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CURTAINs for your sliding
window: Constructing
unobserved regions by
transforming adjacent intervals

John Andrew Raine*†, Samuel Klein†, Debajyoti Sengupta† and

Tobias Golling

Département de Physique Nucléaire et Corpusculaire, Université de Genève, Geneva, Switzerland

We propose a new model independent technique for constructing background

data templates for use in searches for new physics processes at the LHC. This

method, called Curtains, uses invertible neural networks to parameterise the

distribution of side band data as a function of the resonant observable. The

network learns a transformation to map any data point from its value of the

resonant observable to another chosen value. Using Curtains, a template for the

background data in the signal window is constructed by mapping the data from

the side-bands into the signal region. We perform anomaly detection using the

Curtains background template to enhance the sensitivity to new physics in a

bump hunt. We demonstrate its performance in a sliding window search across

a wide range of mass values. Using the LHC Olympics dataset, we demonstrate

that Curtains matches the performance of other leading approaches which aim to

improve the sensitivity of bump hunts, can be trained on a much smaller range of

the invariant mass, and is fully data driven.

KEYWORDS
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1. Introduction

In the ongoing search for new physics phenomena to explain the fundamental nature

of the universe, particle colliders such as the Large Hadron Collider (LHC) provide an

unparalleled window into the energy and intensity frontiers in particle physics. Searches for

new particles not contained within the Standard Model of particle physics (SM) are a core

focus of the physics programme, with the hope to explain observations in the universe which

are inconsistent with predictions from the SM, such as dark matter, gravity, and the observed

matter anti-matter asymmetry.

Many searches at the LHC target specific models built upon theories which contain new

particles with particular attributes. However, these searches are only sensitive to a specific

model. Due to the vast space of models which could extend the SM, it is unfeasible to perform

dedicated searches for all of them.

One of the cornerstones in the model independent hunt for new physics phenomena

at the LHC is the bump hunt, a search for a localised excess on top of a

smooth background. The most sensitive observable for the bump hunt is in an

invariant mass spectrum which corresponds to the mass of the particle produced at

resonance in particle collisions or decays. The invariant mass spectrum comprises

non-resonant events, which produce a falling background across all mass values, with
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particles appearing as bumps on top of this background. The

width of a bump is driven by the decay width of the particle and

the detectors resolution. At the ATLAS and CMS Collaborations

(ATLAS Collaboration, 2008; CMS Collaboration, 2008) bump

hunt techniques are employed to search for new fundamental

particles, and were a crucial in the observation of the Higgs

boson (ATLAS Collaboration, 2012; CMS Collaboration, 2012).

At the LHCb experiment (LHCb Collaboration, 2008), these

techniques have also been successfully employed to observe new

resonances in composite particles (LHCb Collaboration, 2020,

2021, 2022).

In a bump hunt, the assumption is made that any resonant

signal will be localised. With this assumption, a sliding window fit

can be performed using a signal region with a side-band region on

either side. As the signal is assumed to be localised, the expected

background contribution in the signal region can be extrapolated

from the two side-bands. The data in the signal region can be

compared to the extrapolated background to test for a significant

excess. This test is performed across the whole spectrum by sliding

the window. In a standard bump hunt, only the resonant observable

is used in the sliding window fit to extrapolate the background and

test for localised excesses.

However, with the incredible amounts of data collected by

the ATLAS and CMS Experiments, and lack of evidence for new

particles (ATLAS Collaboration, 2021a,b,c; CMS Collaboration,

2022a,b,c), the prospect of observing a bump on a single

spectrum as more data is collected is growing ever more unlikely.

Therefore, attention has turned to using advanced machine

learning techniques to improve the sensitivity of searches for

new physics, and in particular to improving the reach of the

bump hunt approach. Such approaches typically utilise additional

discriminatory variables for separating signal from background.

If an accurate background template over discriminatory

features can be constructed for the signal region, then the

classification without labels method (CWOLA) (Metodiev et al.,

2017) can be used to extend the bump hunt. As shown in Collins

et al. (2019), the data in the side-bands can be used to construct the

template for training the classifier if the discriminatory features are

uncorrelated with the resonant variable.

In this paper we introduce a new method, Constructing

Unobserved Regions by Transforming Adjacent Intervals

(CURTAINs). By combining invertible neural networks (INNs)

with an optimal transport loss (Rubner et al., 2000; Villani, 2009;

Cuturi, 2013), we learn the optimal transport function between the

two side-bands, and use this trained network (henceforth, referred

to as the “transformer”) to construct a background template by

transforming the data from each side-band into the signal region.

CURTAINs is able to construct a background template for

any set of observables, thus classifiers can be constructed using

strongly correlated observables. These variables provide additional

information and are often the best variables for discriminating

signal from background and therefore increase the sensitivity of

the search. Furthermore, CURTAINs is a fully data driven approach,

requiring no simulated data.

In this paper, we apply CURTAINs to a search for new physics

processes in dijet events produced at the LHC and recorded

by a general purpose detector, similar to the ATLAS or CMS

experiments. We demonstrate the performance of this method

using the R&D dataset provided from the LHC Olympics (LHCO)

(Kasieczka et al., 2019), a community challenge for applying

anomaly detection and other machine learning approaches to the

search for new physics (Kasieczka et al., 2021).

