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Traditional data curation processes typically depend on human intervention.

As data volume and variety grow exponentially, organizations are striving to

increase e�ciency of their data processes by automating manual processes

and making them as unsupervised as possible. An additional challenge is to

make these unsupervised processes scalable to meet the demands of increased

data volume. This paper describes the parallelization of an unsupervised entity

resolution (ER) process. ER is a component of many di�erent data curation

processes because it clusters records from multiple data sources that refer to

the same real-world entity, such as the same customer, patient, or product. The

ability to scale ER processes is particularly important because the computation

e�ort of ER increases quadratically with data volume. The DataWashing Machine

(DWM) is an already proposed unsupervised ER systemwhich clusters references

from diverse data sources. This work aims at solving the single-threaded nature

of the DWM by adopting the parallelization nature of Hadoop MapReduce.

However, the proposed parallelizationmethod can be applied to both supervised

systems, wherematching rules are created by experts, and unsupervised systems,

where expert intervention is not required. The DWM uses an entropy measure

to self-evaluate the quality of record clustering. The current single-threaded

implementations of the DWM in Python and Java are not scalable beyond a few

1,000 records and rely on large, shared memory. The objective of this research is

to solve themajor two shortcomings of the current design of the DWMwhich are

the creation and usage of shared memory and lack of scalability by leveraging on

the power of Hadoop MapReduce. We propose Hadoop Data Washing Machine

(HDWM), a MapReduce implementation of the legacy DWM. The scalability of

the proposed system is displayed using publicly available ER datasets. Based on

results from our experiment, we conclude that HDWM can cluster from 1,000’s

to millions of equivalent references using multiple computational nodes with

independent RAM and CPU cores.
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Introduction

Data curation is simply themanagement of data throughout its life cycle, from planning
and acquisition through data standardization, integration, and productization to archiving
and disposal. This process is often time-consuming because it requires a lot of human
supervision. As the size of data has grown, the need to remove human-in-the-loop from
the data curation process has become increasingly important to save time and reduce costs.
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With the advent of big data systems, there is now a
shift from relational database management systems to non-
relational technologies such as Hive andMongoDB, and distributed
processing technologies such as Hadoop MapReduce and PySpark.
This requires organizations to re-engineer many of their data
curation processes to incorporate big data technologies to
remain competitive.

Entity resolution (ER) is a data curation process which decides
whether computer references to two real-world objects are referring
to the same entity or different entities (Talburt and Zhou, 2015).
Entities here refer to real-world objects having distinct identities,
such as people (customers, patients, students, etc.), products, and
locations. If two references refer to the same entity, they are said
to be equivalent references. The goal of an ER process is 2-fold.
The first goal is to create clusters where each cluster contains
only references to one particular entity (equivalent references).
The second is that all references to a particular entity are in the
same cluster. The measure of achievement for the first goal is the
precision of the ER process, and the achievement measure for the
second goal is the recall of the ER process.

ER is foundational to many data curation processes, such
as master data management (MDM) and data integration or
data fusion (Talburt et al., 2019). According to Kolb et al.
(2012a), MapReduce is a great fit for ER processing because each
comparison between a pair of entity references is independent in
nature and, therefore, can be carried out in parallel.

However, the challenge is that many traditional ER processes
rely on in-memory access to information across all input
references, a requirement that goes against the distributed
computing paradigm. Consequently, most traditional ER systems
must be refactored to remove this dependency before they can
be implemented efficiently in MapReduce, Spark, and other
distributed processing systems.

The DWM, a concept first introduced by Al Sarkhi and
Talburt (2018, 2019) is a system designed for unsupervised
ER (Talburt et al., 2020). The DWM represents the movement
toward the development of unsupervised data curation processes
(Talburt et al., 2023). It reverses the traditional ER paradigm of
starting by cleaning and standardizing the data sources and then
matching and linking. Instead, it attempts to first link pairs of
references to the same entity, cluster the references, and then
use the clusters to clean and standardize the data. As the DWM
clusters references, it self-evaluates the quality of each cluster to
decide whether the cluster should be kept or if the references
in the cluster should be sent back for re-linking using a higher
matching threshold. This allows the DWM to run iteratively
without supervision.

The HDWM uses the same 28 parameter settings to cluster and
clean equivalent references. A total of 14 out of the 28 parameters
are set using an automated Parameter Discovery Process (PDP).
The process of determining which parameter values to use for a
particular dataset is found by an automated Parameter Discovery
Process (PDP). The PDP process is executed prior to running the
DWM (Anderson et al., 2023). The PDP gives the user a set of
optimal starting parameter values using a combination of input
data statistics, historical settings, regression analysis, and entropy-
aided grid search. Most of the statistics relate to tokens in input
data, such as the average number of tokens per reference, the count

of unique tokens, the average token frequency, and the ratio of
numeric to non-numeric tokens.

The input for the DWM is a merged file of data sets from
multiple sources. The different inputs may have different formats
and metadata alignments. The only assumptions are,

• Each reference has a unique record identifier,
• All references refer to a common set of entities,
• The records only contain entity identity information.

No data preprocessing is performed on these files prior to
the entity resolution task. A tokenization process is applied to
the merged data set by first removing any column headers, if
any, and applying one of the tokenization methods. The output
of the tokenization process is a dictionary of tokens and token
frequencies, which serve as a central source from which other
processes depend. The DWM uses a frequency-based blocking
approach. A parameter value called beta is used to create such
blocks where all references sharing a token with a frequency
between 2 and the beta value form a block. For instance, if beta is 4,
references sharing a token with frequency 2, 3, and 4 form a block.
References in the same block are then compared for similarity by
first removing any stopwords from each reference. Stopwords are
tokens with a frequency higher than a sigma threshold. References
that are similar are then linked using another parameter called mu.
Mu is a similarity threshold where similar pairs of references with
a similarity score above the mu value are linked. The linked pairs
are then clustered using a transitive closure process. The quality
of the clusters is then evaluated using an entropy-based measure.
Another DWM parameter called epsilon sets the quality threshold.
If a cluster scores above epsilon, it is kept as a good cluster. If a
cluster scores below epsilon, the references are sent back for re-
blocking and re-linking based on an incrementally higher value
of mu.

The current design of the DWM is single-threaded and linear in
nature, limiting it to processing only a few 1,000 references. Also,
the DWM creates and uses a shared dictionary of tokens, which
results in an “out-of-memory” problem as the size of data increases
and the core memory is not large enough to hold the dictionary.

The goal of this research is to demonstrate how the DWM, and
other ER systems can be refactored into a distributed computing
environment for scalability. This research uses HadoopMapReduce
to carry out the basic processes used in the single-threaded DWM
while following the requirements of distributed processing. The
most challenging requirements are to avoid a large, shared memory
space and the need for any one processor to directly communicate
or exchange data with another processor in real time.

