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Inflation is capable of significantly impacting monetary policy, thereby

emphasizing the need for accurate forecasts to guide decisions aimed at

stabilizing inflation rates. Given the significant relationship between inflation and

monetary, it becomes feasible to detect long-memory patterns within the data.

To capture these long-memory patterns, Autoregressive Fractionally Moving

Average (ARFIMA) was developed as a valuable tool in data mining. Due to the

challenges posed in residual assumptions, time series model has to be developed

to address heteroscedasticity. Consequently, the implementation of a suitable

model was imperative to rectify this e�ect within the residual ARFIMA. In this

context, a novel hybrid model was proposed, with Generalized Autoregressive

Conditional Heteroscedasticity (GARCH) being replaced by Long Short-Term

Memory (LSTM) neural network. The network was used as iterative model to

address this issue and achieve optimal parameters. Through a sensitivity analysis

using mean absolute percentage error (MAPE), mean squared error (MSE), and

mean absolute error (MAE), the performance of ARFIMA, ARFIMA-GARCH, and

ARFIMA-LSTM models was assessed. The results showed that ARFIMA-LSTM

excelled in simulating the inflation rate. This provided further evidence that

inflation data showed characteristics of long memory, and the accuracy of the

model was improved by integrating LSTM neural network.
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1 Introduction

Big data are datasets of huge size or complexity, beyond the capabilities of conventional

data-processing applications. While data with numerous entries holds higher statistical

power, those with more attributes or columns can exhibit a larger false discovery rate.

The term “big data” is now commonly used to describe the application of advanced

data analytics models to massive data, rather than referring to a specific quantity. These

models consist of predictive analytics, user behavior analysis, and other models that extract

value from big data. In numerous fields including Internet searches, fintech, healthcare

analytics, geographic information systems, urban informatics, and business informatics,

massive datasets consistently pose challenges for scientists, corporate executives, medical

practitioners, advertisers, and government officials.
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Inflation refers to a data mining phenomenon that poses

economic challenges for both governments and citizens in

developing nations, including Indonesia. The issue of inflation

represents a crucial indicator in preserving the stability of an

economy (DeLong, 1997). According to Bank Indonesia, inflation

can be defined as a general and sustained upsurge in the prices

of goods and services over a specific period. It is important to

note that an increase in the price of one or two goods alone

does not constitute inflation, except this increase extends to

other goods. When inflation escalates persistently and without

control, it transforms into hyperinflation. The repercussions of

hyperinflation reverberate negatively in the economic growth of

a nation and bear an impact on the socioeconomic conditions of

the populace. Additionally, this phenomenon complicates decision-

making for economic stakeholders in taking the next step. The

situation becomes further intricate when the domestic inflation

rate surpasses those of other countries, which subsequently exerts

pressure on the depreciating rupiah value. However, excessively

low inflation also raises concerns, as prolonged low inflation

can signal an economy operating below its potential capacity,

leading to decreased economic growth and limiting the scope of

monetary policies designed to bolster the economy. Inflation can

be stated to be short-term and long-term, hence, it necessitates

both anticipation and action to avert extreme highs and lows.

The key to maintaining inflation within manageable bounds lies

in the formulation of economic policies aimed at inflation control

(Rahman et al., 2020).

By considering various factors in monetary policy, Bank

Indonesia typically adjusts the benchmark interest rate in response

to projected deviations from the established inflation target. To

facilitate this forecast, predictions of inflation patterns play a vital

role in preempting unstable macroeconomic conditions (Hasenzagl

et al., 2022). These predictions often draw on mathematical

sciences, employing time series models to analyze the movement of

inflation data. Time series models arrange data chronologically and

leverage the presumed repetition of patterns from past periods into

the present and future. The purpose of time series model analysis

is to uncover patterns for modeling future events (Alyousifi et al.,

2021), identifying a variety of patterns that show to be influential

on the response variable (Wu et al., 2023), enhancing forecasting

accuracy and stability from the perspectives of noise distribution

and outliers (Yang et al., 2023), and exploring how a particular

model selection can be better applied to forecast the new data in

the future (Xu et al., 2023). Based on the abundant data and its

diverse attributes consisting of trends, seasonality, and cyclicality,

current values are often modeled based on past data exhibiting

inter-variable correlations, commonly through linear or nonlinear

models.

