism from work due to neck pain. The results from this

study show that those exposed to healthy workplace practices and

neck-specific exercise training had limited records of absenteeism.

Pereira at al. reported that individuals with unhealthy workplace

practices and limited access to health promotion information were

more likely to be less productive, i.e., absent from work. Baba et al.

(2021) conducted a study involving 50 newly employed staff in an

organization. The staff was divided into experimental groups (with

healthy workplace practices, e.g., comfortable computer desks) and

control groups (with unhealthy workplace practices, such as less

comfortable furniture). The study revealed a significant impact on

the work productivity of the experimental group compared with the

control groups (based on a t-test showing that t.cal = 0.08; t.tab =

1.71, where t.cal is the calculated t-test value and t.tab is the value

of t in the distribution table).

While many organizations focus on employee training

and sensitization programs for healthy workplace practices,

limited research has been reported on workplace culture,

employee training, computer workstation assessment, and

the benefits of posture assessment tools. This study explores

the potential of persuasive technologies for enhancing

effective workplace posture practices. These technologies

can serve as posture assessment tools, providing valuable

feedback to organizations on the best ways to support

their employees.

2.2 Persuasive technologies and the
workplace

Persuasive technologies and workplace practices are two

distinct areas of study and practice, but they intersect in

designing user interfaces and technology systems that promote

healthy workplace practices for technology users. Overall, this will

enhance technology users’ wellbeing and productivity. Research

has explored persuasive technologies in relation to best workplace

practices. This includes taking regular breaks (Jafarinaimi et al.,

2005; Ludden and Meekhof, 2016; Ren et al., 2019), fitness apps

(Mohadis et al., 2016; Ahtinen et al., 2017; Paay et al., 2022),

feedback systems and wearable devices (Bootsman et al., 2019; Jiang

et al., 2021), workstation movement (Min et al., 2015; Damen et al.,

2020a,b), chair, desk, and monitor height adjustments (Kronenberg

and Kuflik, 2019; Kronenberg et al., 2022), posture correction

(Min et al., 2015; Bootsman et al., 2019; Kim M. T. et al., 2019),

mouse/keyboard use and reduction of glare and reflection (Bailly

et al., 2016), and other healthy work behaviors (Berque et al., 2011;

Mateevitsi et al., 2014; Gomez-Carmona and Casado-Mansilla,

2017; Jiang et al., 2021; Brombacher et al., 2023; Haliburton et al.,

2023; Robledo Yamamoto et al., 2023).
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Table 2 summarizes closely related work on persuasive

technologies with respect to workplace practices. We present

discussions based on instances of workplace practices we listed

previously. This includes taking regular breaks, fitness apps,

feedback systems, workstation movement, chair, desk, monitor

height adjustments, posture correction, mouse/keyboard use,

reduction of glare and reflection, and other healthy practices.

Jafarinaimi et al. (2005) developed sensor-based office chairs that

encourage users to break away from their computers. Every 2min,

the chair slouches its position from upright to backward bend,

signifying the need for computer users to take a break. In view of

this, they experimented with a single user (55-year-old university

staff). The results from the study showed how the sensor-based

office chair greatly influenced the user’s attitude to break away from

their computer.

Mohadis et al. (2016) developed a low-fidelity web-based

prototype to encourage physical activity among older office

workers. They considered 23 persuasive principles as they relate

to physical activity. These include reduction, tunneling, tailoring,

personalization, self-monitoring, simulation, rehearsal, dialogue

support, praise, rewards, reminders, suggestions, similarity, social

role, credibility support expertise, real-world feel, third-party

endorsements verifiability, social support/social learning, social

comparison, normative influence, social facilitation, competition,

and recognition. Reduction was targeted at making complex

tasks simple to complete. Tunneling was driven by using the

system to guide users while persuading them to change their

behavior. Self-monitoring ensures that users can keep track

of their behavior. Simulation covers demonstrating aspects of

behaviors to interpret cause-and-effect relationships. Rehearsal

provides an opportunity to continue to practice behavior toward

change. In addition, the other persuasive principles (dialogue

support praise, rewards, reminders, suggestions, similarity, social

role, credibility support expertise, real-world feel, third-party

endorsements verifiability, social support/social learning, social

comparison, normative influence, social facilitation, competition,

and recognition) were driven toward enhancing a change in the

user’s physical activity behaviors. The authors experimented with

10 participants and found that only two (2) persuasive principles

were perceived positively. This includes dialogue support and

credibility support.

Bootsman et al. (2019) explored wearable posture monitoring

systems for nurses in workplaces. Nurses were considered to carry

out repetitive bending throughout their work shifts. The systemwas

designed to track their lower back posture. The system is connected

to a mobile application that provides feedback on the different

posture positions of users and tips for changing bad postures.

The system was evaluated with six (6) nurses (aged between

20 and 65 years) for 4 days during work hours. Based on the

intrinsic motivation inventory, the results show interest, perceived

competence, usefulness, relatedness, and effort/importance scored

more points. In addition, the results from the qualitative analysis

show that participants appreciated the comfortability of the

wearable system, though they were not in support of the frequency

of beeps as it caused some distractions.