Hadoop1 is a software library from the Apache Open-Source
Software Foundation. It was originally developed by Google to
index the words on all internet website pages. Instead of using
a large supercomputer, MapReduce (Dean and Ghemawat, 2008)
and other distributed operating systems rely on a network of many
small commodity computers to do the work. Google later made
the system open source through the Apache Foundation. Newer
distributed processing systems such as Spark are built on top of

1 “Apache Hadoop.” https://hadoop.apache.org/ (accessed June 02, 2023).
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MapReduce processes. Hadoop is popular for its fault tolerance
capability and the ability to easily scale up from a single computer to
a cluster of hundreds or even 1,000’s of smaller computers working
simultaneously. The main architecture of Hadoop includes Hadoop
Common, which is the basic utility upon which other modules
are built; Hadoop Distributed File System (HDFS) which is the
distributed file system used as the primary source of data storage for
any Hadoop application; Hadoop Yarn which serves as a framework
used by Hadoop for job scheduling and resource management in a
cluster for all computational nodes; andHadoopMapReduce which
is the processing engine of Hadoop.

This research makes the following contributions:

• We introduce the Hadoop Data Washing Machine, a
MapReduce implementation of an already existing proof-of-
concept unsupervised ER system, DWM. We capitalize on
the parallel nature of MapReduce to solve the single-threaded
design nature of the DWM.

• We present a refactoring method that can be applied to other
single memory ER systems into distributed environment using
Hadoop MapReduce. The usage of our proposed methods
will help to get away from the single memory space which is
common in most traditional ER systems.

• We benchmark HDWM with the legacy DWM using 18
generated data samples and demonstrate that HDWM obtains
the same clustering results. This is an indication that all the
necessary steps in the DWM have been completely refactored
into Hadoop MapReduce.

• We demonstrate the scalability of HDWM using up
to 50 million publicly available benchmark entity
clustering datasets.

Related work

Since the advent of big data, many attempts have been made
to use distributed computing to scale data-intensive systems in
diversified fields and industries including entity resolution.

A scalable approach was adopted to redesign OYSTER, a
supervised ER system for clustering equivalent references (Al
Sarkhi and Talburt, 2020). This work uses frequency-based blocking
and stop word removal. The scalable implementation adopted in
this research involved two main preprocessing stages. First, the
frequency of each of the tokens is calculated, and second, all
excluded blocking tokens and stopwords are eliminated, leaving a
skinny reference pair which will be compared for similarity using
the scoring matrix. The work uses normalized Levenshtein Edit
Distance (nLED) to compare the pair of references that come out
of the block deduplication phase.

The DWM has birthed many advancements since its
introduction. One of the major areas of advancement is a graph-
based implementation of the system. ModER, as proposed in
Ebeid et al. (2022), eliminates the iterative nature in the processing
pipeline of the DWM by further dividing the recast graph into
smaller graphs and finding each sub-graph’s connected components
using a transitive closure logic (Seidl et al., 2012; Kolb et al., 2014).
ModER also eliminates the need for a user setting similarity

and cluster quality thresholds by using modularity as a cluster
quality matrix.

One critical area of research was developing an unsupervised
mechanism for estimating the optimal parameters to be used in
the DWM. Prior work had been done in Al Sarkhi and Talburt
(2018, 2019) for a matrix comparator used for linking equivalent
references. However, the matrix comparator is just a piece of the
puzzle, and further works was needed for the entire DWM to
estimate the best starting values for all 28 parameters used by the
system. This birthed the Parameter Discovery Process (Anderson
et al., 2023). The PDP uses statistics from the input data and logistic
regression mechanism to compute the best starting values for each
of the parameters used in the DWM.

Dedoop is a user-friendly MapReduce-based engine that
translates user-defined ER settings into MapReduce jobs (Kolb
et al., 2012a). It implements several blocking processes, similarity
computation between references, and matching similar references,
which are all translated into individual MapReduce processes.
Dedoop performs blocking in a mapping phase and similarity
computation in a reducer program. It also has a set of
supervised machine learning libraries used to find and compare
reference similarities.

Several blocking and indexing techniques (Christen, 2012) have
been proposed for ER, and the usage of a single blocking key
is a dominant approach in finding pairs of references that are
potential matches (Papadakis et al., 2020). However, certain pairs
that are supposed to be matched do not get matched because
such pairs did not end up in the same block, hence reducing
the number of complete pairs. A multi-key approach to block
references for ER, ensuring every record is accounted for at the
expense of having ununiform blocks and having the same record
appearing in multiple blocks has also been proposed by Mittal
et al. (2022). This work, however, does not account for the need to
perform cluster-level comparisons using transitive closure, which
is an inevitable step in forming clusters of equivalent references.
Although the usage of multiple blocking keys has proven to be a
promising approach to identify duplicated entities which need to be
compared and matched, it undoubtedly generates more duplicate
pairs for comparison.

Nascimento et al. (2020a) proposed a blocking pruning model
to reduce the duplicate pairs formed and control the size of
blocks when using multiple blocking keys approach. The proposed
approach uses the shrink, split, merge, and exclude operations to
ensure only blocks that are highly probable to match are send for
comparison. The algorithm takes as input, the dataset in question
and a set of indexing or blocking rules, then the input data is shrunk
by only focusing on blocks that will produce matching entities.
After this step, it is possible that there will be unbalanced blocks
and so the next step is to split larger blocks into much smaller
blocks which are then merged with already smaller blocks created
from the previous step. All blocks that are unlikely to match are
finally excluded.

Real-world data are inevitably characterized by several useful
embedded information that could be used in any application.
Simonini et al. (2016) proposed Blast and illustrates how these
loose schema statistics from the data could be utilized to enhance
blocks in entity resolution. Loose schema is extracted using the
similarity calculation for each attribute in the dataset. They used
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token-blocking and graph-based meta-blocking approach to group
references having similar keys. In contrast, our approach uses
a loose schema information from each reference such as the
frequency of a particular token within the entire dataset and
then a frequency-based blocking approach is utilized to group all
references having the same blocking key.

To reduce the computational complexity caused by comparing
each record to every other records even further, there is the
need to avoid redundant pairs that are formed from blocks. In
a MapReduce-based entity resolution, there is the possibility of
having references with the same identifier end up in the same
computational node because they share the same blocking key.
Another phase in the entity resolution process that could be affected
by redundancy is the transitivity phase where matches are further
clustered. To solve these problems, Yan et al. (2015) proposed
“multi-sig-er” method for parallel entity resolution using a two-
phased approach, filtration and verification. The filtration phase
assumes that a pair of similar references must have one or more
common signature. This is the first level of redundant elimination
where all dissimilar pairs are ignored. The redundancy elimination
occurs in a reducer program where similar pairs share the same
key. The candidate pairs are then verified using transitivity logic
of further clustering blocks before comparing pairs for similarity
and linking. Although this approach has proven to be a working
approach, it does not support incremental data processing.

Kolb et al. (2013) proposed a deterministic approach where
each reducer will choose a single signature from a set of signatures
associated with a pair of reference. The algorithm considers the
smallest possible key in a block which ends up in a reducer, and
then eliminates all other pairs whose key is high in the block. In the
mapper phase an emitted key-value pair is accompanied by a set of
signatures. The reducer further analyzes each pair for determine if
a set has no signature in common (disjoint set of signatures), such
pairs are eliminated. If the pair have a common signature, they are
kept and compared.

Kolb et al. (2011) presented a way of merging machine
learning and MapReduce to solve the computational complexity
problem in entity resolution. Entity resolution as a process can be
categorized as a classification problemwhere pairs of references can
either be matched or unmatched pairs. Although their approach
reduces the execution time of learning-based ER, it does not
implement blocking.