Time series data patterns are typically categorized into short-

term and long-term patterns. Short-memory patterned time series

data feature weak correlations within short periods. The Auto-

Regressive Integrated Moving Average (ARIMA) model serves to

capture these patterns, requiring data to be stationary. Stationarity

is achieved through differencing, where the differencing value (d)

is a non-negative integer. The ARMA model, which is a fusion

of the AR and MA models, combines autoregressive variables and

past residues to model variable movement. ARIMA model excels

in precise short-term forecasting and often indicates extended flat

modeling periods.

In some instances, time series data exhibit robust correlations

over a prolonged observation period. This is evident when

autocorrelation values in the Autocorrelation Function (ACF)

plot decline gradually over an extended span. In this aspect,

the differencing value (d) becomes a real number, which is

addressed by the Auto-regressive Fractionally Integrated Moving

Average (ARFIMA) model (Huang et al., 2022). In 1980, Granger

and Joyeux introduced ARFIMA model, an advancement of

ARIMAmodel capable of predicting both short and long-memory-

patterned time series data. This flexibility extends to the ability

of ARFIMA to predict data exhibiting short-term as well as long-

term memory patterns (Devianto et al., 2022). Subsequently, in

1981, Hosking examined the properties of long memory patterns in

both stationary and non-stationary ARFIMA models. The Geweke

and Porter-Hudak (GPH) model, which directly determines the

fractional order value of differencing (d) without prior specification

of significant AR andMAorders, offers a specificmodel for defining

the fractional order value of differencing (d).

In the context of time series modeling, the application of

the model hinges on the fulfillment of certain assumptions for

the residuals. These assumptions entail non-autocorrelation,

non-heteroscedasticity, and normality. Heteroscedasticity, a

phenomenon in the model, typically arises due to the random

fluctuations in the data, leading to fluctuating variance within the

model. Addressing this issue necessitates an advanced strategy,

as the variance in the model continues to fluctuate randomly. To

address this challenge, the classical time series model known as

the Generalized Autoregressive Conditional Heteroscedasticity

(GARCH) is employed. However, it remains crucial to uphold

the residual assumption. This model assists in estimating optimal

parameters for nonlinear models through alternative iterative

processes, resulting in accurate approximations of real values.

A nonlinear model involves employing numerical or iterative

processing on extensive data, enabling precise approximation

of actual values. Among the popular nonlinear models, the

neural network stands out. The neural network employs iterative

processing, starting with random weight adjustments, followed

by subsequent modifications to enhance initial weights (Yollanda

et al., 2018). During the training of substantial data, initial weights

are refined through the backpropagation model to correct errors.

This model is combined with classical time series using the integer

order model (ARIMA) and applied to counterbalance the residual

of ARIMA model, which includes the heteroscedasticity effect

(Devianto et al., 2023). In the domain of finance, the fractional

order of ARIMA, known as ARFIMA, anticipates abrupt stochastic

fluctuations within financial markets. In addition, it integrates

the dynamic aspects of deep learning through Long-Short-Term

Memory (LSTM) network (Bukhari et al., 2020).

LSTM model, belonging to the category of recurrent neural

network, effectively overcomes the challenge of vanishing gradients

that often arise in training. Its versatility allows for application

across various topics, including the intricate and volatile financial

market (Gajamannage et al., 2023), and specific cases such as asset

pricing in the Chinese stock market (Pan et al., 2023), due to

its ability to mitigate error propagation during iterations. Neural
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network also finds usefulness in predicting energy demand and

CO2 emissions (Javanmard et al., 2023). In this study, a fusion

of a multiobjective mathematical model with data-driven machine

learning algorithms enhances the accuracy of energy demand and

CO2 emissions forecasts in the transportation sector.

The implications for employing a statistical procedure, neural,

and combined techniques for time-series forecasting of findings in

the healthcare domain to forecast the expenditures of two different

pain medications are demonstrated by combining ARIMA, neural

network, and LSTM with the integer value of differencing

(Kaushik et al., 2020). According to the studies related study, the

suggested model requires to be verified by evaluating the residual

assumption using a classical time series autoregressive moving

average with either an integer or fractional differencing order.