We demonstrate that CURTAINs can accurately learn the

conditional transformation of background data given the original

and target invariant mass of the events. Classifiers trained using

the background template provided by CURTAINs outperform

leading approaches, and the improved sensitivity to signal processes

matches or improves upon the performance in an idealised

anomaly detection scenario.

Finally, to demonstrate its applicability to a bump hunt and

observing potential new signals, we apply the CURTAINs method

in a sliding window approach for various levels of injected signal

data and show that excesses above the expected background can be

observed without biases or spurious excesses in the absence of a

signal process.

2. The dataset

The LHCO R&D dataset comprises two sets of labelled data.

Background data from the Standard Model is produced through

QCD dijet production, and signal events from the decay of a new

particle to two lighter new particles, which each decay to two quarks

W′ → X
(

→ qq̄
)

Y
(

→ qq̄
)

, where the three new particles have

mass mW′ = 3.5 TeV, mX = 500 GeV, and mY = 100 GeV.

Both samples are generated with Pythia 8.219 (Sjöstrand et al.,

2008) and interfaced to Delphes 3.4.1 (de Favereau et al.,

2014) for the detector simulation. The reconstructed particles are

clustered into jets using the anti-kt algorithm (Cacciari et al., 2008)

using the FastJet package (Cacciari et al., 2012), with a radius

parameter R = 1.0. Each event is required to have two jets, with

at least one jet passing a cut on its transverse momentum p
J
T >

1.2 TeV to simulate a jet trigger in the detector.

In total 1millionQCDdijet events and 100,000 signal events are

generated. CURTAINs uses all the QCD dijet events as the standard

background sample, and in addition doped samples are constructed

using all the QCD events and a small number of events from the

signal sample from the 100,000 available W′ events. The standard

benchmark datasets used to asses the performance of CURTAINs

comprise the full background dataset, with 0, 500, 667, 1,000, or

8,000 injected signal events.

All event observables are constructed from the two highest pT
jets, with the two jets ordered by their invariant mass, such that J1
hasmJ1 > mJ2 . The studied features include the base set of variables

introduced in Nachman and Shih (2020) and applied in Hallin

et al. (2022),

mJJ , mJ1 , 1mJ = mJ1 −mJ2 , τ
J1
21, τ

J2
21,

where τ21 is the n-subjettiness ratio of a large radius jet (Thaler

and Van Tilburg, 2011), measuring whether a jet has underlying

substructure more like a two prong or one decay, and mJJ is the

invariant mass of the dijet system. As an additional feature we

include

1RJJ ,
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which is the angular separation between the two jets in η − φ

space. This additional feature is included as it can bring additional

sensitivity to some signal models. Furthermore, it is strongly

correlated with the resonant feature, mJJ , and so including it when

training the transformer and classifier provides a stringent test of

the CURTAINs method.

The width of the signal region in the sliding window is set to

200 GeV by default, with 200 GeV wide side-bands either side. In

this paper, we simplify the sliding window approach by shifting the

window by 200 GeV such that there is no overlap between signal

regions. This would reduce the sensitivity for cases where the signal

peak falls on the boundary of the signal region. We avoid this by

defining our bins such that the signal is centred within a signal

region. Where the signal is unknown overlapping windows would

need to be employed, with a strategy in place to avoid selecting

the same data twice in the final analysis. The turn on in the dijet

invariance mass spectrum caused by the trigger requirements of

both jets is removed by only performing the sliding window scan

with signal regions above 3.0 TeV. The full range used for the

sliding window scan is up to a dijet invariant mass of 4.6 TeV.

To evaluate the performance of classifiers using this dataset, a

k-fold procedure with five folds is employed, using three fifths of

the dataset for training, one fifth for validation and one fifth as a

hold out set per fold. No optimisation is performed on the hold out

sets, and all optimisation criteria are satisfied using the validation

set per fold. This ensures all available data are used in a statistical

analysis, which is even more crucial in data driven approaches,

where statistical precision is key in the search for new physics. The

remaining 92,000 signal events not used to construct the doped

datasets are used to evaluate the classifier performance, maximising

the statistical precision.

3. Method

3.1. CURTAINs

In CURTAINs conditional invertible neural

networks (cINNs) (Ardizzone et al., 2019a,b) are employed

to transform data points from an input distribution to those from

the target distribution. The transformation is conditioned on a

function f of the resonant feature mJJ of the input and target data

points. Unlike flows (Rezende and Mohamed, 2016; Kobyzev et al.,

2021), which use the exact maximum likelihood of transforming

data to a desired distribution, usually a multivariate normal

distribution, we use an optimal transport loss to train the network

to transform data between the two desired distributions.

As the cINN can be used in both directions, the inputs to the

conditional function are referred to as the lower and higher values

mlow
JJ and mhi

JJ . In the case of a forward pass through the network,

mlow
JJ are the true values of the input data, withmhi

JJ the target values,

and vice versa in the case of an inverse pass. Furthermore, instead of

training the cINN in only the forward direction, we iterate between

both the forward and inverse directions to ensure better closure

between the output and target distributions and to prevent a bias

toward transformations in one direction.