Haque et al. (2020) explored computer workstation movements

similar to regular breaks. Unlike the regular break, computer

users are encouraged to walk around and keep track of their

physical activity level. The authors conducted an experiment

with 220 office workers from the United Kingdom, Ireland,

Finland, and Bangladesh for 4 weeks while evaluating their “IGO

mHealth app.” The app monitors office workers’ meal intake and

work periods to send a 10-min interval walk-around reminder.

The app tracks this movement while setting a target limit of

1,000 steps every 10min. The app incorporates the leaderboard

gaming element, encouraging competition through persuasion.

The results from this study show a trend in weight loss, and a

follow-up interview revealed three (3) persuasive principles that

were perceived positively: (1) autonomy, (2) competence, and (3)

relatedness. Autonomy shows how the app helped them achieve

their set goals. Competence reflects how confident they were

about their capability to use the app to perform different tasks.

Relatedness shows how they were able to use the app to establish

social connections.

Kronenberg et al. (2022) developed robotic arms that can be

used to automatically adjust computer system screens. The robot

detects the distance between the screen and the user’s seating

position. Then, the robot calculates the new screen orientation

and adjusts to keep a healthy distance between the users and their

computer screens. The authors conducted an experiment with 35

participants (25–68 years old) in their workspaces. The results of

one-sample Wilcoxon Signed Rank Test show that participants

could effectively complete the tasks and scenarios using this system

at (p < 0.001), the screen did not move at the right pace when

it moved (given that p = 0.189 was not significant that it moved

at the right pace), the screen did not move at the appropriate

moment (given that p = 0.904 was not significant that it moved

at the appropriate moment), the screen was not well-adjusted to

users’ pose (given that p = 0.163 was not significant that it was

well-adjusted to users pose), and the users felt distracted by the

movement of the screen (given that p = 0.028 was not significant

that users felt less distracted by the movement of the screen).

Kim M. T. et al. (2019) conducted experiments with a robot

to support posture corrections during object lifting with 10 adults

(30–34 years old). They considered five (5) different joints in the

human body: (1) hips, (2) knees, (3) ankles, (4) shoulders, and (5)

elbows. The results of their t-test analysis showed that the robot

significantly lowered the overloading effect in all joints: shoulder (p

< 0.001), elbow (p < 0.001), hip (p < 0.001), knee (p < 0.001), and

ankle (p < 0.001). This implies that the robot can promote better

posture practices in workplaces.

Bailly et al. (2016) developed a “LivingDesktop” that supports

users to reduce reflection from the monitor screen. In addition,

the system allows users to adjust the mouse and keyboard positions

to improve ergonomics. The authors evaluated the system with 36

desktop users (22–40 years old). The results from this study show

that users liked adjustable features because they fit their needs for

video conferencing, tidying their workspace, and maintaining the

right posture. On the other hand, some users criticized the system

for its distractions in workspaces.

Jiang et al. (2021) developed a smart t-shirt wearable

application for depression management in workplaces. They

considered emotion regulation for depression management based

on the movement of the shoulders and arms. The smart t-shirt
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TABLE 2 Summary of research on persuasive technologies and workplace practices.

S/N References Technology Workplace practices covered
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desk height
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Keyboard
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Regular
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Other
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2. Damen et al. (2020a) Tangible �
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8. Jiang et al. (2021) Tangible �

9. Mohadis et al. (2016) Web App �

10. Gomez-Carmona and
Casado-Mansilla (2017)
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11. Bootsman et al. (2019) Tangible and
Mobile App

�

12. Kronenberg et al. (2022) Robot �

13. KimW. et al. (2019) Robot �
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changes resistance based on users’ emotions. The fabric maintains

a resistance of 180 k� while relaxed (positive emotion) and 400 k�

when stretched (negative emotion). In view of this, they tested the

smart t-shirt with six (6) healthcare workers for 5 days and found

that the smart t-shirts regulated healthcare workers’ emotions

positively at work.

While most of these persuasive technologies have explored user

interface design and user experience evaluation, we found other

state-of-the-art practices employing machine learning techniques.

Machine learning designs present more intelligent and data-

oriented systems. This makes them more flexible to learn new

patterns while users continue to interact with them. We present

the extent to which machine learning has been tailored to enhance

workplace practices in the next Section 2.3.

2.3 Machine learning and workplace
practices

Machine learning can significantly impact the design of

products for healthy workplaces. It interprets a wide range of data

types, including sensor data, motion, eye movements, and human

body movement. Machine learning models can be embedded into

wearable devices, phones, and computers, enabling the detection

of patterns in data and the optimization of communication with

humans based on the diverse data they were trained on. For

instance, facial recognition models, as supported in self-service

photo booths (Kember, 2014), can detect specified height, width,

and head position orientations (Chen et al., 2016).

Some significant research studies have delved into the

application ofmachine learning in the realm of workplace practices.

These studies have particularly focused on classifying healthy and

active work styles (Rabbi et al., 2015) and automatic adjustments

of chair and desk heights (Kronenberg and Kuflik, 2019). In their

study, Kronenberg and Kuflik (2019) proposed a deep learning

design for robotic arms that are capable of adjusting chair and

desk heights based on body positions. Although the system was

still in the implementation stage, initial results demonstrated the

potential of embedding a camera in a robotic arm. This camera

would interact with their proposed deep learning model.