Since the inflation data fluctuates randomly over time, the model

typically exhibits heteroscedasticity. This study makes use of a

long short-term memory neural network (LSTM) and generalized

autoregressive conditional heteroscedasticity (GARCH) to provide

some alternative suggested techniques to improve the sensitivity

of heteroscedasticity effects present in residual classical time series

data with long-memory patterns.

2 Materials and methods

2.1 Data source

The study included datasets of 162 monthly inflation records,

spanning from February 2009 to July 2022. The data source

was available on the Bank Indonesia website, specifically at

https://www.bi.go.id.

2.2 Long-memory time series of
autoregressive fractional integrated
moving average

Managing big data required employing numerical processing

to identify data patterns and approximate optimal parameters.

Various statistical models were used to address fluctuations rooted

in data patterns. An example of this model was time series analysis,

used to scrutinize data mined over time, often involving significant

data volumes. This model aimed to forecast future events and

comprehend underlying processes by studying data patterns and

trends. Time series analysis found applications in diverse fields,

including forecasting consumer demand, predicting stock market

shifts, and understanding economic indicators such as inflation and

unemployment trends. These models assisted in comprehending

trends, seasonality, and noise within data, using past data to predict

future values. Furthermore, time series analysis could predict the

impact of exogenous factors, namely governmental policy changes

or technological advancements. Various elements could have an

impact on a time series (Gulmez, 2023):

• Trend: Refers to an entire direction, whether ascending,

descending, or stable, that a time series displays over time.

• Seasonality: Denotes recurring trends within data, such as

heightened sales during holidays.

• Cyclicality: Implies the presence of long-term tendencies such

as economic booms and busts.

• Irregularity: Accounts for random or unforeseen fluctuations

in data.

• Exogenous factors: Entail external influences, namely

monetary policies, crises, or societal shifts.

To create a time series model incorporating long memory

elements, ARFIMA model follows a series of stages:

Step 1. Checking the stationarity of the data with respect to

variance. Let {Xt} be a time series data sequence. Since the data

are not stationary, data transformation was performed to obtain a

rounded value (λ) using Box-Cox transformation T. For example,

assuming data Xt is non-stationary regarding variance, it can be

transformed with the formula T(Xt) = (Xλ−1
t )/λ, where λ is the

transformation parameter. Stationarity is achieved when λ = 1

yields a rounded value process (Devianto et al., 2022).

Step 2. Checking the stationarity of the data with respect to

mean by using Augmented Dickey-Fuller (ADF) test. The random

walk equation with drift for the differenced-lag model is regressed

to be:

∇Xt = µ + δXt−1 +

k∑

i=1

φi∇Xt−i + et (1)

for ∇Xt = Xt − Xt−1, k is the number of lags, δ is the slope

coefficient, µ is a drift parameter, φi is parameter of random walk

equation, and et is white noise error term. The test statistic is used

as follows:

ADF =
δ̂

SE(δ̂)
(2)

for δ̂ as the estimated δ which is obtained by using ordinary least

squares and SE(δ̂) as the standard error of δ. The initial hypothesis

is δ = 0, which means that the data is not stationary. The criteria

for decision-making reject the initial hypothesis if the ADF value is

less than the test statistics in the table.

Step 3. As graphically, plotting the autocorrelation function

(ACF) of the transformed data in Step 1 to detect the presence of

a long-memory effect. If the ACF pattern is generated as a sine

function, there is a long-memory pattern data. As mathematically,

long-memory pattern data can be used the differencing parameter

d explained in Step 4.

Step 4. Estimating the differentiating parameters d using the

Geweke and Porter-Hudak model, denoted as d̂GPH with the

following formula (Devianto et al., 2022):

d̂GPH =

∑m
j=1(xj − x̄)(yj − ȳ)
∑m

j=1(xj − x̄)2
(3)

where yj = lnI(λj) and xj = −ln[2sin(
λj
2 )]

2. The I(λj) function

is a periodogram with a frequency of Fourier λj =
2π j
T , j =

1, 2, · · · ,m, and T is the number of observation data whilem is the

limit of the number of Fourier frequencies.