Several different network architectures for the transformer

were studied in the development of CURTAINs. The transformers

presented in this paper are built on the invertible transformations

introduced in Durkan et al. (2019) which use rational-

quadratic (RQ) splines, which are found to be very expressive and

easy to train. The conditioning function f is chosen to be

f
(

mlow
JJ ,mhi

JJ

)

= mhi
JJ −mlow

JJ . (1)

The features which are to be transformed determine the input and

target dimensions of the CURTAINs transformer.

To train the network, batches of data are drawn from the

low-mass side-band SB1 and the high-mass side-band SB2. The

data from SB1 is first fed through the network in a forward pass,

conditioned using mlow
JJ and mhi

JJ , with target values for each event

assigned by randomly pairing the masses drawn from each side-

band. The loss between the transformed data and target data is

calculated using the sinkhorn divergence (Cuturi, 2013) across

the whole batch, in order to measure the distance between the

distributions of the two sets of data. The gradient of this loss is

used to update the network weights. In the next batch the data from

SB2 is fed through the network in an inverse pass and the same

procedure is performed. This alternating procedure is repeated

throughout the training. A schematic overview of the CURTAINs

transformer model is shown in Figure 1.

With this training procedure the optimal transport function

is not exactly derived as the conditional information is only

implicit and a transformed event will not necessarily be paired

to the event with the mass to which it was mapped in the loss

calculation. However, after training the network we observe that the

learned transformation is a good approximation of the true optimal

transformation.

In order to improve the closure of the transformed data to

regions other than the side-bands, an additional training step is

performed. After an epoch of training the network between SB1

and SB2, each side-band itself is split into two equal width sub side-

bands. The network is then trained for an epoch of each intra side-

band training, following the same procedure as for the inter side-

band training. Although not necessary for the CURTAINs method,

this extra step is performed in order to extend the range of values

of the conditional information used to train the network. Instead

of having a minimum value of f
(

mlow
JJ ,mhi

JJ

)

equal to the width of

the signal region separating SB1 and SB2, its minimum values is

now zero. This ensures that the conditioning variables used to map

data to the signal region always lie in the distribution of values used

during training.

The CURTAINs transformer is trained for 1,000 epochs with

a batch size of 256 using the Adam optimiser (Kingma and Ba,

2017). A cosine annealing learning rate schedule is used with an

initial learning rate of 10−4. A typical training time of 6 h using

an NVIDIA R© 3080 RTX GPU is required for a central window

encompassing 105 samples across the two side-bands.

The CURTAINs transformers are trained separately for each step

in the sliding window, using all the available data in the side-bands.

In order to construct a background template in another region, all

the data from SB1 and SB2 are transformed in either a forward

or inverse pass to mass values sampled from the target window.

To create the background template in the signal region, the data

from SB1 (SB2) are transformed to values of mJJ corresponding to

the signal region in a forward (inverse) pass with the CURTAINs
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FIGURE 1

A schematic overview of the CURTAINs model. A feature x is correlated with m, as can be seen from the 2D contour plots for each side-band in blue.

Samples {x1i }
n
i=1 and {x2i }

n
i=1 of batch size n are drawn randomly from the two side-bands. In the forward pass the samples from SB1, {x1}ni=1, are

passed through the conditional INN where each sample xi1 is conditioned on f
(

mi
low

,mi
hi

)

, producing the set {zi2}
n
i=1. The cost function is defined as

the distance between this output and the sample from SB2 {xi2}
n
i=1. In the inverse pass the roles of each side-band are exchanged. In applying the

model, any value for m can be chosen as long as the correct inverse or forward pass is applied.

transformer. These two transformed datasets are combined to

create the background template in the signal region.

In the case of validating the CURTAINs transformer, the side-

band data can be transformed to a target window with the same

width as the signal region but going in the opposite direction inmJJ ,

defining outer-band regions for SB1 (OB1) and SB2 (OB2). These

regions can be used to validate and tune the CURTAINs method

in a real world setting. The five bands of one sliding window are

illustrated in Figure 2, with the depicted signal region centred on

the invariant mass of the injected signal. In the studies presented in

this paper the width of the side-bands and validation regions is set

to 200 GeV by default, unless otherwise specified. To increase the

statistics of the constructed datasets the transformer can be applied

many times to the same data with different mJJ target values in

each pass.

The hyperparameters and architecture of the CURTAINs

transformer were optimised in a grid search by measuring the

agreement between data transformed into the two outer-band

regions from the two side-bands for one step of the sliding

window without any doping of signal events. The agreement is

measured by training a classifier to separate the two datasets

and ensuring the Receiver Operator Characteristic (ROC) curve

had a linear response with an area under the curve close to 0.5,

which suggests the network was unable to differentiate between

real and transformed data in this region. The optimal CURTAINs

transformer is made up of eight stacked RQ spline coupling layers.

Each coupling layer is constructed from three residual blocks each

of two hidden layers of 32 nodes with LEAKY RELU activations,

resulting in an output spline with four bins. The n-flows

package (Durkan et al., 2020) is used to implement the network

architecture in Pytorch 1.8.0 (Paszke et al., 2019). These settings are

then used to train all CURTAINs transformers for each step of the

sliding window, and for all doping levels.