Despite extensive research within this domain, limited study

has been conducted on camera posture positions on the face, head,

neck, and arms. While Min et al. (2015) explored body positions

such as the back and spine using sensors, there is still a need

to explore additional body positions captured by cameras. In a

related study, Mudiyanselage et al. (2021) evaluated a workplace

that involved lifting work-related materials using wearable sensors

and various machine learning models (Decision Tree, Support

Vector Machine, K-Nearest Neighbor, and Random Forest). The

results indicated that the decision tree models outperformed others

with a precision accuracy of 99.35%. Although these results were

significant and focused on back body positions, there are still gaps

within the context of computer workstations.

In another relevant study by Nath et al. (2018), significant work

on lifting arm and wrist positions was considered using wearable

sensors and the support vector machine (SVM) model. The study

results demonstrated that SVM recognized over 80% of the risky

positioning of the arm and wrist.

Hence, based on the persuasive and machine learning

perspectives of workplace system design, different body positions

are captured, and feedback is provided to support users.

Nevertheless, there is a need to understand the extent to which

research has supported making these technologies more accessible

to diverse users. In the next section, we covered related work

done with respect to making workplace posture technologies

more accessible.

2.4 Accessibility technologies and healthy
practices

Most accessibility technologies focus on providing feedback

based on machine learning detection to address the needs of

disabled individuals (Kulyukin and Gharpure, 2006). Brik et al.

(2021) developed an IoT-machine learning system designed to

detect the thermal comfort of a room for disabled persons, offering

feedback on the room’s thermal condition. The machine learning

system was trained on artificial neural networks (ANNs). The

performance of ANNs was compared with other algorithms such as

logistic regression classifiers (LRC), decision tree classifiers (DTC),

and gaussian naïve bayes classifiers (NBC). ANN performed better,

achieving 94% accuracy compared with the other algorithms.

In a related study, Ahmetovic et al. (2019) investigated

navigation-based assistive technologies for the blind and visually

impaired. They identified rotation errors and utilized a multi-

layer perceptronmachine learningmodel to correct rotation angles,

providing positive feedback. The multi-layer perceptron achieved

lower rotation errors (18.8◦ on average) when tested with 11 blind

and visually impaired individuals in real-world settings.

Overall, we found that though related studies have explored

healthy practices in workplace settings based on different

persuasive technologies ranging frommobile to tangible, little work

has covered real-time posture detection for important areas of

the body such as the back, neck, hands, and head. These parts of

the body have been associated with a lot of repetitive workplace

stress injuries based on bad postures (Anderson andOakman, 2016;

Catanzarite et al., 2018; Krajnak, 2018). The study by Min et al.

(2015) and Mudiyanselage et al. (2021) presents closely related

concepts. Though these studies explored parts of the body such as

the back, spine, arm, and wrists, they used sensors, which might

not be comfortable for users of systems. Considering that laptop

cameras can detect these parts of the body in an unobstructive way,

we explored this in our current study.

3 Materials and methods

We outline the materials and methods employed in the study.

This aligns with the overarching goal of our research to investigate

how individuals can become aware of their unhealthy posture

practices in workplaces (both while sitting and standing) and

the main research question (RQ: Can persuasive computers be

designed to detect unhealthy posture practices in workplaces?). We

provide details on the experimental materials used for developing
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FIGURE 4

Samples of bad practices. (A) Reproduced from “Center for Musculoskeletal Function: Workspace Ergonomics and MicroBreak Exercises,” YouTube,

uploaded by “Dr. Daniel Yinh DC MS,” 10 Apr 2017, https://www.youtube.com/watch?v=HS2KrPmKySc, Permissions: YouTube Terms of Service. (B)

Reproduced from “Correct Ergonomic Workstation Set-up | Daily Rehab #23 | Feat. Tim Keeley | No.112 | Physio REHAB,” YouTube, uploaded by

“Physio REHAB,” 13 December 2017, https://www.youtube.com/watch?v=FgW-9_28N8E&t=314s, Permissions: YouTube Terms of Service.

FIGURE 5

Samples of the good practices. (A) Reproduced from “Working from home—how to set up your laptop (correctly!) | Tim Keeley | Physio REHAB,”

YouTube, uploaded by “Physio REHAB,” 19 March 2020, https://www.youtube.com/watch?v=6GlkoFnZpFk, Permissions: YouTube Terms of Service.

(B) Reproduced from “How to set up workstation at home,” YouTube, uploaded by “Sundial Clinics,” 12 April 2021, https://www.youtube.com/watch?

v=wN-Ww1sCWNY, Permissions: YouTube Terms of Service.

deep learning models, specifically convolutional neural networks

and Yolo-V3.