To effectively achieve the required reduction in computational
time of MapReduce-based ER, there is a need for an even
distribution of data across mapper and reducer tasks. This has
made load-balancing an inevitable technique in using MapReduce
for ER. Kolb et al. (2012b) proposed two types of load-balancing
techniques, BlockSplit and PairRange, using MapReduce. Before
any of these two strategies are used, a block preprocessing step
is performed to form a block distribution matrix in the mapper
phase, and then the load-balancing is performed in the reducer
phase. BlockSplit uses block size and ensures larger blocks are
further partitioned into smaller sub-blocks, which are then fed
into the reducer. PairRange number-tags pairs and ensures equal
comparisons across blocks.

Jin et al. (2017) processed MrEm which aims to ensure
load-balancing and avoid redundant matching using multiple
blocking techniques. They provide a four-phased approach to

solving the load-imbalance problem and pair redundancy problems
simultaneously, a solution missing from previous works. In their
approach, all blocks are further divided into smaller sub-blocks
and are assigned an identical key. All sub-blocks having the same
key then end up in the same reducer to identify and eliminate
duplicates. They provide two types of block sub-block, the self-
join sub-block which comprise of all records in each sub-group
and the cross-join sub-block which comprise of intersecting records
from two sub-groups. MrEm performs data shuffling within blocks
rather than within the entire dataset. The idea of block-based
shuffling is critical and helps to reduce the I/O overhead after a
mapper and before a reducer job begins.

In MapReduce applications, map tasks and reduce tasks
run in isolation, and there is no shared memory between the
computational nodes in the cluster. These two capabilities in
MapReduce pose a challenge for regression unit testing in the
software development lifecycle. The work of Pullen et al. (2018)
highlights a mechanism to test the performance of MapReduce-
based ER engines using regression analysis. This framework was
developed for the High-Performance Entity Resolution (HiPER)
system but can be adopted in different domains and applications.
The HiPER Testing Framework (HTF) compares its results to a set
of expected results and determines whether the software test was a
pass or failure.

The exponential growth in data has given need for
organizations to measure the computational cost of deploying
data quality algorithms on platforms that give the best return on
investment. Data Quality Service-Level Agreement (DQSLA) is
a contract between a service and its customers, and it includes
specifications on execution time of data quality algorithms, time
restriction for these algorithms, as well as the penalties that may
be applied to the service. This can be a costly endeavor for either
party in the contract if any of the terms of conditions is not met.
To help alleviate these issues, Nascimento et al. (2020b) proposed
a theoretical model for estimating the execution cost of record
linkage algorithms in a cloud computing environment. In their
work, they quantified the cost of execution as the summation
of indexing/blocking, the similarity comparison phase of the
process, and the classification of two entities as either match or
non-match. According to the authors, these values are influenced
by the employed algorithm, and the cloud computing environment
employed. Although the model works best certain use-cases, it
does not consider the time taken by transitive closure algorithm
which are employed in the execution process. Transitive closure is
an inevitable phase in the ER process and record clustering.

Methodology

The design approach of HDWM2 is a complete refactor of the
traditional DWM by mimicking the main processes of the legacy
DWM using Hadoop MapReduce (Dean and Ghemawat, 2008).
MapReduce is a parallel programming module used for processing
larger data sets at a faster pace, and the programming is expressed
in two main functions, mapper, and reducer. In Equation 1, the
mapper function takes a key-value pair as an input and produces an

2 https://bitbucket.org/oysterer/hadoop-dwm/src/master/
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intermediate key-value pair, which serves as input for the reducer
function that emits a final key-value pair as shown in Equation 2.
The reducer shuffles and sorts a mapper’s output based on key
groups and aggregates all values belonging to the same key group.

Mapper :
(

keyin , valueout
)

→ list(keytmp , valuetmp) (1)

Reducer :
(

keytmp , list(valueout)
)

→ list(keyout , valueout) (2)

Figure 1 shows a set of refactoring steps involved in the
development of the proposed HDWM. Each of the processes
uses a mapper and reducer function written in Python. Although
MapReduce was originally written in Java, the Hadoop Streaming
API allows non-Java programmers to easily write MapReduce
applications in any programming language of their choice by using
system standard input and output to read and write data. The
Hadoop Streaming API was extensively utilized to write themapper
and reducer functions in HDWM.

Tokenization

The tokenization process reads the merged data set and
removes all non-word characters and the column header row if
column headers are present. The column header is eliminated in
the spirit of unsupervised data curation not utilizing headers for
clustering references. Each row of record is then broken down into
individual tokens. The output of this process is in the form of
tokens as key and value in the form of a metadata tag containing
the reference identifier where the token came from, the position of
the token, and the token itself. HDWMuses only intrinsic metadata
from the given data set for form a tag during the tokenization
process. The tokenization process also uses one of two main
tokenization algorithms, tokenizer splitter, and tokenizer compress.
The splitter function splits each reference into individual tokens
using the given delimiter. The opposite is true for the compress
function. The tokenization process occurs at the mapping phase
and statistics such as total tokens found, total numeric tokens,
unique token count, and duplicate tokens are all extracted from
this stage. The key from the mapper phase is the individual tokens
belonging to a particular reference, and the value is a list of
intrinsic metadata such as the reference identifier for the token, the
token itself, and the position of token in that reference. With this
approach, all the needed information for the rest of the processes is
stored in a metadata tag without the use of a shared dictionary as
used in the legacy DWM.

For example, let assume we have two references,
“A755471,MYRA,AARGAARD-ESPERSEN,1224 MAGNOLIA
ST,WINSTON SALEM, NC, 27103, 117-15-8521” and
“A944634,IAN,AADLAND,LARS,29021 HIGH SIERRA
TRL,SANTA CLARITA,CA,91390,490-46-2048,” and we are to use
the tokenizer splitter as the tokenization function. HDWM will
take this input data as it is without making data standardization
or metadata alignment as done in the traditional Extraction
Transformation Load (ETL) process. The splitter tokenization

function is then applied on the entity references and the output of
the mapper phase is shown in Table 1.

Frequency generation

The next step is to calculate the frequency of all the tokens
across the entire data set. This step is different from the traditional
DWM, which creates a shared dictionary of token frequencies.
HDWM follows the same concepts of the basic MapReduce word
count program to compute token frequency, which is then used
in subsequent processes such as Blocking and Stopword removal.
In the mapper phase, all tokens are assigned a value of 1 and the
reducers shuffle, sorts, and counts how many times a token appears
in the given data set. After the mapper, all tokens belonging to
a particular key group are sent to the same reducer for the final
processing as shown in Figure 2 below.

Frequency and metadata update

The metadata tag from the tokenization process is updated
with the calculated frequency from frequency generation stage.
The updated metadata tag contains embedded information that
is useful for other processes and is a solution to eliminate the
shared dictionary created by the traditional DWM, which results
in an “out-of-memory” problem as the volume of data grows
exponentially. The updating of the metadata tag is made possible
by the merge and join operations in MapReduce. The outputs from
the tokenization and frequency generation phases are merged in the
mapper phase, and then a join operation in the reducer phase is
applied to join the token frequencies to the metadata tag.