3.2. Mass fitting and sampler

In order to sample target values for the CURTAINs transformer

and not be biased to the presence of any excess of events in the

signal region, the distribution of the resonant feature in the signal
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FIGURE 2

Schematic showing the relative locations of the two side-bands

(SB1 and SB2), the signal region (SR) and the two outer-bands (OB1

and OB2) on the resonant observable mJJ. In this example, the

non-resonant background is shown as a falling blue line, and the

signal region is centered at 3.5 TeV, corresponding to the mass of

the injected signal, shown not to scale in red.

region needs to be extrapolated from the side-band data. Here we

model the QCD dijet background with the functional form

f (z) = p1(1− z)p2zp3 , (2)

where z = mJJ/
√
s with the centre of mass energy of the

collision
√
s =13 TeV. The parameters p1, p2, and p3 are obtained

from an unbinned fit to the side-band data in using the zfit

package (Eschle et al., 2020). This Ansatz has been used previously

in analyses performed at the LHC (ATLAS Collaboration, 2016)

and is similar to that used in more recent searches with the

omission of the last free parameter (CMS Collaboration, 2018;

ATLAS Collaboration, 2020). Once fit to the side-band data, the

learned parameters are used in the PDF fromwhich to sample target

mJJ values for the transformer.

3.3. Anomaly detection

Once the background data has been transformed into the

signal region from the side-bands, it is possible to use them as

the background template to test for the presence of signal in the

data from the region. There are several approaches which could

be used for anomaly detection with the data transformed with

the CURTAINs method, however in this paper we will focus on

the CWOLA classifier, as applied also in Collins et al. (2019),

Benkendorfer et al. (2021), and Hallin et al. (2022) on this dataset.

For a CWOLA classifier, it can be shown that the performance

of a classifier trained on two sets of data, each containing a

different mixture of signal and background data will result in the

optimal classifier trained on pure sets of signal and background

data. Here, we assume our transformed data represents a sample

of pure background events, and test the hypothesis that in our

signal region data there is a mixture of signal and background

data. In the presence of signal events in the signal region, the

classifier will be able to separate the signal region data from

the background template, with the true signal events having

higher classification scores than the true background data. By

applying a cut on the classifier output to reject a given fraction

of the background, calculated from the scores of the background

template, the significance of the signal events can be enhanced.

In cases where there is signal contamination in at least one of

the side-bands of the sliding window, the background template

constructed with CURTAINs will also contain a non-zero signal

to background fraction. With the assumption that the signal is

localised, and the bin widths are not too small, the relative fraction

of signal in the signal region will be different from the background

template. As such, the CWOLAmethod will still be able to approach

the performance of the ideal classifier. The background template

provided by CURTAINs will have a lower signal to background ratio

than the signal region in at least one step of the sliding window, and

in this bin an excess can be expected.

In the event of the signal being fully localised within a side-

band, this will result in the opposite labels being used in the

training of the CWOLA classifier with regards to which dataset

contains the higher fraction of signal. After applying a cut on the

classifier a slight reduction in events with respect to the prediction

could therefore be expected. However, in practise we observe no

significant deviation with the dataset under consideration.

The values used as acceptance thresholds on the output of the

classifier are independently determined for each classifier in the

signal regions across all sliding windows and levels of doping. These

cuts are used to enhance the sensitivity to the presence of signal data

in each window of the fit. The amount of data which remains after

the cut can be compared to the expected background, determined

by taking the total number of data in each signal region multiplied

by the background rejection factor. In the presence of a signal,

a significant excess of data will be observed above the expected

background.

A further test of the performance when using the CURTAINs

method is to compare against three benchmark classifiers. The

first is a fully supervised classifier, trained with knowledge of

which events were from the signal process and which were QCD

background. Two further classifiers, the idealised classifiers, are

trained in the same manner as with the CURTAINs background

template, except that the background template comprises true

background data from the signal region itself.

Both the supervised and idealised classifiers are only trained

for the window in which the signal region is aligned with the

peak of the signal data. The supervised classifier provides an upper

bound on the achievable performance on the dataset. The idealised

classifier sets the target level of performance which can be achieved

with a perfect background template, and can be used to validate the

performance of CURTAINs for use in anomaly detection.

All the classifiers for all signal regions and all levels of signal

doping share the same architecture and hyperparameters. The

classifiers used in this paper have been chosen as they are robust

to changes in datasets and initial conditions, in particular when

using k-fold training and low training statistics. The classifiers are

constructed from multilayer perceptrons with three hidden layers

with 32 nodes and RELU activations. The classifiers are trained for

20 epochs using the Adam optimiser with a batch size of 128, and
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FIGURE 3

Input, target, and transformed data distributions for the base variable set with the addition of 1RJJ, for transforming data from SB1 to SB2 (left) and

SB2 to SB1 (right), with the model trained on SB1 (3,200 ≤ mJJ < 3,400 GeV) and SB2 (3,600 ≤ mJJ < 3,800 GeV). The data from SB1 (SB2) is

transformed with a forward (inverse) pass of the CURTAINs model into the target region. The diagonal elements show the individual features with the

o� diagonal elements showing a contour plot between the two observables for the transformed and trained data.

an initial learning rate of 0.001 which anneals to zero following a

cosine curve over 20 epochs.