3.1 Data collection and preprocessing

We conducted data collection in three phases (phase

1, phase 2, and phase 3). In the first phase, we gathered

data by extracting Creative Commons image datasets

from YouTube using the search terms ({bad} OR {good}

AND {ergonomic posture}). Utilizing the Snip and Sketch

tools, we extracted key frames depicting instances of

both good and bad ergonomics. In total, we amassed

269 image datasets, comprising 157 examples of bad

practices and 112 examples of good practices. The

datasets from this initial phase were utilized for the pilot

study, which aimed to assess the feasibility of employing

machine learning for the detection of posture practices.

Figures 4, 5 provide a cross-section of the datasets collected

from YouTube.

In addition, we gatheredmore image datasets from Pexels using

the Snip and Sketch tools. Pexels offers royalty-free images that

match both the good and bad workplace practices of computer

users. Utilizing related search terms such as “people AND {using

the computer}” OR “{looking head straight}” OR “{sitting in the

office},” we extracted key frames, resulting in 618 instances of bad
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FIGURE 6

Samples of bad posture. Reproduced from Pexels.

FIGURE 7

Samples of good posture. Reproduced from Pexels.

FIGURE 8

Samples of the good practices. Reproduced from Kaggle.

practices and 90 instances of good practices. These datasets were

combined with those from Phase 1 to conduct the main study

for YOLO-V3.

Recognizing the limitations of convolutional neural networks

(CNN) with small datasets (Han et al., 2018), we addressed this

concern in Phase 3 by collecting additional datasets. To enhance the

dataset, we collected both zoomed-in and zoomed-out resolution

images from Pexels. Research has shown that zooming, as one of the

techniques of data augmentation, increases the number of datasets

(Shorten and Khoshgoftaar, 2019). Figures 6, 7 offer a cross-section

of the datasets collected from Pexels.

For the Phase 3 data collection task, we explored the posture

dataset available on Kaggle. Kaggle, known for its extensive

repository of public datasets for machine learning (Tauchert

et al., 2020), provided a valuable resource. We added 311 images

depicting good practices to the datasets from Phases 1 and 2.
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TABLE 3 Summary of datasets distribution by source.

S/N Source Comfortable Uncomfortable

1. YouTube 112 157

2. Pexels 90 618

3. Kaggle 311 -

Total 513 775

The combined datasets from this phase were used to conduct the

main study experiment for convolutional neural networks (CNN).

Figure 8 showcases a cross-section of sample images collected from

Kaggle9. Though Kaggle had a couple of images for bad postures,

we considered using the good ones to balance our datasets (we

initially had more bad postures compared with good postures).

Additionally, we defined the two classes as “comfortable” and

“uncomfortable.” All the image datasets depicting good practices

were assigned to the “comfortable” class, while those depicting bad

practices were assigned to the “uncomfortable” class. Table 3 offers

a summary of all the datasets collected for the study. We employed

static image datasets as they are applicable to existing real-time

detection studies (Huang et al., 2019; Lu et al., 2019), and a video

is a sequence of moving images in frames (Lienhart et al., 1997;

Perazzi et al., 2017). Hence, the computer vision library provides

functionality to help capture this image frame per second and parse

them to the machine learning model to quickly predict the class in

real time.

3.2 Study description

We covered two significant steps, namely, the pilot and main

studies. We explored the feasibility of designing with a few datasets

in a pilot study. We present this pilot study to guide the research

community on the impact of dataset size in this area. In the main

study, we extended the number of datasets to show improvements

in the accuracy of models. The datasets collected from YouTube

during Phase 1 data collection were pre-processed and used to train

the two models for the pilot study (CNN-pilot and Yolo-V3-pilot).

We evaluated their performance through loss graphs and in real-

time (mean average precision). The mean average precision is a

metric for evaluating the accuracy of object detection, especially in

real time (Padilla et al., 2021). Furthermore, we combined datasets

from YouTube and Pexels to train the YOLO-V3-main model.

Additionally, we combined datasets from YouTube, Pexels, and

Kaggle to train the CNN-main model. Both the YOLO-V3-main

and CNN-main models were developed for the main study.

3.2.1 Pilot study
We conducted two experiments for the pilot study. The first

experiment involved the development of the Yolo-V3model (Yolo-

V3-pilot).We performed an automatic data annotation task1 on the

1 https://github.com/iwinardhyas/auto_annotation/tree/master/

auto_annotatation

entire datasets collected from YouTube. Subsequently, we trained

our datasets on the Yolo-V3model implementation of keras-yolo32

on the CPU and we tested this implementation on Google Colab.

The second experiment was implemented on the CNN model of

Abhishekjl.3 Our selection of Abhishekjl’s framework was based on

its relevance in the application of the cv2 python library which

is applicable in the recent study by Singh and Agarwal (2022). In

addition, the keras-yolo3 implementation has been recently applied

to the current state-of-the-art pedestrian detection system by Jin

et al. (2021) and other systems (Chen and Yeo, 2019; Silva and Jung,

2021). Hence, datasets collected from YouTube were trained on the

CNN model (CNN-pilot). The CNN-pilot model was trained and

tested on Google Colab.