For example, Table 2 above is a reducer output that shows
updated metadata information where the token “BLVD” has a
frequency of 3 and is found in the records “A915661,” “A922259,”
and “A992523.” In this example, all three “BLVD” tokens are
located at the 6th position in their respective references. Similarly,
the token “BRAIN” has a frequency of 2 and is found in the records
“A750205” and “A942770.” The position of the token “BRAIN” in
both reference is the 1st position. It is to be noted that this is always
not the case especially when the dataset has some data quality issues
including but not limited to missing values. For instance, if in the
reference “A750205,” the last name comes before the first name, the
token “BRIAN” will be in the 2nd position whereas if in reference
“A942770” first name comes first, the token “BRIAN” will be found
in the 1st position as illustrated in Table 2. The positional index of
the tokens is an important field that is used to reform the references
for string comparison. The output from this stage is the individual
token as key and an updated metadata tag, in the form of dictionary
key-values, as the value.

Reference reformation

At the reference reformation stage, the token positions are
used to group all tokens that belong to a particular reference
identifier. This process ensures each token is placed in its right
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FIGURE 1

Hadoop Data Washing Machine design architecture using MapReduce.

order since they will be used in the similarity comparison stage.
The reservation of each token’s position will also be used in the
cluster evaluation stage where tokens of a reference belonging
to a cluster are compared for organization or disorganization

using entropy. All blank fields and unwanted characters found
in the original reference were eliminated during the tokenization
stage and, therefore, are not accounted for when recreating the
references back to their original state. One purpose of the reference
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TABLE 1 Output of the tokenization mapper process using splitter tokenizer type.

Reference Tokenizer mapper output

A755471,MYRA,AARGAARD-ESPERSEN,1224 MAGNOLIA ST,
WINSTON SALEM,NC,27103,117-15-8521

(MYRA, {refID: A755471, tok: MYRA, pos: 1}), (AARGAARD, {refID: A755471, tok:
AARGAARD, pos: 2}), (ESPERSEN, {refID: A755471, tok: ESPERSEN, pos: 3}), (1224,
{refID: A755471, tok: 1224, pos: 4}), (MAGNOLIA, {refID: A755471, tok: MAGNOLIA,
pos: 5}), (ST, {refID: A755471, tok: ST, pos: 6}), (WINSTON, {refID: A755471, tok:
WINSTON, pos: 7}), (SALEM, {refID: A755471, tok: SALEM, pos: 8}), (NC, {refID:
A755471, tok: NC, pos: 9}), (27103, {refID: A755471, tok: 27103, pos: 10}), (117, {refID:
A755471, tok: 117, pos: 11}), (15, {refID: A755471, tok: 15, pos: 12}), (8521, {refID:
A755471, tok: 8521, pos: 13})

A944634,IAN,AADLAND,LARS,29021 HIGH SIERRA TRL,SANTA
CLARITA,CA,91390,490-46-2048

(IAN, {refID: A944634, tok: IAN, pos: 1}), (AADLAND, {refID: A944634, tok: AADLAND,
pos: 2}), (LARS, {refID: A944634, tok: LARS, pos: 3}), (29021, {refID: A944634, tok: 29021,
pos: 4}), (HIGH, {refID: A944634, tok: HIGH, pos: 5}), (SIERRA, {refID: A944634, tok:
SIERRA, pos: 6}), (TRL, {refID: A944634, tok: TRL, pos: 7}), (SANTA, {refID: A944634,
tok: SANTA, pos: 8}), (CLARITA, {refID: A944634, tok: CLARITA, pos: 9}), (CA, {refID:
A944634, tok: CA, pos: 10}), (91390, {refID: A944634, tok: 91390, pos: 11}), (490, {refID:
A944634, tok: 490, pos: 12}), (46, {refID: A944634, tok: 46, pos: 13}), (2048, {refID:
A944634, tok: 2048, pos: 14})

reformation is to preserve the reference while eliminating the need
for a shared dictionary of tokens in the data set as used by the
traditional DWM.

Table 3 above is an example of a reference reformation job from
HDWM. The input for this MapReduce job was the output from
the updated metadata phase. In the mapper phase, the reference
identifier for each of the tokens was extracted from the updated
metadata tag and that serves as input for the reducer which then
aggregates all the tokens and its intrinsic metadata.

(2 :AARON ˆ33) → (token position 2 : tokenˆtoken frequency 33)

(3)

The key for each reformed reference is the reference identifier,
and the value is a dictionary of token position, the token itself,
and the token frequency as shown in Table 3. Equation 3 is an
example of a token with all its relevant metadata which will
be used later in the process. From the equation, the token
“AARON” is found at position 2 and has a frequency of
33. Once the references are reformed, they are ready for the
blocking phase where blocking keys are extracted from each
reference list.

Blocking

The traditional pairwise approach requires that each reference
is compared with all other references. This increases the
computational time and causes a lot of workloads for computing
resources. To solve this problem and reduce the computational
complexity, blocking is used in ER to group references having
similar characteristics into the same group before comparing them
(Christen, 2012). Blocking is a form of rough matching before
the main similarity comparison and linking process in ER and is
useful, especially when processing larger volumes of data sets. The
blocking process involves three main stages: extraction of blocking
tokens from each reference, block key pair creation, and block
pair deduplication.

Extract blocking tokens
Just as in the legacy DWM, HDWM uses a frequency-based

blocking approach where all tokens having a frequency higher
than two, up until a given beta threshold, are grouped into the
same block for comparison. The first operation in the blocking
phase is to extract all tokens that meet a given beta threshold. The
token extraction happens in themapper phase. From each reformed
reference, the frequency information is used to only extract and
carry along tokens that have a frequency between 2 and the beta
value. For instance, if beta is set to 15, all tokens having a frequency
from 2 to 15 are preserved and used to create blocking keys. Tokens
with frequency of 1 are eliminated due to the assumption that two
references that should be compared need to share at least one token.
Using the data in Table 3 as an example, to compare reference
“A830349” to “A864729,” they should at least have a common token
which in this case is “AARON,” and “NC.”

There is also a rule to check the token length, and if the token
does not meet the minimum token length that makes a token
qualify for blocking, such token is eliminated. Using the data in
Table 3 above, and assuming the ‘minBlkTokenLen=5” all tokens of
length<5 will be excluded as seen in Table 4 below. For instance, as
shown in Table 4 below, the tokens “REBA,” “516,” “LN,” “NC” will
be removed from the reference “A864729.” Similarly, the tokens
“DEAN,” “2,475,” “DR,” and “NC” will all be excluded from the
reference “A830349.”

Another rule in the blocking phase is to decide whether to
exclude numeric tokens from forming blocking keys ormaintaining
them. Again, using the reformed references in Table 3 as an
example, if numeric tokens are to be excluded, denoted by the
parameter “excludeNumericTokens,” the token “27,045” will be
removed from the “A864729” reference, the tokens “27,106” and
“456,182,098” will be excluded from the “A830349” reference,
the tokens “27,104” and “363,197,202” will be removed from
the “A819955” reference, and finally, the tokens “93,230,” “344,”
and “4,232” will be removed from the “A812219” reference.
Column 3 of Table 5 shows the final mapper output after applying
“minBlkTokenLen” and “excludeNumericTokens” parameters and
excluding all tokens having frequency of 1. For instance, “REBA,”
“PEDDLE,” “516,” “HEATHERTON,” “RURAL,” “HALL,” and
“27,045” were all removed from the “A864729” reference because
they all have frequency of 1.
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FIGURE 2

Example of HadoopDWM frequency generation mapper and reducer phases.