Step 5. Transforming the differential data using the obtained

d̂GPH values.

Step 6. Identifying potential ARFIMA model by combining

significant orders of autoregressive (AR) and moving average (MA)

models using PACF and ACF plots of stationary data, respectively.
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Step 7. Estimating parameters and testing the significance

of ARFIMA model. Parameter estimation is performed on each

model, followed by significance tests. Amodel is considered feasible

when its parameters are significant, with probability values smaller

than α = 5%.

Step 8. Selecting the best ARFIMAmodel based on the smallest

Information Criterion (AIC) value of Akaike.

Step 9. Testing the residual assumptions of the best ARFIMA

model, including non-autocorrelation and normality.

Step 10.Determining the best ARFIMAmodel equation and its

interpretation.

A time series Xt is classified as a sequence of white noise

when an uncorrelated random variable, adhering to a specific

distribution, maintains a constant mean of zero and a constant

variance of Var(Xt) = sigma2 along with Cov(Xt+h,Xt) = 0

for k 6= 0. Among classical time series, ARIMA combines AR

and MA models after integer differencing. ARIMA evolved into

ARFIMA, which integrates ARFIMA features. ARFIMA parallels

the structure of ARIMA but relies on fractional values for

differencing, as opposed to ARIMA integer differencing. Let φp(B)

as AR components, θq(B) as MA components, B as the operator of

backward shift, and (1 − B)dXt indicates the d-order differenced

stationary time series, the process is labeled ARFIMA(p, d, q)

(Devianto et al., 2023):

φp(B)(1− B)dXt = θq(B)εt (4)

with

φp(B) = (1− φ1B− φ2B
2 − · · · − φpB

p)

θq(B) = (1− θ1B− θ2B
2 − · · · − θqB

q)

where p, q, and B are the positive integer values.

ARFIMA model that had been fitted was then extended into

time series analysis to determine whether the residual assumptions

were met. It should be noted that these assumptions began with

autocorrelation and further consisted of heteroscedasticity and

normality. The initial hypothesis assumed that there was no linear

relationship in dependency within the residual ARFIMA model.

The statistic value QLB could be expressed as follows (Devianto

et al., 2023):

QLB = n(n+ 2)

k∑

i=1

ρ2
i

n− i
(5)

where n is the number of data, the sample auto-correlation

coefficient at lag k = 1, 2, 3, · · · ,K is denoted as ρ2
i , and lag length is

denoted as K. The initial hypothesis was rejected when the statistic

value was greater than the critical value or QLB > χ2
α(k − p − q).

On the other hand, the hypothesis could be rejected assuming the

probability value was less than the significance level.

The second assumption concerned the heteroscedasticity effect

using the Lagrange Multiplier (LM) test by White. The initial

hypothesis of the LM test assumed that the residual ARFIMAmodel

exhibited homoscedasticity, where the variance of this residual

model remained constant, allowing the random fluctuated data to

be ignored. The statistic value of the LM test was the product of the

determination coefficient value R2 and the sample size n, expressed

as follows:

LM = nR2 (6)

The LM test followed a chi-squared distribution with degrees

of freedom equal to k − 1, where k was the number of estimated

parameters. The initial hypothesis was rejected because the statistic

value was greater than the critical value LM > χ2
α(k− 1). However,

the hypothesis could be rejected when the probability value was less

than the significance level.

The final assumption was the normality test, where the initial

hypothesis stated that the residual skewness (S) and kurtosis (K)

of ARFIMA model matched a normal distribution with expected

values of zero. This was determined using the Jarque-Bera (JB) test,

and the statistics test of JB could be expressed as follows (Devianto

et al., 2023):

JB =
n

6

(
S2 +

(K − 3)2

4

)
(7)

where K and S are kurtosis and skewness, respectively. The

initial hypothesis was rejected since the statistic value was greater

than the critical value JB > χ2
α(2) or when the probability value

was less than the significance level of 5%.