3.2.2 Main study
We conducted two experiments for the main study. In the first

experiment, we combined datasets from YouTube and Pexels (from

phases 1 and 2 of data collection). We performed automatic data

annotation exclusively for datasets from Pexels. The annotation

data were then added to pre-existing annotations from the pilot

study to train a new Yolo-V3 model (Yolo-V3-main) for the main

study, utilizing CPU resources. In the second experiment, we

combined datasets from YouTube, Pexels, and Kaggle (from phases

1–3) and trained them using Google Colab on the CNN model

(CNN-main). Like the pilot study, both Yolo-V3 and CNN models

were implemented based on the architectures of Keras-Yolo3 and

Abhishekjl. In addition, we tested Yolo-V3-main and CNN-main

in Google Colab.

3.3 Overview of the CNN model

The CNN model (Figure 9) consists of 2 convolutional 2D

layers, 2 max_pooling 2D layers, one flatten, and twi dense

layers. Furthermore, the hyperparameters for the model include

3 activation functions (rectified linear unit, RELU) for the

convolutional 2D layers and one of the dense layers, one sigmoid

activation function added to the last dense layer, Adam optimizer,

a learning rate of 1e-3, a batch size of 5, and 10 epochs. The

loss of the CNN-pilot model was set to binary_crossentropy. The

convolutional 2D layers combine the 2D input after filtering,

computing the weights, and adding a bias term (Li et al., 2019).

The max_pooling2d layers reduce the input dimensions, leading

to a reduction in outputs (Keras4). The flatten layer combines

all the layers into a flattened 2-D array that fits into the neural

network classifier (Christa et al., 2021). The dense layers are regular,

deeply connected neural network layers that are used to return

outputs from the model (Keras5). We employed the rectified linear

unit (RELU) activation function as it is one of the most widely

used functions because of its improved performance (Dubey et al.,

2022). The sigmoid function was selected because it is suitable for

2 https://github.com/qqwweee/keras-yolo3

3 https://github.com/Abhishekjl/Facial-Emotion-detection-webcam-

4 https://keras.io/api/layers/pooling_layers/max_pooling2d/

5 https://keras.io/api/layers/core_layers/dense/
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FIGURE 9

CNN model architecture.

binary classification tasks (Keras6) as we employed in our study.

We employed the Adam optimizer because it is memory efficient

and requires limited processing resources (Ogundokun et al., 2022).

We set the learning rate of 1 e-3 and batch size 5 as we considered

the sensitivity of CNNmodels to small datasets (Brigato and Iocchi,

2021).

3.4 Overview of the Yolo-V3 model

The Yolo-V3 model (Figure 10) consists of 74 convolutional

2D layers, 71 batch normalization layers, 70 leaky rectified linear

unit (RELU) activation layers, two UpSampling2D layers, and

one ZeroPadding2D layer. We set the hyperparameters for the

model as follows: Adam optimizer, learning rate of 1e-4, and batch

size of 16. We consider Adam Optimizer to be appropriate as

it is memory efficient and requires limited processing resources

6 https://keras.io/api/layers/activations/

(Ogundokun et al., 2022). In addition, we considered a reduced

learning rate and batch size because of the number of datasets

we have. This will help the model learn efficiently. Unlike

CNN, YOLO-V3 yielded more annotated datasets with different

dimensions. This is typical with YOLO-V3 data annotations

(Diwate et al., 2022). Furthermore, we varied the number of epochs

for both the pilot and main studies. We used four epochs for

the pilot study (Section 4.12) and a maximum of 40 epochs for

the main study (Section 4.2.2). We used the default loss function

(binary_crossentropy) for the YOLO model. The convolutional 2D

layers combine the 2D input after filtering, computing the weights,

and adding a bias term (Li et al., 2019). The batch normalization

layer normalizes inputs to ensure that they fit the model as

their weights continue to change with each batch that the model

processes (Arani et al., 2022; Keras7). The leaky RELU activation

layer is a leaky version of a rectified linear unit activation layer

(Keras8). It introduces non-linearity among the outputs between

layers of a neural network (Xu et al., 2020). The UpSampling2D

layer is used to repeat the dimensions of the input to improve

its quality (Liu et al., 2022; Keras9). The ZeroPadding2D layer

adds extra rows and columns of zeros around images to preserve

their aspect ratio while being processed by the model (Dang et al.,

2020; Keras10).

4 Results

In this section, we present our findings from the pilot and main

studies. This section covers reports from our experiments with

Yolo-V3 and CNN models using datasets collected from YouTube,

Pexels, and Kaggle.

4.1 The pilot study

To visualize the feasibility of the study, we developed two

models for detecting workplace practices in real time: CNN and

Yolo-V3. We chose these models based on their proven capabilities

for supporting real-time object detection in previous research (Tan

et al., 2021; Alsanad et al., 2022). For the CNN model, we divided

the datasets into 75% training and 25% validation datasets (refer

to Table 4). We used 75% training to 25% validation set split for

the CNN model considering how similar tasks employed this ratio

(Azimjonov andÖzmen, 2021; Bavankumar et al., 2021; Akter et al.,

2022). Programmatically, we split the datasets into 90% training

and 10% validation datasets for the Yolo-V3 model. The reason

for the difference in this split ratio was based on previous studies

employing similar ratios, especially for Yolo models (Akut, 2019;

Setyadi et al., 2023; Wong et al., 2023).