4. Comparison to other work

Our method is one of several approaches with aims to enhance

the sensitivity to new physics processes coming from the resonant

production of a new particle using machine learning (Collins

et al., 2019; Andreassen et al., 2020; Nachman and Shih, 2020;

Benkendorfer et al., 2021; Hallin et al., 2022).

In comparison to the CATHODE method introduced in Hallin

et al. (2022), which is one of the current best anomaly detection

methods for resonant signals using the CWOLA approach, our

method shares some similarities but differs on key points. Although

both approaches make use of INNs, CURTAINs does not train a flow

with maximum likelihood but instead uses an optimal transport

loss in order to minimise the distance between the output of the

model and the target data, with the aim to approximate the optimal

transport function between two points in feature space when

moving along the resonant spectrum. As a result, CURTAINs does

not generate new samples to construct the background template,

but instead transforms the data in the side-bands to equivalent

datapoints with a mass in the signal region. This approach avoids

the need to match data encodings to an intermediate prior

distribution, normally a multidimensional gaussian distribution,

which can lead to mismodelling of underlying correlations between

the observables in the data if the trained posterior is not in perfect

agreement with the prior distribution. The CATHODE method

has no regularisation on the model’s dependence on the resonant

variable, and this dependence is non trivial, so extrapolating to

unseen datapoints—such as the signal region—can be unreliable.

In contrast, the CURTAINs method can be constructed such that at

evaluation the conditioning variable is never outside of the values

seen from the training data.

Furthermore, in comparison to CATHODE, CURTAINs is

designed to be trained only in the sliding window with all

information extracted over a narrow range of the resonant

observable, as is standard in a bump hunt. This means CURTAINs

is less sensitive to effects from multiple resonances on the same

spectrum, and is not dominated by areas of the distribution with

more data. Furthermore, thanks to the optimal transformation

learned between the side-bands, it can also be applied to transform

side-band data into additional validation regions and not just to

construct the background template in the signal region.

In contrast to the methods proposed in Andreassen et al.

(2020) (SALAD) and Benkendorfer et al. (2021) (SA-CWOLA),

CURTAINs does not rely on any simulation and is a completely

data-driven technique. In CURTAINs the side-band data is able to

be transformed directly into the signal region, instead of deriving

a reweighting between the data and simulated data from the side-

bands, which is subsequently applied to transform the simulated

data in the signal region into a background template. Due to the

resampling of the value of the resonant observable, CURTAINs

is also able to produce a background template with additional
statistics, rather than being limited by the number of events in the

signal region from the simulated sample.
There are also a wide range of approaches looking for new

physics that do not rely on resonant signals. Many techniques

are built on autoencoders (Aguilar-Saavedra et al., 2017; Blance

et al., 2019; Cerri et al., 2019; Heimel et al., 2019; Roy and Vijay,

2019; Farina et al., 2020; Hajer et al., 2020; Jawahar et al., 2022),

looking to identify uncommon events or objects. These models

are subsequently used to reject SM-like processes in favour of
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FIGURE 4

Input, target, and transformed data distributions for the base variable set with the addition of 1RJJ, for transforming data from SB1 to OB1 (left) and

SB2 to OB2 (right), with the model trained on SB1 (3,200 ≤ mJJ < 3,400 GeV) and SB2 (3,600 ≤ mJJ < 3,800 GeV), with OB1 and OB2 defined as

200 GeV wide windows directly next to SB1 and SB2 away from the signal region. The data from SB1 (SB2) is transformed with an inverse (forward)

pass of the CURTAINs model into the target region. The diagonal elements show the individual features with the o� diagonal elements showing a

contour plot between the two observables for the transformed and trained data.

potential new physics. Other approaches are motivated from the

ratio of probability densities and directly measure a test statistic

from the comparison of a sample of events with respect to a set of

reference distributed events (D’Agnolo and Wulzer, 2019; Simone

and Jacques, 2019; D’Agnolo et al., 2021; Letizia et al., 2022).

A comparison of a wide range of methods is also performed in

Kasieczka et al. (2021), which summarises a community challenge

for anomaly detection in high energy physics.

5. Results

5.1. Validating CURTAINs transformer

The first test of performance in CURTAINs is to demonstrate

that the transformation learned between the two side-bands

is accurate, and further to determine whether the learned

transformation can extrapolate well to the validation regions. As

Monte Carlo simulation is being used for the studies, we can control

the composition of the samples in the studies. The performance

of the approach is evaluated using a sample containing only

background data, as well as various levels of signal doping. The

same model configuration is used for all samples, and the sliding

window is chosen such that it is centred on the true signal peak

with a signal region width of 200 GeV.

The input features and their correlations for the input, target

and transformed data distributions are shown in Figure 3 for the

two side-bands trained in the case of no signal, and in Figure 4 for

the two validation regions. As can be seen, the transformed data

distributions are well reproduced with the CURTAINs approach.

The ability of CURTAINs to handle features which are strongly

correlated with mJJ can be seen from the agreement of the 1RJJ

distributions between SB1 and SB2, which exhibit very different

shapes.

In the case of no signal being present, we can also verify whether

the background template constructed by transforming data from

the side-bands with CURTAINs matches the target data in the signal

region. The performance of the CURTAINs method can be seen

in Figure 5, with the transformed data closely matching the data

distributions and correlations.

To quantify the level of agreement between the transformed

distributions and the target data, classifiers are trained to separate

the two datasets, and the area under the ROC curve is measured.