When fitting ARFIMA model, potentially significant models

were selected, and the best model was selected. The goodness-

of-fit criteria such as AIC, BIC, and HQ were applied, using

the loglikelihood function to determine the best model. Let σ̂ 2
ε

represent the maximum likelihood estimator of σ 2
ε , k denoted

the number of estimated parameters, and n indicated the number

of observations. The equations for AIC, BIC, and HQ were

systematically written as follows:

AIC = n ln(σ̂ε
2)+ 2k (8)

BIC = n ln(σ̂ε
2)+ kln(n) (9)

HQ = n ln(σ̂ε
2)+ 2kln(ln(n)) (10)

The best model was selected based on the smallest value among

AIC, BIC, and HQ. Assuming there were two smallest values in any

of these criteria, a nonparametric model was required to determine

the smallest rank.

2.3 Improving volatility sensitivity with
classical generalized autoregressive
conditional heteroschedasticity

Time-series analysis involved four factors, namely trend,

seasonality, periodicity, or cycle, as well as irregular components,

all of which generally contributed to the variations in the data. In

1982, Engle introduced ARCH, assuming that the data variance

was influenced by past values. Let Q denote the number of

autoregressive terms in the model, t represents the ordinary least

squares variance obtained from the original regression model

Equation (4), αi stands for a parameter of ARCH, εt = σtet , and

et ∼ N(0, 1) with αi > 0. The variance assumption of ARCH and
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ARIMA in Equation (4) allowed ARCH(Q) to be stated as follows

(Devianto et al., 2023):

σ 2
t = α0 + α1ε

2
t−1 + · · · + αQε2t−Q (11)

for i = 0, 1, 2, · · · ,Q. While processing real data, ARCH often

produced higher orders, leading to an increase in the number

of estimated parameters. In order to replace GARCH model as

the preferred one, ARCH model was created. The residual et was

assumed to be homoscedastic since it represented the concept of

a time series, i.e., E(e2t ) = E(e2t |e
2
t−1, e

2
t−2, · · · ) = σ 2 for each

t. However, the variance of et fluctuated over time in GARCH

model, resulting in E(e2t |e
2
t−1, e

2
t−2, · · · ) = σ 2

t , which indicated

heteroscedasticity.

GARCH model required that the initialized data had constant

variances. In simpler terms, the fluctuations in the data did not

always have the same value at time t. An et process was considered

a GARCH(P,Q) process when it satisfied the following conditions:

σ 2
t = α0 +

Q∑

i=1

αiε
2
t−i +

P∑

j=1

βjσ
2
t−j (12)

where εt = σtet , et ∼ N(0, 1),Q > 0, P ≥ 0, αi ≥ 0, α0 > 0,

for i = 0, 1, 2, · · · ,Q and βj ≥ 0 for j = 1, 2, · · · , P and also∑Q
i=1 αi +

∑P
j=1 βj < 1.

The Maximum Likelihood Estimation (MLE) model was then

used to initially approximate GARCH parameters. White noise

with a mean value of 0 and a variance of σ 2 was thought to

make up the residual of ARIMA model. The parameters were

estimated using iterative procedures, such as Newton-Raphson,

after obtaining the log-likelihood function for n observed data

points. This model was used to solve the probability log function.

Consequently, an estimator that sufficiently converged for each

parameter was obtained.

2.4 Improving volatility sensitivity with
long short-term memory

In the context of big data analysis, it was possible to forecast

the future by identifying patterns in past data. Additionally, a

correlation existed between the variables and the historical data

or data residuals. The artificial neural network was a system

that mimicked the network of nerve cells in human and animal

brains (Yollanda et al., 2018). Furthermore, it consisted of a few

hidden layers that connected the input to the output layer. The

connections between two layers were defined by weights and biases,

also referred to as the coefficient of network. The construction of

the mathematical neural network model was generally depicted in

Figure 1 (Devianto et al., 2023).