4.1.1 CNN pilot study posture detection
We trained the CNN-pilot model for 10 epochs, employing

hyperparameter tuning variables such as the stochastic gradient

7 https://keras.io/api/layers/normalization_layers/batch_normalization/

8 https://keras.io/api/layers/activation_layers/leaky_relu/

9 https://keras.io/api/layers/reshaping_layers/up_sampling2d/

10 https://keras.io/api/layers/reshaping_layers/zero_padding2d/
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FIGURE 10

Cross-section of the YOLO-V3 model architecture (full architecture is available at Appendix A1).

TABLE 4 Summary of dataset distribution for the pilot study.

S/N Model Comfortable Uncomfortable Total

Training Validation Training Validation Training Validation

1. CNN 84 28 118 39 202 67

2. Yolo-V3 101 11 141 16 242 27

Total 185 39 259 55 444 94
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FIGURE 11

CNN-pilot model’s training vs. validation loss.

descent optimizer with a learning rate of 1e-3. The results

of our CNN training indicate a significant decrease in both

training and validation loss values, approaching the 10th epoch

(see Figure 11). The validation loss was minimal at epoch 10

compared with the training loss, suggesting a slight underfitting of

the model.

We deployed the model in real-time using the computer vision

Python library. Running the model on six real-time test instances, it

achieved a mean average precision of 52%. In most instances, better

precision values were observed for “comfortable” compared with

“uncomfortable” (see Figure 12).

4.1.2 Yolo-V3 pilot study posture detection
The Yolo-V3-pilot model was trained with two layers,

employing a strategy of frozen layers to stabilize the loss and

unfrozen layers to further reduce the loss, over four epochs. These

layers were configured to train with hyper-tuning parameters,

including the Adam optimizer with a learning rate of 1e-4 and a

batch size of 16. The results of our YOLO-V3 layers 1 and 2 training

reveal a decrease in the training loss toward epoch 4 compared with

the validation loss (refer to Figure 13). However, it is typical for

YOLO-V3 to return a high level of loss values below epoch 10 (Li

et al., 2020).

We deployed the Yolo-V3-pilot model in real time for the

classes “comfortable” and “uncomfortable.” For exceptional cases,

we included a “neutral” class. This addition allows Yolo-V3 to

handle instances where the detections do not match the expected

classes. Figures 14, 15 showcase instances where the Yolo-V3-pilot

model segmented areas of comfort compared with discomfort.

In other cases, the model returned “neutral” while one of the

researchers tested it in real time using the computer vision Python

library. Themodel achieved amean average precision of 64% across

six real-time test instances.

From the results of both models (CNN-pilot and Yolo-V3-

pilot), the Yolo-V3-pilot model’s boxes extended beyond the face,

capturing other significant areas of comfort or discomfort such as

the eyes, neck, and back (see Figures 14, 15).

4.2 The main study

To enhance the performance of both models (CNN-main and

Yolo-V3-main) in the main study, we trained these models on

additional datasets collected from Pexels and Kaggle. For the Yolo-

V3-main model, we combined YouTube datasets with those from

Pexels, while the CNN-main model was trained on a combination

of datasets from YouTube, Pexels, and Kaggle. In the case of the

CNN-main model, we split the datasets into 75% training and 25%

validation sets (refer to Table 5). We maintained the 90% training

and 10% validation set split for the Yolo-V3-main model.

4.2.1 CNN main study posture detection
We maintained the hyper-tuning parameters from the pilot

study for CNN, and the model was trained for 10 epochs. The

results of our CNN training indicate a significant decrease in

both training and validation loss values, approaching the 10th

epoch (see Figure 16). The training loss was minimal at epoch 10

compared with the validation loss, indicating better convergence

of the training and validation losses compared with those reported

earlier in the pilot study (see Figure 11).

In real time, the CNN-main model predicts uncomfortable

classes better (Figure 17: 89.6, 98.7, 93.5, and 93.0%). The CNN-

main model attained a mean average precision of 91% on 19

real-time test data points.

4.2.2 Yolo-V3 main study posture detection
Like the pilot study, the Yolo-V3-main model was trained with

two layers, incorporating frozen layers for a stable loss and unfrozen

layers to further reduce the loss. The first layer was set to train for 10

epochs, and the second layer started at the 11th epoch (continuing

from the first layer) and concluded at the 39th epoch. These layers

were trained with hyper-tuning parameters, including the Adam

optimizer with a learning rate of 1e-4 and a batch size of 16. The

results for both layers 1 and 2 of the Yolo-V3-main model show

that the training and validation loss curves converged at epoch 10

for the first layer and diverged slightly upward at epoch 39 for the

second layer (see Figure 18). This implies slight overfitting of our

Yolo-V3-main model.

We deployed the Yolo-V3-main model in real time, and the

results indicate that the model performed significantly better

in detecting both classes, “comfortable” and “uncomfortable”

(refer to Figure 19). The Yolo-V3-main model achieved

a mean average precision of 92% across 11 real-time

test instances.