Creation of blocking keys
HDWM uses the block-by-pair approach where a pair of

references will be compared only if they have at least two tokens in
common as discussed earlier. The tokens that were preserved now
are used as blocking keys. The keys can either be pairs of keys, if
using “blockByPairs” is set to true or single keys if “blockByPairs” is
set to false. For instance, if the reserved tokens in a reference were
“[BRIAN, ABADIR, and PINE]” and block-by-pairs is true, the keys
“BRAINABADIR, BRIANPINE, andABADIRPINE”will be created
as blocking keys for such reference. On the other hand, if block-by-
singles is set to true, the keys “BRIAN,” “ABADIR,” and “PINE” will
be formed as blocking keys. In the reducer, all reference identifiers
having the same blocking key are grouped.

Figure 3 shows a working example of the blocking key creation
using the remainder of tokens after removing all unwanted tokens.

TABLE 2 Example of reducer job with updated metadata tag.

Updated metadata tag key-value pairs

BLVD | {’refID’: ’A915661′, ’pos’: 6, ’tok’: ’BLVD’, ’freq’: 3}

BLVD | {’refID’: ’A922259′, ’pos’: 6, ’tok’: ’BLVD’, ’freq’: 3}

BLVD | {’refID’: ’A992523′, ’pos’: 6, ’tok’: ’BLVD’, ’freq’: 3}

BRIAN | {’refID’: ’A750205′, ’pos’: 1, ’tok’: ’BRIAN’, ’freq’: 2}

BRIAN | {’refID’: ’A942770′, ’pos’: 1, ’tok’: ’BRIAN’, ’freq’: 2}

The input of this job is the output from the third column of Table 5
above. It can be noted that all references having single tokens
(reference “A864729” and “A812219”) were eliminated and not
used to create blocking keys. This is because of the “block-by-pair”
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logic explained above. Since the creation of blocking keys need
at least two tokens in each reference, all references with singular
tokens are disqualified.

Blocking pair deduplication
Since a particular blocking key may be found in more than one

reference, there is a higher chance of having pairs of references that
will be brought together by that key. In the block deduplication

TABLE 3 Reference reformation with a complete intrinsic metadata

information.

A864729 {1: 'REBA1 ', 2: 'AARON33', 3: 'PEDDLE1 ', 4: '5161 ', 5:
'HEATHERTON1 ', 6: 'LN3 ', 7: 'RURAL1 ', 8: 'HALL1 ', 9: 'NC47', 10: '270451 '}

A830349 {1: 'LLOYD4 ', 2: 'AARON33', 3: 'DEAN3 ', 4: '24756 ', 5:
'SPICEWOOD6 ', 6: 'DR12', 7: 'WINSTON31', 8: 'SALEM31', 9: 'NC47', 10:
'271067 ', 11: '4561820981 '}

A819955 {1: 'JEREMY2 ', 2: 'AARON33', 3: 'TYLER2 ', 4: '32114 ', 5:
'KINNAMON4 ', 6: 'RD13', 7: 'WINSTON31', 8: 'SALEM31', 9: 'NC47', 10:
'2710410', 11: '3631972021 '}

A812219 {1: 'CELIA1 ', 2: 'AARON33', 3: '11061 ', 4: 'LASSEN1 ', 5: 'DR12', 6:
'HANFORD1 ', 7: 'CA3 ', 8: '932301 ', 9: '3441 ', 10: '371 ', 11: '42321 '}

A914099 {1: 'AARON33', 2: 'D2 ', 3: '11171 ', 4: 'E2 ', 5: 'SEVENTEENTH1 ', 6:
'ST6 ', 7: 'WINSTON31', 8: 'SALEM31', 9: 'NC47', 10: '271051 ', 11: '6361 ', 12:
'321 ', 13: '87811 '}

TABLE 4 Mapper output showing remaining tokens after applying

“minBlkTokenLen” parameter.

A864729 [1: 'REBA1 ', 2: 'AARON33', 3: 'PEDDLE1 ', 4: '5161 ', 5:
'HEATHERTON1 ', 6: 'LN3 ', 7: 'RURAL1 ', 8: 'HALL1 ', 9: 'NC47', 10: '270451 ']

A830349 [1: 'LLOYD4 ', 2: 'AARON33', 3: 'DEAN3 ', 4: '24756 ', 5:
'SPICEWOOD6 ', 6: 'DR12', 7: 'WINSTON31', 8: 'SALEM31', 9: 'NC47', 10:
'271067 ', 11: '4561820981 ']

A819955 [1: 'JEREMY2 ', 2: 'AARON33', 3: 'TYLER2 ', 4: '32114 ', 5:
'KINNAMON4 ', 6: 'RD13', 7: 'WINSTON31', 8: 'SALEM31', 9: 'NC47', 10:
'2710410', 11: '3631972021 ']

A812219 [1: 'CELIA1 ', 2: 'AARON33', 3: '11061 ', 4: 'LASSEN1 ', 5: 'DR12', 6:
'HANFORD1 ', 7: 'CA3 ', 8: '932301 ', 9: '3441 ', 10: '371 ', 11: '42321 ']

A914099 {1: 'AARON33', 2: 'D2 ', 3: '11171 ', 4: 'E2 ', 5: 'SEVENTEENTH1 ', 6:
'ST6 ', 7: 'WINSTON31', 8: 'SALEM31', 9: 'NC47', 10: '271051 ', 11: '6361 ', 12:
'321 ', 13: '87811 '}

phase, all pairs are processed in a reducer to eliminate all duplicates
before sending the final pairs to the similarity comparison function
for linking and matching. This step is crucial to prevent the
possibility of comparing the same pair of references more than
once, which will add to the computational complexity. In the
mapper phase of the block deduplication, pairs of reference
identifiers from each block key are created. The pairs are sorted
in ascending order of magnitude, and these are the pairs that
will end up in the reducer. In the reducer, all duplicate reference
identifier pairs are eliminated. This is because it is not efficient to
compare the same pair of referencemore than once. Comparing the
same pair of reference more than once increase the computational
time in the similarity comparison phase. For instance, if the pairs
“(A830349, A914099),” “(A819955, A839349),” and “(A819955,
A914099)” were created by the keys, “AARONWINSTON” and
“WINSTONSALEM” and the same pairs had already been created
by the key “AARONSALEM,” the reducer will emit only unique pair
from each key group.

Similarity comparison and linking

Sigma is a parameter for removing stopwords and should
always be higher than beta. Stopwords are tokens that have
a frequency higher than a given sigma value (Al Sarkhi and
Talburt, 2018, 2019). Prior to comparing a pair of references for
similarity, stopwords are removed from each pair of references
using a sigma threshold. This process is performed to reduce the
number of tokens that are left in a reference to be compared. This
helps facilitate the matching process and computational time. For
instance, if a sigma threshold is set to 45, all tokens with a frequency
higher than 45 are eliminated from the reference, and the remaining
tokens go through a matrix comparator program to determine
whether there is a match or no match. HDWM uses a variant of
the Monge Elkan scoring matrix, which is created for the DWM
(Li et al., 2018). The scoring matrix compares two tokens using a
Mu threshold between the values of 0 and 1, where the higher the
value, the higher the similarity. If references have a similarity score
equal to or higher than the set Mu threshold, such references are
said to be equivalent to each other and are, therefore, a match and
vice versa. This process only happens in a reducer, and the output is

TABLE 5 Mapper output showing remainder tokens after applying “excludeNumericTokens.”