The level of agreement between the CURTAINs transformed data

and target data can be seen for several levels of signal doping in

Table 1. We can see that CURTAINs has very good agreement with

the target distribution in all signal regions and in all cases is seen to

be better than in the validation region. The reduced performance

in OB1 and OB2 is a result of the transformer extrapolating outside

of the trained sliding window. This demonstrates their ability to be

used for validating the CURTAINs method and future classification

architectures.

5.2. Application to anomaly detection

To demonstrate the performance of CURTAINs to produce a

robust background template, the sliding window is centred on

the resonant mass of the signal events, and the performance

of the CWOLA classifier is compared against a background

template produced using the CATHODE method. The signal

region width is set to 400 GeV to contain the majority of

the signal events, resulting in 120,000 background events.The

Frontiers in BigData 07 frontiersin.org

https://doi.org/10.3389/fdata.2023.899345
https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org


Raine et al. 10.3389/fdata.2023.899345

FIGURE 5

Input, target, and transformed data distributions for the base variable set with the addition of 1RJJ, for transforming data from SB1 and SB2 to the

signal region to create the background template, with the model trained on SB1 (3,200 ≤ mJJ < 3,400 GeV) and SB2 (3,600 ≤ mJJ < 3,800 GeV). The

data from SB1 (SB2) is transformed with a forward (inverse) pass of the CURTAINs model into the target region. The diagonal elements show the

individual features with the o� diagonal elements showing a contour plot between the two observables for the transformed and trained data.

TABLE 1 Quantitative agreement between the data distributions of the transformed data and the target data as measured by the AUC of the ROC curve

trained on the two samples, as measured for various levels of signal doping with a 200 GeV wide signal region.

SB1→SB2 SB2→SB1 SB1→OB1 SB2→OB2 SB1→SR ∪ SB2→ SR

0 signal 0.504 0.504 0.519 0.512 0.509

500 signal 0.503 0.503 0.518 0.506 0.506

667 signal 0.505 0.504 0.516 0.514 0.505

1,000 signal 0.499 0.502 0.520 0.502 0.512

8,000 signal 0.508 0.511 0.523 0.521 0.522

background template is produced with oversampling, with a

total of nine times the number of expected events in the

signal region. Two comparisons to CATHODE can be performed,

one using the same training windows as for CURTAINs,

which we refer to as CATHODE (local), and one using the

full invariant mass distribution outside the signal region, as

presented in Hallin et al. (2022), which we refer to as

CATHODE (full).

For reference, the methods are compared to a classifier trained

using an idealised background template and to a fully supervised

classifier. The idealised background template constructed using

true background events from the signal region, and the supervised
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FIGURE 6

Background rejection as a function of signal e�ciency (left) and signal improvement as a function of background rejection (right) for the di�erent

background template models (CURTAINs—red, CATHODE—blue, Eq-Idealised—green, Over-Idealised—dashed green) and a fully supervised classifier

(black). The sample with 3,000 injected signal events in used to train all classifiers in the signal region 3,300 ≤ mJJ < 3,700 GeV. The solid lines show

the mean value of fifty classifier trainings with di�erent random seeds. The uncertainty encompasses 68% of the runs either side of the mean.

FIGURE 7

The significance improvement as a function of decreasing signal purity (raw signal events) for the di�erent background template models

[CURTAINs—red, CATHODE (local)—blue, Eq-Idealised—green, Over-Idealised—dashed green] and a fully supervised classifier (black). All classifiers

trained in the signal region 3,300 ≤ mJJ < 3,700 GeV for varying levels of signal doping. The solid lines show the mean value of fifty classifier trainings

with di�erent random seeds. The uncertainty encompasses 68% of the runs either side of the mean.

classifier is trained to separate the signal data from the background

data using class labels. To construct the idealised background

dataset we either use an equal number of background data as there

are in the signal region (Eq-Idealised) to measure the performance

assuming we had access to a perfect model of the background

data, or the same number of data points as are produced with
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FIGURE 8

Background rejection as a function of signal e�ciency (left) and signal improvement as a function of background rejection (right) for the CURTAINs

(red), CATHODE (local) (blue, solid), and CATHODE (full) (blue, dashed) background template models compared to a supervised classifier (black). The

dashed CATHODE (full) model is trained using all data outside of the signal region, whereas the two solid lines are trained using the default 200 GeV

side-bands. All classifiers are trained on the sample with 3,000 injected signal events for the signal region 3,300 ≤ mJJ < 3,700 GeV. The lines show

the mean value of fifty classifier trainings with di�erent random seeds. The uncertainty encompasses 68% of the runs either side of the mean.

FIGURE 9

The dijet invariant mass for the range of signal regions probed in the

sliding window, from 3,300 to 4,600 GeV, for the case of zero

doping. Each signal region is 200 GeV wide and split into two

100 GeV wide bins. The dashed line shows the expected

background after applying a cut on classifier trained using the

background predictions from the CURTAINs (red), CATHODE (local)

(blue), and CATHODE (full) (green) methods at specific background

rejections. Three di�erent cut levels are applied retaining 20, 5, and

0.1% of background events, respectively. The cut values are

calculated per signal region using the background template.

the CURTAINs and CATHODE approaches (Over-Idealised), which

should approach the best possible performance for models which

can oversample.