Figure 1 showed the construction of neural network that

connected two layers through directed links of weights or biases to

determine the sign and strength of the input data. The input data xi,

representing x1, x2, · · · , xn was then calculated as a weighted sum of

its inputs on the hidden layer, inj. Each hidden unit j transformed

the input through the activation function f , yielding zj, expressed

as follows:

zj = f (inj) = f

(
n∑

i=0

xiwij

)
(13)

This result was then passed as input to other neurons and

the activation function f scaled the output zj into appropriate

ranges. The network architecture could be classified as feed-forward

(FFNN) and recurrent neural network (RNN), commonly used for

forecasting. In a feed-forward network, each input unit received

data from the layer below. Meanwhile, the outputs of a recurrent

network became inputs in the preceding layer. The recurrent

network created a dynamical system where inputs depended on the

initial values of previous inputs, in order to simulate a stable state

(Devianto et al., 2023).

The feed-forward neural networks (FFNN) require one or more

input unit(s) in processing in the hidden layer so that the results

will have the output unit. The output unit is then compared to

the observational or actual data as the supervised learning. In the

time series case, there is no explanation which variable that will

be the input or output units so that the time series model have

separated one dataset to be two or more dataset by using the

significant lag in the autocorrelation functions. Therefore, there is

one type of recurrent neural networks that can be used to process

the time series model. A common type of recurrent neural network

was LSTM, designed for analyzing time series data. LSTM was

equipped to handle long-term dependencies present in time series

data, ensuring outcomes depended on previous data values. The

LSTM model has the advantage of processing and predicting time

series events with long intervals and delays. It means that scientists

can use previous data to forecast new data in a few periods ahead.

It limits applications of FFNN to time series models. FFNN has to

receive input unit values before calculating the estimated output

unit.

In constructing the structural LSTM model, LSTM neural

network comprised input gates, memory cells, forget gates, and

output gates. These components processed information over

longer periods. The network could selectively store and retrieve

information as needed, regulated by these gates that controlled

the flow of data into and out of memory cells. The input gate

introduced new inputs to the cell, the forget gate maintained values

for later use, and the output gate determined the output of the cell.

Common tasks for which LSTM were employed included language

translation, speech recognition, and stock price prediction. While

RNN could learn long-term dependencies in data, it was impacted

by the vanishing gradient problem. LSTM addressed this issue by

using a set of gates to determine the data to retain and those

to discard. This allowed the model to retain more information

compared to RNN, achieved through gradient control (Haider

et al., 2019). A typical LSTM cell structure could be seen in Figure 2.

The mathematical expressions for the inner connections of the

gates in LSTM cell structure were as follows. Let f (t), i(t), c(t), and

o(t) as forget gate, input gate, modulation cell gate, and output gate,

respectively, with their activation functions of σf , σi, σc, and σo. In

the modulation cell gate, the input is updated at the present time

instant. All gates work on current input x(t) and previous values of

states h(t − 1). As further, the following steps show how to design

the Long Short-Term Memory (LSTM) neural networks:
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FIGURE 1

A diagram construction of mathematical neural network model.

FIGURE 2

A diagram construction of mathematical long short-term memory neural network model.

1. Load time series dataset X(t) into the networks as the current

input unit.

2. Normalize the dataset x(t). The scale of the input data impacts

LSTMs, especially since the sigmoid (default) or tanh activation

functions are employed. It is recommended to rescale the data to

the 0-to-1 range as new minimum and new maximum dataset,

respectively, also known as normalizing. The normalization of

the dataset can be expressed as follows:

x(t) =
X(t)−min(X(t)))

max(X(t)))−min(X(t)))
(newmax(X(t)))

−newmin(X(t))))+ newmin(X(t))) (14)

=
X(t)−min(X(t)))

max(X(t)))−min(X(t)))
(1− 0)+ 0

=
X(t)−min(X(t)))

max(X(t)))−min(X(t)))
(15)

3. Split the dataset to be training and testing data. The sequence of

values is important since it deals with time series data. You are

able to split the ordered dataset into train and test datasets using

a simple method. The networks separated the dataset into 70%

for training the model and 30% for validating the testing data

against the training data.

4. Reshape the training and testing data as input units (training

X and testing X) and as output unit (training Y and testing X)

based on the significant lag in autocorrelation function or first

lag as the default.

5. Design and fit the LSTM neural networks. In this step, the

number of iterations, input unit, hidden layers and their units,

and output units are determined. The default sigmoid activation

function is used for the LSTM blocks or units.