Ref. ID Tokens after applying
“excludeNumericTokens” parameter

Tokens left for block creation

A864729 [2: 'AARON33', 3: 'PEDDLE1 ', 5: 'HEATHERTON1 ', 7:
'RURAL1 ', 8: 'HALL1 ', 10: '270451 ']

[AARON']

A830349 [1: 'LLOYD4 ', 2: 'AARON33', 5: 'SPICEWOOD6 ', 7:
'WINSTON31', 8: 'SALEM31', 10: '271067 ', 11: '4561820981 ']

['LLOYD, AARON, SPICEWOOD, WINSTON, SALEM]

A819955 [1: 'JEREMY2 ', 2: 'AARON33', 3: 'TYLER2 ', 4: '32114 ', 5:
'KINNAMON4 ', 7: 'WINSTON31', 8: 'SALEM31', 10:
'2710410', 11: '3631972021 ']

[JEREMY, AARON, TYLER, KINNAMON, WINSTON, SALEM]

A812219 [1: 'CELIA1 ', 2: 'AARON33', 4: 'LASSEN1 ', 6: 'HANFORD1 ',
8: '932301 ', 9: '3441 ', 11: '42321 ']

[AARON]

A914099 [1: 'AARON33', 5: 'SEVENTEENTH1 ', 7: 'WINSTON31', 8:
'SALEM31', 10: '271051 ']

[AARON, WINSTON, SALEM]
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FIGURE 3

Working example of block creation job in HDWM.

TABLE 6 Comparing similarity score to a 0.90 mu threshold to determine match or no match.

Input data
(deduplicated block pairs)

Similarity score Linking decision Output
(linked pair, inverse pair, pair key self)

A819955.A975276 0.99 Match A819955.A975276, A975276
A975276.A819955, A819955
A819955.A819955, A819955

A824044.A935026 1.0 Match A824044.A935026, A935026
A935026.A824044, A824044
A824044.A824044, A824044

A824917.A875214 0.92 Match A824917.A875214, A875214
A875214.A824917, A824917
A824917.A824917, A824917

A830349.A956296 1.0 Match A830349.A956296, A956296
A956296.A830349, A830349
A830349.A830349, A830349

A830349.A956423 0.99 Match A830349.A956423, A956423
A956423.A830349, A830349
A830349.A830349, A830349

A905248.A950657 0.72 No-match

A739417.A762973 0.89 No-match

A756280.A865919 0.74 No-match

a list of linked pairs of references. At the end of each iteration, the
Mu value is increased by a Mu-iterate value between 0 and 1 for the
next iteration. If a Mu reaches more than 100%, the program ends
and produces a linked index file containing linked pairs.

Table 6 shows an output from the similarity comparison job in
HDWM given a linking threshold (mu) of 90%. The third column
of the table shows the linking decision made by HDWM as to
whether the pair was linked or not linked. Per the given threshold
for linking pairs, the “A905248.A950657,” “A739417.A762973,”
and “A756280.A865919” pairs did not match and therefore were
eliminated from the output. The final out of the similarity
comparison is a combination of three items for each pair. The

program outputs the linked pair, the inverse of the linked pair and
the pair itself using only the key for the pair. The key of the output
is a composite key containing the left reference identifier and right
reference identifier. The value of each pair is the second item if the
composite key as shown in equation 4.

Transitive closure

HDWM implements transitive closure in a reducer phase,
which is a reference level linking to form clusters. An identity
mapper is used in this stage to shuffle and sort each input for
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TABLE 7 Example of transitive closure output using CMR algorithm.

Input data Sorted linked pairs Transitive closure iteration 1

A819955.A975276 A975276
A975276.A819955 A819955
A819955.A819955 A819955
A824044.A935026 A935026
A935026.A824044 A824044
A824044.A824044 A824044
A824917.A875214 A875214
A875214.A824917 A824917
A824917.A824917 A824917
A830349.A956296 A956296
A956296.A830349 A830349
A830349.A830349 A830349
A830349.A956423 A956423
A956423.A830349 A830349
A830349.A830349 A830349

A819955.A819955 A819955
A819955.A975276 A975276
A824044.A824044 A824044
A824044.A935026 A935026
A824917.A824917 A824917
A824917.A875214 A875214
A830349.A830349 A830349
A830349.A830349 A830349
A830349.A956296 A956296
A830349.A956423 A956423
A875214.A824917 A824917
A935026.A824044 A824044
A956296.A830349 A830349
A956423.A830349 A830349
A975276.A819955 A819955

A819955.A819955 A819955
A819955.A975276 A975276
A824044.A824044 A824044
A824044.A935026 A935026
A824917.A824917 A824917
A824917.A875214 A875214
A830349.A830349 A830349
A830349.A956296 A956296
A830349.A956423 A956423

the next transitive closure iteration. The logic of transitive closure
states that if reference 1 and reference 2 are equivalent to each
other, and reference 2 is equivalent to reference 3, then references
1, 2, and 3 are all equivalent to each other and, therefore, form a
cluster. HDWMuses the Connected Components withMapReduce
(CCMR) algorithm, which was originally proposed by Seidl et al.
(2012) and later improved by Kolb et al. (2014). CCMR searches
through links of references to find all connected components to
a particular reference, forming a star-like node and edge graph of
clustered references. In each transitive closure iteration, the merge
state and the local max state are recorded using customMapReduce
counters. These counters are used to decide whether to execute
the next iteration of transitive closure. Pairs in a merge state are
continuously chained to recreate new pairs until a fully local max
state is obtained. The transitive closure iteration ends if there are
no key groups that were found in a merged state, and therefore, the
merge state counter is 0.

The input of the CCMR algorithm is the output from the
similarity comparison phase. Table 7 shows an iteration of the
transitive closure algorithm. In the mapper phase, an identity
mapper is utilized where no computations are made. The output
from the mapper is sorted and then fed into the reducer which
then uses the logic in the CCMR algorithm to find connected
components of each key group as seen in Equation 4 below.
Equation 4 represent a group of references that will serve as
input for the CCMR transitive closure algorithm. The reference
identifiers colored in blue represent composite key with the first
item of the composite key being the group key. The reference
identifiers color coded orange represents all the values for
that group.

A819955.A819955 A819955

A819955.A975276 A975276 (4)

Cluster evaluation

Clusters formed at the transitive closure stage are evaluated
to determine organization or disorganization between clusters
using Shannon Entropy. An epsilon threshold between 0 and 1 is
used at this stage, where 0 means higher disorganization and 1
means higher organization. Although a reference may end up in
a particular cluster, it may not necessarily mean such cluster has

TABLE 8 Publicly available datasets used to test scalability of HDWM.

Sample Size
(entities)

Description

Affiliations 2,260 Contains database affiliation strings.
This includes address of institutions.

Geographic Settlements 3,054 Contains real-world entities from
freebase, geonames, NYTimes, and
DBpedia.