The performance of the classifiers with the different methods

are shown for the doped sample with 3,000 injected signal events

(of which 2,214 are in the signal region) in Figure 6, comparing

the background rejection as a function of signal efficiency and

the significance improvement as a function of the background

rejection. In order tomaintain a fair comparison to the Eq-Idealised

classifier, which requires true background data from the signal

region for the background template, only half of the available data

in the signal region is used for training with the k-fold strategy for

all other approaches. The maximum significance improvement is

shown for a wide range of doping levels in Figure 7. This metric

is a good measure of performance for anomaly detection, rather

than the area under the ROC curve, as it translates to the expected

performance gain when applying an optimal cut on a classifier.

We can see that CURTAINs not only outperforms

CATHODE (local), but also approaches the performance of

the Over-Idealised and supervised scenarios. When using the

full range outside of the signal regions to train CATHODE (full)

the performance recovers and CURTAINs is only able to match

the performance at high levels of background rejection, as seen

in Figure 8. However, this demonstrates that CURTAINs is able

to reach a higher level of performance when trained on lower

numbers of events.

5.3. Application in a sliding window

As it is not possible to know the location of the signal events

when applying CURTAINs to data, the real test of the performance

and robustness of the method is in the sliding window setting.

Both CURTAINs and CATHODE (local and full) are used to

generate the background templates in a sliding window scan in the

range 3,000–4,600 GeV, with steps of 200 GeV and equal 200 GeV

wide signal regions. Classifiers are trained to separate the signal

region data from the background template, and cuts are applied to

retain 20, 5, and 0.1% of the background events.
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FIGURE 10

The dijet invariant mass for the range of signal regions probed in the sliding window, from 3,300 to 4,600 GeV, for the case of samples doped with

500 (top left), 667 (top right), 1,000 (bottom left), and 8,000 (bottom right) signal events. Each signal region is 200 GeV wide and split into two

100 GeV wide bins. The dashed line shows the expected background after applying a cut on classifier trained using the background predictions from

the CURTAINs (red), CATHODE (local) (blue), and CATHODE (full) (green) methods at specific background rejections. Three di�erent cut levels are applied

retaining 20, 5, and 0.1% of background events, respectively. The cut values are calculated per signal region using the background template.

These scans are performed for several levels of signal doping

and are shown in Figure 9 for the case where there is no signal

present, and in Figure 10 for doped samples with 500, 667, 1,000,

and 8,000 injected signal events. Each signal region is subdivided

into two bins of equal width in mJJ for the plot. The expected

background is determined by multiplying the original yield of each

bin by the chosen background retention factor.

In contrast to the CWOLA bump hunt approach introduced

in Collins et al. (2019), which uses the classifier trained in the

signal region to apply a cut on all events on the invariant mass

spectrum before performing a traditional bump hunt, we treat

each signal region as an independent region and do not apply the

classifiers outside of the regions in which they are trained. This

sliding window approach tests how the CURTAINs and CATHODE

approaches perform as the sideband windows used to train the

networks as well as the signal region transition between the

presence of signal, to signal in one of the sidebands as well as the

case where there is perfect alignment of signal in the signal region.

This approach does not test the ability of the trained classifiers to

extrapolate outside of the values of invariant mass used to train

them. Were they to be applied outside of the respective regions it is

expected sculpting of the invariant mass distribution would occur

after applying cuts on the classifier due to the strong correlation

between1RJJ andmJJ .

As can be seen from the sliding window scans in Figures 9,

10, using CURTAINs and CATHODE (full) we are able to correctly

identify the location of the signal events for even reasonably low

levels of signal. Where there are no or very few signal events

the yields after each cut do not deviate too far from expected

background. The corresponding significance of excesses seen in

each bin for three cuts on background efficiency are shown in

Figure 11. In the case where there is no signal injected into the

sample, both CURTAINs and CATHODE (full) have relatively low

local excesses reaching a 4σ deviation only in one bin at the 1%

background efficiency and not exceeding 3σ deviations for tighter

cuts when considering only statistical uncertainties on the yields in

each bin.

However, at lower levels of background rejection, significant

local excesses over the expectation are observed. At 5% background

efficiency a maximum local deviation is observed at 4σ for

CATHODE (full) and 5σ for CURTAINs. In the presence of signal

both CURTAINs and CATHODE (full) have observed excesses at
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FIGURE 11

Measured excesses in each of the signal regions probed in the sliding window, from 3,300 to 4,600 GeV, for the case of samples doped with 0 (left),

667 (middle), and 1,000 (right) signal events. Each signal region is 200 GeV wide and split into two 100 GeV wide bins. The solid, dashed, and dotted

lines show the probability of the observed excesses (p0) over the background after applying a cut on classifier trained using the background

predictions from the CURTAINs (red) and CATHODE (full) (green) methods at 1, 0.1, and 0.01%, respectively. The cut values are calculated per signal

region using the background template.

the signal mass peak for each cut level for the lower levels of

signal events, with CATHODE (full) approaches results in a more

prominent excess.

The CATHODE (local) approach yields an excess across the

whole spectrum in the absence of signal and for all levels of injected

signal. However, it also finds an excess under the signal peak in

the cases where signal is injected, which at higher levels of signal

exceeds that found by CURTAINs.

