AUTHOR=Stan Serban , Rostami Mohammad TITLE=Source-free domain adaptation for semantic image segmentation using internal representations JOURNAL=Frontiers in Big Data VOLUME=7 YEAR=2024 URL=https://www.frontiersin.org/journals/big-data/articles/10.3389/fdata.2024.1359317 DOI=10.3389/fdata.2024.1359317 ISSN=2624-909X ABSTRACT=

Semantic segmentation models trained on annotated data fail to generalize well when the input data distribution changes over extended time period, leading to requiring re-training to maintain performance. Classic unsupervised domain adaptation (UDA) attempts to address a similar problem when there is target domain with no annotated data points through transferring knowledge from a source domain with annotated data. We develop an online UDA algorithm for semantic segmentation of images that improves model generalization on unannotated domains in scenarios where source data access is restricted during adaptation. We perform model adaptation by minimizing the distributional distance between the source latent features and the target features in a shared embedding space. Our solution promotes a shared domain-agnostic latent feature space between the two domains, which allows for classifier generalization on the target dataset. To alleviate the need of access to source samples during adaptation, we approximate the source latent feature distribution via an appropriate surrogate distribution, in this case a Gaussian mixture model (GMM).