Music Brainz 200 k 193,750 Contains songs from a music
database and duplicates are
generated for research purposes

NC-Voters 5 million 5,000,000 Contains real-world records from
North Carolina voter’s registry

NC-Voters 7 million 7,000,000 Variation of NC-Voters-5 million

NC-Voters 50 million 50,000,000 Variation of NC-Voters-5 million

all the references that are equivalent to each other. The cluster
evaluation produces two main categories of outputs: a good cluster
of references and a bad cluster of references. If all the clusters are
good, then the process will end, and if vice versa, all bad clusters
are selected for reprocessing in the next phase. At the end of each
phase, the epsilon is increased using an epsilon-iterate value, and
that serves as the new epsilon for the next iteration. The evaluation
process happens in a reducer phase. An identity mapper is utilized
to shuffle and sort the input of this phase to group all clusters and
ready for the reducer. Clustered references that successfully goes
through the cluster evaluation phase are tagged as “usedRefs” in
order not to reprocess them in the next program iteration.

ER evaluation matrix

At the end of the process, if no further computation is to be
made, the final good clusters are collated and used to calculate
the performance of the system. The matrix is calculated only if
a truth set file is given by the end user. A truth set is a file that
contains the correct matches of each reference and the cluster it
belongs. It contains only two columns where the first column is the
reference identifier, and the second column is the cluster identifier.
If a truth file is given, it is hidden from the ER process and only
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TABLE 9 Comparison of HDWM and legacy DWM.

Sample Refs
read

Quality Beta Mu Sigma Epsilon System True
pairs

Expected
pairs

Linked
pairs

Precision Recall F-
measure

S1G 50 Good 6 0.6 7 0.23 LDWM 27 27 27 1.0 1.0 1.0

HDWM 27 27 27 1.0 1.0 1.0

S2G 100 Good 12 0.72 14 0.29 LDWM 48 48 52 0.9231 1.0 0.96

HDWM 48 48 52 0.9231 1.0 0.96

S3Rest 868 Good 4 0.67 50 0.44 LDWM 101 112 104 0.9712 0.9018 0.9352

HDWM 101 112 104 0.9712 0.9018 0.9352

S4G 1,912 Good 8 0.74 51 0.31 LDWM 906 990 939 0.9649 0.9152 0.9394

HDWM 906 990 939 0.9649 0.9152 0.9394

S5G 3,004 Good 18 0.76 66 0.25 LDWM 1,395 1,526 1,462 0.9542 0.9142 0.9338

HDWM 1,395 1,526 1,462 0.9542 0.9142 0.9338

S6GeCo 19,998 Good 125 0.77 850 0.41 LDWM 22,696 23,232 23,628 0.9606 0.9769 0.9687

HDWM 22,696 23,232 23,628 0.9606 0.9769 0.9687

S7GX 2,912 Good 15 0.76 41 0.29 LDWM 1,331 1,468 1,408 0.9453 0.9067 0.9256

HDWM 1,331 1,468 1,408 0.9453 0.9067 0.9256

S8P 1,000 Poor 23 0.67 32 0.13 LDWM 1,877 2,811 2,211 0.8489 0.6677 0.7475

HDWM 1,877 2,811 2,211 0.8489 0.6677 0.7475

S9P 1,000 Poor 32 0.72 33 0.15 LDWM 1,963 2,855 2,290 0.8572 0.6876 0.7631

HDWM 1,963 2,855 2,290 0.8572 0.6876 0.7631

S10PX 2,000 Poor 45 0.73 61 0.06 LDWM 8,132 11,878 9,194 0.8845 0.6846 0.7718

HDWM 8,132 11,878 9,194 0.8845 0.6846 0.7718

S11PX 3,999 Poor 108 0.72 109 0.15 LDWM 15,921 23,456 19,678 0.8091 0.6788 0.7382

HDWM 15,921 23,456 19,678 0.8091 0.6788 0.7382

S12PX 6,000 Poor 67 0.71 70 0.15 LDWM 21,734 31,735 24,867 0.874 0.6849 0.768

HDWM 21,734 31,735 24,867 0.874 0.6849 0.768

S13GX 2,000 Good 40 0.79 66 0.22 LDWM 1,750 1,949 1,979 0.8843 0.8979 0.891

HDWM 1,750 1,949 1,979 0.8843 0.8979 0.891
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utilized to evaluate the system’s performance. The creation of a
truth file is a complete process and so not always available. A
pairwise comparison approach is adopted in ER in which the goal is
to compare two references for equivalence. These pairs are counted
using the function in Equation 5 below.

pairs = (n∗ (n− 1))/2 (5)

The matrix calculated in this process are shown in Equations
(6–8) below. Linked pairs are pairs that were marked as equivalent
from the HDWM system, equivalent pairs are pairs that are
supposed to be referring to the same real-world objects, and true
pairs are the intersection between equivalent pairs and linked pairs.
Precision calculates the ratio of all the good links to the total
number of links that were made during the process. The recall, on
the other hand, measures all the pairs that are belong to the correct
clusters and are equivalent. It looks at the universe of equivalent
pairs. While precision ensure that created clusters contain only
references that are equivalent to each other, recall ensures all
references to a given entity end up in the same cluster. F-measure is
used to balance the precision and recall and is the harmonic mean
of the precision and recall.

Precision = TP/L (6)

Recall = TP/E (7)

F −measure = (2 ∗ P ∗ R)/(P + R) (8)

Experiment and results

Dataset

Two separate sets of data were used for experimentation,
including a generated name-address samples used as base
benchmark data for the legacy DWM. The data set used was
generated using the SOG system (Talburt et al., 2009) comprising
of names and addresses as shown in Table 9. The data ranges from
poor-quality formats to good-quality formats and single layouts
to mixed layouts. The datasets ending with the letters “G” and
“P” are good quality and poor quality, respectively. On the other
hand, datasets ending with the letters “GX” and “PX” are the good-
mixed quality layout and poor-mixed quality layout, respectively.
The good-quality data sets have the headers: recID, fname, lname,
mname, address, city, state, zip, and ssn. Whereas, the poor-quality
data sets have the headers: RecID, Name, Address, City State Zip,
PO Box, POCity State Zip, SSN, and DOB. Both systems are
given the same parameter file containing settings to be used in
the execution.

The second set of data are publicly available datasets used by
several researchers to evaluate ER system’s performance (Köpcke
et al., 2010). Four separate publicly available datasets namely
“Affiliations,” “Geographic Settlements,” “Music-Brainz,” and “NC
Voters” were used to test the scalability of HDWM. The North
Carolina voter’s data set containing 5 million references with
∼3.5 million clusters were analyzed and used for this research.
Two additional variants of the NC Voters dataset were created
including a 7 million version and a 50 million version using a
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reference duplication algorithm by copying the same references
from the 5million file and assigning unique identifiers to the copied
references. This was used to perform volume experimentation and
versatility of HDWM. The descriptions of the publicly available
datasets are shown in Table 8 below.

Benchmarking HDWM with legacy DWM

This section shows the experimentation of HDWM with 18
generated data files, which are also used to test the performance
of the legacy DWM. Given sizes these 18 samples were less than the
default HDFS block size of 128MB, a single-node Hadoop cluster
was utilized to prove that it achieves the same clustering result as
the legacy DWM. The workstation used is a 64-bit Ubuntu 23.04
server with a stable Hadoop 3.3.1 and OpenJDK 8 installed. The
server is equipped with a 4-core i3 Intel 4th generation CPU at 3.10
GHz base speed and 8GB DDR3 RAM. Some statistics recorded
from the experiment include the number of Linked Pairs, True
Pairs, Equivalent Pairs, Precision, Recall, and F-measure, as shown
in Table 9.