In an analysis a systematic excess over the expectation

calculated from the original yields per bin would not necessarily be

problematic, as the expectation could be determined from a side

band fit in mJJ after applying the cut. Additionally, these values

do not take any systematic uncertainties into account and only

consider statistical uncertainties on the number of events passing

each cut from the yields.

Although the ability to isolate the signal events when using

CURTAINs in the window scan decreases at low numbers of signal

events and signal purity, this is also seen for both idealised cases

in Figure 7 and suggests this as rather an area where the classifier

architecture and anomaly detection method need to be optimised.

The performance of CURTAINs in this setting could also be further

improved by optimising the binning used in the sliding window,

and the number of subdivisions within each signal region.

6. Conclusions

In this paper we have proposed a new method, CURTAINs, for

use in weakly supervised anomaly detection which can be used to

extend the sensitivity of bump hunt searches for new resonances.

This method stays true to the bump hunt approach by remaining

completely data driven, and with all templates and signal extraction

performed on a local region in a sliding window configuration.

CURTAINs is able to produce a background template in

the signal region which closely matches the true background

distributions.When applied in conjunction with anomaly detection

techniques to identify signal events, CURTAINs matches the

performance of an idealised setting in which the background

template is defined using background events from the signal region.

It also does not produce spurious excesses in the absence of signal

events.

As real data points are used with the CURTAINs transformer

to produce the background template, we avoid problems which

can arise from sampling a prior distribution leading to non perfect

agreement over distributions of features and their correlations. By

conditioning the transformation on the difference in input and

target mJJ , we also avoid the need to interpolate or extrapolate

outside of the values seen in training. Using this approach we

see CURTAINs is able to reach similar levels of performance in

comparison to state-of-the-art methods. CURTAINs delivers this

performance evenwhen usingmuch less training data, as seenwhen

using side-bands as opposed to the full data distribution outside of

the signal region.

Another key advantage of CURTAINs over other proposed

techniques is the ability to apply it to validation regions. By

transforming the side-bands data to other regions than the signal

region, validation regions can be defined in which the transformer

and classifier architectures can be optimised on real data. Here the

CURTAINs transformer can be validated and optimised by ensuring

the agreement between the transformed data and target data

distributions is as close as possible, and the classifier architecture

can be optimised to make sure it does not pick up on residual

differences between transformed and target data. In this paper,

only the former optimisation procedure was performed, with the

classifier architecture instead chosen for its robustness to variability

in initial conditions.

However, care must be taken to optimise the width of the signal

region when training the CURTAINs model to make sure that the

signal to background ratio is not constant across the side-band and

signal regions.
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It may be possible to extend CURTAINs to extrapolation tasks,

where a model would be trained on one control region and applied

to all other regions. This could allow one model to be trained per

bump hunt, or a model could be trained to extrapolate to the tails

of distributions, allowing these regions to be probed in a model

independent fashion. Thanks to its performance and ability to be

applied to a sliding window fit, CURTAINs is simple to apply to

current sliding window fits and should bring significant gains in

sensitivity in the search for new physics at the LHC and other

domains.

Data availability statement

Publicly available datasets were analyzed in this study. This data

can be found at: https://zenodo.org/record/4536377.

Author contributions

SK and DS: training, optimisation, and modelling studies. JR

and TG: conceptualisation. JR: strategy, approach, and editor. All

authors have read and agreed on the content this draft and are

accountable for the content of the work.

Funding

The authors would like to acknowledge funding through the

SNSF Sinergia grant called Robust Deep Density Models for High-

Energy Particle Physics and Solar Flare Analysis (RODEM) with

funding number CRSII5_193716, and the SNSF project grant

200020_181984 called Exploiting LHC data with machine learning

and preparations for HL-LHC.

Acknowledgments

The authors would like to thank Matthias Schlaffer, our

resident CATHODE Guru, for his invaluable input in establishing

a reliable baseline for comparisons and useful discussions, and

Knut Zoch for input on the initial studies and samples used.

Both Knut and Matthias are also thanked for their feedback on

this manuscript.

Conflict of interest

The authors declare that the research was conducted

in the absence of any commercial or financial relationships

that could be construed as a potential conflict of

interest.

Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

Supplementary material

The Supplementary Material for this article can be found

online at: https://www.frontiersin.org/articles/10.3389/fdata.2023.

899345/full#supplementary-material

References

Aguilar-Saavedra, J. A., Collins, J. H., andMishra, R. K. (2017). A generic anti-QCD
jet tagger. J. High Energy Phys. 11:163. doi: 10.1007/JHEP11(2017)163

Andreassen, A., Nachman, B., and Shih, D. (2020). Simulation assisted likelihood-
free anomaly detection. Phys. Rev. D 101:095004. doi: 10.1103/PhysRevD.101.095004

Ardizzone, L., Kruse, J., Wirkert, S., Rahner, D., Pellegrini, E.W., Klessen, R. S., et al.
(2019a). Analyzing Inverse Problems With Invertible Neural Networks. Available online
at: https://arxiv.org/abs/1808.04730 (accessed March 15, 2022).

Ardizzone, L., LÃijth, C., Kruse, J., Rother, C., and KÃűthe, U. (2019b). Guided
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