5 Discussion

The study explored design opportunities for persuasive

systems based on real-time posture detection. We conducted two

experiments, namely, the pilot and main studies, utilizing two
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FIGURE 12

CNN-pilot model’s detection of posture.

FIGURE 13

L-R: Yolo-V3-pilot model’s training vs. validation loss (L: Layer 1 and R: Layer 2).

deep learning algorithms: CNN and Yolo-V3. In this section, we

discuss the results and propose design recommendations aligned

with the overarching goal of the study, addressing how people

can become conscious of their unhealthy posture practices in

workplaces, whether sitting or standing. Furthermore, we relate

these findings to answering themain research question: RQ: Canwe

design persuasive computers to detect unhealthy posture practices,

such as sitting and standing, in workplaces?

From the pilot study, we observed that the CNN-pilot

model tends to generalize its detection based on facial regions,

occasionally extending to the neck regions. Additionally, for the

CNN-pilot model, we reported on the detection of comfortable and

uncomfortable postures with similar precision accuracy values. The

lack of generalizability in the model raises concerns, particularly

given our overarching goal of ensuring that persuasive technologies

encourage people to maintain the right posture practices. It would
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FIGURE 14

L-R: Yolo-V3-pilot model’s posture detection: comfortable; uncomfortable; neutral. L: showing areas of discomfort around the eyes and

where the hand intercepts the eyes. R: showing discomfort from the eye to the neck regions.

FIGURE 15

L-R: Yolo-V3-pilot model’s posture detection: comfortable; uncomfortable; neutral. L: showing areas of discomfort around the eyes, neck,

and back regions. R: showing discomfort from the eye to the neck regions.

be more suitable for individuals to be prompted to change their

uncomfortable postures more frequently.

In contrast, the Yolo-V3-pilot model, with its anchor boxes,

provided more comprehensive coverage and detection of postures.

While it is common for Yolo models to generate multiple anchor

boxes when detecting objects (Zhang et al., 2022), we observed

trends of it detecting various body positions and regions associated

with the required postures.

The main study results demonstrated a significant

improvement in the CNN-main model compared with the

CNN-pilot model. The convergence and drop of the loss values

toward epoch 10 were notably pronounced, and the achieved mean

average precision of 91% aligns well with the overarching goal of

the study. The enhanced recognition of uncomfortable posture

positions by the CNN-main model suggests that users of persuasive

technologies would be more conscious.

Furthermore, there was a substantial improvement in the

performance of the Yolo-V3-main model compared with the

Yolo-V3-pilot model. The increased precision around both

comfortable and uncomfortable body positions resulted in a

mean average precision of 92%. Considering these results,

we address the main research question by recommending

the following.

D1. Persuasive systems can be customized to detect the posture

positions of users. While there are promising prospects with the

CNN model, particularly with additional training datasets, the

Yolo-V3 model stands out in addressing crucial body positions

such as the eyes, face, head, neck, and arms. The successes

of Yolo-V3 models have been reported in real-time workplace

monitoring, showcasing its capability to report multiple and

significant positions (Saumya et al., 2020).

D2. Persuasive systems based on the Yolo-V3 model can

be trained to recognize various environmental conditions, such

as the lighting conditions of the room, desk height, and leg

position of users. While previous study by Min et al. (2015)

demonstrated the potential of using sensor reading based on

back and arm movements, expanding to recognize more positions

would necessitate multimodal datasets, sensors, and strategically

positioned cameras to provide users with comprehensive feedback.

It is important to note that this approach may require privacy

permissions. The importance of aligning such feedback with users’

privacy expectations, both in private and social spaces, has been

emphasized in the study by Brombacher et al. (2023). Additionally,

a study by Bootsman et al. (2019) was limited to reading lumbar

(back) posture data, overlooking other key postures that directly

impact the back, as we have reported (eyes, head, neck, and arms).
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TABLE 5 Summary of dataset distribution for the main study.

S/N Model Comfortable Uncomfortable Total

Training Validation Training Validation Training Validation

1. CNN 384 129 581 194 965 323

2 Yolo-V3 182 20 698 77 880 97

Total 566 149 1,279 271 1,845 420

D3. Persuasive systems based on the Yolo-V3 model can

be trained to provide auditory feedback to users, particularly

benefiting individuals with visual impairments. This customization

could involve real-world feedback systems, such as a single

beep sound for correct posture positions and a buzzer sound

for incorrect posture positions. To enhance usability, additional

concepts may be implemented, such as helping users locate body

positions through a screen reader. Feedback systems, as reported

in the study by Brombacher et al. (2023), have been recognized

as effective in capturing users’ attention, especially when working

behind a desk and receiving posture-related feedback.

5.1 The present study vs. related studies

We present our methodology and results compared with

existing studies. Deep learning models, compared with SVM and

other algorithms used in existing studies (Tang et al., 2015; Nath

et al., 2018; Mudiyanselage et al., 2021; Zhang and Callaghan,

2021), capture the variability of highly complex patterns in datasets.