The result from Table 9 above shows that HDWM can cluster
equivalent references when given optimal parameters. The sample
with the highest number of references is S6GeCo having 19,998
references. With optimal parameters by HDWM, we were able to
achieve a precision of 0.9606, recall of 0.9769, and f-measure of
0.9687. Thismeans out of the pairs the system linked were true links
and were referring to the same entities as predicted by the system.

Volume (scalability) test
The scalability of HDWM was tested in a fully distributed

cluster using computational nodes from the Arkansas High-
Performance Computing Center’s Pinnacle HPC. The workstation
server is equipped with two intel Broadwell processors with two
total cores and two threads. A total of 20 compute nodes were
loaded to run the 5 million records of size 187.44MB, 30 compute
nodes to run ∼7 million reference, and 50 nodes to run the 50
million records of size 1.83 GB. Each compute node is equipped
with Intel(R) Xeon(R) Gold 6130 CPU@2.10 GHz base speed, with
32 cores, and a memory of 192 GB.

Some statistics extracted from the tokenization phase, blocking
phase, linking phase, and cluster evaluation phase using S6GeCo,
and NC Voters are shown in Table 10 below. There are four main
conditions under which the program iteration will exit. If the
blocked pair list is empty, if the linked pair list is empty, if the
transitive closure cluster list is empty, or if the new Mu value is
>1.0, the program exit code will be triggered to end the execution.

Table 11 above shows a comparative analysis of HDWM and
Famer entity clustering system proposed by Saeedi et al. (2017). The
table also show that for the Affiliations, Geographic Settlements,
and Music Brainz datasets, HDWM outperforms Famer in terms of
total number of references clustered. We believe the over clustering
in HDWM is due to the use of optimal parameters used by the
system. These parameters include by not limited to “epsilon” which
is used to calculate the quality of a cluster after linking. Famer
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TABLE 11 Cluster statistics and ER matrix for real-world datasets.

Sample Size System # of linked pairs # of clusters

Affiliations 2, 260 HDWM 26,844 814

Famer 32,816 330

Geographic settlements 3, 054 HDWM 4,501 1,073

Famer 4,391 820

Music Brainz 200 k 193, 750 HDWM 346,914 111,901

Famer 162,500 100,000

North Carolina Voters 5M 5, 000, 000 HDWM 1,650 3,496,553

Famer 331,384 3,500,840

FIGURE 4

Analysis of reducer count, bu�er size, and shu	e time of HDWM block pair deduplication.

uses connected component graph approach for clustering linked
references.

Shu	ing behavior of HDWM
In this section, we demonstrate the behavior of the shuffling

stage of HDWM. Since HDWM si an iterative system with
many phases, we isolated one of the data-intensive phases of
the process, Block Pair Deduplication, and showed how data
copied from the mapper phase are shuffled before being fed into
available reducers on the cluster. There are multiple optimization
techniques, however, we focused on the number of reducers and the
buffer size used by reducers for sorting and shuffling intermediate
data from the mapper’s output. The results of HDWM’s shuffling
in the Block Pair Deduplication phase using North Carolina voter’s

dataset has been presented in Figure 4 below. The default buffer size
in HDFS is 100MB, the data size that needed to be shuffled in this
process was 5,027.30 MB.

From Figure 4, it can be observed that reducing the number of
reducers increases the amount of time used to shuffle the data. For
instance, when the number of reducers was reduced from 10 to 5 as
shown in experiment 9 (e9 r5), the average shuffle time, in seconds,
was increased from 20 s in experiment 8 (e8 r10) to 28 s (e9 r5).
On the other hand, increasing the buffer size in experiment 4 (e4
r10) from 512MB to 1 GB in experiment 5 (e5 r10), there was a
slight reduction in the average shuffle time taken by the reducers.
Although increasing the number of reducers per job decreases the
computational time, it impacts the shuffle time since lots of records
need to be merged, sorted, and shuffled before the reducer phase.
There is I/O overhead cost when the mappers emit more data
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which need to be merged and ensure that each reducer receives
the intermediate output for processing. Again, increasing the buffer
size in HDWM for the reducers decreases the time taken to shuffle
intermediate outputs from themappers. This is because the amount
of memory for each shuffling operation. This works best especially
for I/O intensive mapreduce jobs.

Conclusion and future work

With the exponential growth of data in the era of big data, the
DWM is unable to meet the standard of clustering larger datasets.
Although the DWM can successfully cluster equivalent references,
it is only able to do so to just a few 1,000 references, making it
unscalable. This work focused on developing a scalable version of
an unsupervised data curation engine using Hadoop MapReduce.
We tackled the issue of single-threaded design of the DWM by
using the parallel capability of MapReduce. We also solve the
problem of shared single memory by distributing the workload
onto multiple computational nodes.

The hadoop-based design of the DWM can cluster both
good and poor-quality data sets using a set of parameters
optimally selected by a Parameter Discovery Process. HDWM
was experimented with 18 generated names and addresses, and
a benchmark result shows both DWM and HDWM achieve the
same cluster results. The scalability of the system was proved
via experimentation with up to 50 million records publicly
available data set. We also demonstrated the capability of the
proposed system to cluster datasets of varying formats. From our
experiments, we conclude that HDWM works best in terms of
precision, recall, and f-measure when it is given optimal system
parameters. This is evident when HDWM was experimented
using the benchmark datasets which were used for the legacy
DWM. These datasets have optimal staring parameters which
provide the best possible clustering results. This is possible by
inculcating a Parameter Discovery Process proposed by Anderson
et al. (2023) into a distributed environment to be used by
the HDWM system. At each iteration of the HDWM system,
statistics such as unique tokens, numeric token, etc. which are
used by the PDP can be extracted to predict the next best
possible value.

Future work will focus on adopting load-balancing techniques
to ensure an equal amount of data is processed by each reducer. We
will improve the parallelism of the reducers for all jobs by adjusting
the number of reducer tasks to suite our system. We believe
adopting load-balancing techniques will significantly decrease the
computational time at the reducer phases.We also intend to explore
the performance of HDWM using poor quality data sets in mixed
format. Another area of research is to explore the performance of
HDWM in other domains, such as healthcare records.

Although the adoption of load-balancing techniques will help
reduce the computational time, it can further be improved when
a more efficient data processing technique is used. MapReduce
reads data from disk and then writes the intermediate results of
the mapper tasks back to disk. The read and write operation in
MapReduce causes overhead cost. In future work, we will focus on
refactoring HDWM into PySpark for even faster data processing
thereby improving the total execution.

We analyzed the shuffle performance of HDWM and
conclude that there is an improvement in the time used by
reducers for shuffling the intermediate outputs from mappers
when number of reducers is fine-tuned with the buffer size
memory used for shuffling. Although there are numerous shuffle
optimization techniques in MapReduce, only buffer size and
tuning the level of parallelism via number of reducers were
explored. We also will improve the shuffling and sorting processes
for all the steps presented in this research in future work.
This include analyzing the relationship between CPU cores
and the shuffle time, reducing the number of record spilled
to disk, and also using “shuffle parallel copies” configuration
in MapReduce.
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