6. Reproduce the optimal weights for each unit. Let Wjh,Wjx, and

Wj0 as the weights for previous hidden unit, input unit, and bias,

respectively for j = f , i, c̃ and o. The forget and input gates are

calculated as follows (Yu et al., 2019):

f (t) = σf
(
Wfhh(t − 1)+Wfxx(t)+Wf 0

)
(16)

i(t) = σi
(
Wihh(t − 1)+Wixx(t)+Wi0

)
(17)
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FIGURE 3

Plot of inflation data that starting from February 2009 until July 2022.

The modulation cell gate value was calculated as:

c̃(t) = σc̃
(
Wc̃hh(t − 1)+Wc̃xx(t)+Wc̃0

)
(18)

c(t) = f (t)c(t − 1)+ i(t)c̃(t) (19)

The current cell state, current input, and previous state of

the cell were used to control the output gate. The updated output

and hidden cell state were given as follows:

o(t) = σo
(
Wohh(t − 1)+Woxx(t)+Wo0

)
(20)

h(t) = o(t)σh(c(t)) (21)

The design of deep network generally involved multiple

hidden layers. To achieve the best results in the proposed

work, several LSTM hidden layer topologies were evaluated. The

optimal weights are obtained after optimizing the function.

7. Validate the LSTM neural networks model. The LSTM model

is evaluated in this step to determine whether it is proposed

or requires to be improved. If the error of the training data

is greater than the error of the testing data, the processing is

complete. However, iterations are continued if the training data

has a smaller error than the testing data. It is necessary to

determine whether the LSTM model can recognize unexpected

or new data.

8. Calculate the evaluation model of Mean Squared Error (MSE),

Mean Absolute Percentage Error (MAPE), and Mean Absolute

Error (MAE).

2.5 Model evaluation

In modeling, evaluation criteria were used to assess how well

it predicted output values from input data (Gulmez, 2023). The

Mean Squared Error (MSE) measured the gap between actual

values and projected values. It was calculated by averaging squared

differences between expected and actual numbers. A lower MSE

value indicated a more accurate model.

MSE =
SSE

n
=

∑n
t=1(yt − ŷt)

2

n
(22)

The accuracy of a model was quantified by the Mean Absolute

Percentage Error (MAPE), expressed as a percentage. It was

computed by dividing the absolute difference between expected and

actual values by the actual value, then averaging these percentages

and calculating the difference between predicted and actual values.

A lower MAPE number indicated better real-world prediction by

the model.

MAPE =
1

n

N∑

t=1

|yt − ŷt|

yt
× 100% (23)

Anothermodel tomeasure the gap between expected and actual

values was the Mean Absolute Error (MAE). This was calculated

by finding the absolute difference between expected and actual

numbers, and then taking their average. The MAE statistic also

assessed the model accuracy, with lower MAE values indicating

higher results.

MAE =
1

n

N∑

t=1

|yt − ŷt| (24)
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TABLE 1 Augmented Dickey-Fuller test.

Critical value
ADF test

Statistics value p-value

1% :−3.4722

5% :−2.8799 −2.4232 0.1353

10% :−2.5766

Lag order: 2.

After calculating the optimalmodel, the ratio of sums of squares

of regression to sums of total squares determined the coefficient R2.

This measurement ranged from 0 to 1, and the value of R2 close to 0

indicated the estimated model did not fit well, while a value close to

1, implied it was well-fit. Let y be the mean of the dataset yi, where

i = 1, 2, · · · , n. R2 was calculated as follows:

R2 =

∑n
i=1(ŷi − ȳ)2∑n
i=1(yi − ȳ)2

(25)

The value of R2 represented the amount of variance in the

response variable explained by the predictor variable. Furthermore,

it represented the squared correlation between observed values yi
and anticipated values ŷi based on data processing.

3 Main results

This study used 162 data points of inflation in Indonesia on

a monthly basis. This section involved building a long-memory

pattern of ARFIMA model, enhancing volatility residual using

LSTM model, and evaluating the preferred model using certain

criteria.

3.1 Building long-memory pattern of
ARFIMA model

In this subsection, the modeling process was initiated with

the initial step of identifying the movement of inflation data. The

inflation data model with a monthly period was graphically shown

in Figure 3.