Hence, while SVMperforms significantly better with small datasets,

deep learning models require a substantial number of datasets. In

a related study (Mudiyanselage et al., 2021), SVM yielded 99.5%

with 54 datasets for five weightlifting classes (10, 15, 20, 30, and

35 lbs.). The results from this study showed significant overfitting

of the SVM model. In addition, in a related study conducted

by Nath et al. (2018) with 9,069 datasets for three classes of

ergonomic weightlifting risks (low, moderate, and high), SVM

achieved∼80% accuracy.

We employed deep learning models (CNN and Yolo-v3) in

this study, considering the variability of good and bad posture

patterns that SVM and other non-deep learning models might not

significantly capture. While deep learning requires large datasets,

we report on our findings (Yolo-v3: 92% and CNN: 91% accuracy

values using 2,265 posture images for two classes, good and bad)

to propose future work with additional datasets. In another related

real-time study by Zhang and Callaghan (2021) with different

human postures (sitting, walking, standing, running, and lying)

using deep learning multi-layer perceptron (MLP), the authors

reported accuracy up to 82% with few datasets (30 training and

19 testing samples). Nevertheless, results from the study by Tang

et al. (2015) revealed a significant number of misclassifications.

Deep neural networks (DNN) in a similar task of human gesture

recognition achieved an accuracy of 98.12%. This level of accuracy

was attained using a dataset comprising 21,600 images across 10

distinct classes of hand gestures. While Yolo-v3 compared with

CNN has not been explored in previous study, our results present

the baseline performance of both models to guide future work.

FIGURE 16

CNN-main model’s training vs. validation loss.

5.2 Limitation of the study

While we report these significant findings of our study, we

present the following limitations to improve future work. Though

we found significant posture practices such as leg position and

lying position, our findings are limited to the areas captured

by the camera for sitting and standing body postures. Exploring

these contexts further in future studies could inform the design

of more wearable persuasive devices. In addition, our datasets are

limited in size because there are a few instances of them publicly

available. In the future, we will explore running experiments to

collect additional ground truth datasets to enhance our model.

In addition, to comprehensively assess the effectiveness of this

technology in different workplaces (work-from-home, offices, and

other spaces), a future study should include an evaluation of users’

perceptions, considering both the advantages and disadvantages.

We propose this framework as a valuable posture assessment

tool which is applicable to any workplace setting, whether at

home or in an office. Evaluating both contexts in future studies

would contribute to a more comprehensive understanding of the

applicability of technology. Finally, we had variations in the design

of both models (YOLO-V3 and CNN); our comparisons might

have favored YOLO-V3, especially with the dataset split ratio of

90% training and 10% validation sets. This is inconclusive at this

point. We recommend that future studies explore setting the same

standards for testing both models.
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FIGURE 17

CNN-main model’s posture detection.

FIGURE 18

L-R: Yolo-V3-main model’s training vs. validation loss (L: Layer 1 and R: Layer 2).

5.3 Implication of future design on system
proximity detection and posture

Considering the prospects of posture evaluation based on

proximity detection, we designed a system to integrate with

our proposed Yolo-V3 and CNN models in the future. It is

recommended that a computer user maintain 40 cm from the

computer (Woo et al., 2016). To meet this requirement, we

modified the proximity detection program by Harsh Jaggi11 and

presented the preliminary results, as shown in Figure 20.

11 https://www.linkedin.com/pulse/face-distance-measurement-

python-haar-cascade-unlocking-harsh-jaggi
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FIGURE 19

L-R: Yolo-V3-main model’s posture detection: comfortable; uncomfortable; neutral.

FIGURE 20

Proximity detection of uncomfortable and comfortable posture.
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6 Conclusion and future work

We explored potential designs for persuasive systems based

on real-time posture detection. Given how significant persuasive

systems and human factor engineering contribute to changing

human behavior in workplaces, we conducted experiments using

two deep learning models: convolutional neural networks (CNN)

and Yolo-V3. These models have proven valuable in real-

time detection of emotions, human activities, and behavior

in previous research (Tan et al., 2021; Alsanad et al., 2022).

Despite their effectiveness in various domains, little attention

has been given to designing persuasive systems specifically for

promoting proper postures in workplaces. Our overarching goal

was to investigate how individuals can become more conscious

of their posture practices while sitting and standing with a

computer system. Additionally, we aimed to address the main

research question: RQ: Can we design persuasive computers to

detect unhealthy posture practices (such as sitting and standing)

in workplaces?

Hence, based on the results of this study, we conclude with the

following key insights:

1. Posture detection based on deep learning models would

require a lot of datasets to implement.

2. Persuasive systems based on real-time posture detection

should be tailored to capture more body positions. Overall,

this helps to address more workplace requirements for

behavioral changes.

3. There are prospects around eye strains, pupil

datasets, and other contexts linked with stress. Hence,

the framework of this study can be extended in

the future.

In conclusion, our study highlights the potential for developing

persuasive technologies that are specifically designed to support

users in adhering to proper posture practices. The significance

of this study prompts consideration for future exploration into

themes such as more in-depth studies with large datasets, proximity

detection, support for individuals with visual impairments

in adopting optimal posture practices, eye strain detection,

addressing various workplace requirements, and comparing

outcomes of user studies with our technology from different

workplaces such as work-from-home contexts, offices, and

other ones.
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