Based on Figure 3, it could be concluded that the inflation

data pattern for each period exhibited free fluctuations. Since

the inflation data did not fluctuate around a constant mean

and variance, the data were not stationary concerning mean and

variance values. To address this non-stationarity in time series

data regarding variance, data transformation was performed using

the Box-Cox transformation. The first step was determining the

rounded value (λ). Based on the transformation parameter formula,

the value of λ was −14.57178, indicating non-stationarity with

respect to variance. Therefore, a second-stage transformation was

conducted with a λ value of 1, rendering the inflation data

stationary regarding variance. The subsequent step was to check

whether the data were stationary concerning mean values using the

Augmented Dickey-Fuller test, shown in Table 1.

From Table 1, the value of the statistic exceeded the critical

value at the 5% significance level, implying that the data were not

stationary concerning the mean value. This was further supported

by the probability value of 0.1353, which was higher than the 5%

significance level. To determine the order differencing of fractional

or integer, the identification pattern used the Autocorrelation

Function (ACF) to ascertain the presence of long-memory terms

as shown in Figure 4.

Figure 4 showed a gradual decrease in data over time, indicating

the presence of a long-memory pattern and suggesting a fractional

order differencing for the model. Mathematically, differencing with

an order value of d was required to make the data stationary

concerning the mean, estimated using the Geweke Porter-Hudak

(GPH) model. The order model determined by the GPHmodel was

d̂GPH = 0.4941. As d̂GPH = 0.4941 was <0.05, the data exhibited

a long-memory effect and could be modeled with ARFIMA.

Subsequently, the order of ARFIMA model was determined by

identifying the number of significant lags in the ACF and PACF

plots, as shown in Figure 5.

Based on Figure 5, the ACF coefficient reached a significant

value at a lag of 5, while the PACF coefficient reached a significant

value at a lag of 2. This suggested the possibility of forming an

ARFIMA model by combining a maximum lag of 2 for parameter

p and a maximum lag of 5 for parameter q, along with a dGPH
value of 0.4941. Furthermore, the parameters for each model were

estimated and from the results, a significance test was conducted.

The probability values for each model were shown in Table 2. A

model was considered significant when the probability value of its

parameter was <0.05.

Table 2 showed that the models ARFIMA(0, 0.4941, 1),

ARFIMA(0, 0.4941, 2), ARFIMA(0, 0.4941, 3), ARFIMA

(0, 0.4941, 4), ARFIMA(1, 0.4941, 0), ARFIMA(1, 0.4941, 1),

and ARFIMA(1, 0.4941, 3) were significant and suitable for

building an ARFIMA model. However, not all significant models

were applied in the subsequent steps. In order to identify the

optimal model, a comparison was made between the AIC and

BIC values. The evaluation of these values in Table 2 for the

seven models revealed that the ARFIMA(1, 0.4941, 1) showed

the lowest AIC and BIC values among the available alternatives.

Consequently, it can be stated that the ARFIMA(1, 0.4941, 1)

appeared as the most favorable choice.

Relying solely on model selection was insufficient to confirm

that ARFIMA(1, 0.4941, 1) adequately fulfilled the necessary

conditions as a time series. This led to the examination of the

residual assumption of the ARFIMA(1, 0.4941, 1). Table 3 showed

a test of residual assumptions for ARFIMA(1, 0.4941, 1).

Upon reviewing Table 3, it became evident that the p-value

of the autocorrelation test had surpassed 0.05 at the 91st lag,

indicating the absence of correlation among residuals. However, in

the heteroscedasticity and normality tests, the p-values were below

0.05. This suggested the presence of heteroscedasticity or volatility

effects on the residuals, necessitating their adjustment. The

normality test could be overlooked due to the rapid fluctuations

in the time series data. Therefore, ARFIMA(1, 0.4941, 1) was

established as the best model with the following equation:

(1− B)dXt = 81Xt−1 + θ1εt−1 + εt

(1− B)0.4941Xt = 0.6140Xt−1 + 0.3218εt−1 + εt
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FIGURE 4

ACF plot of inflation data exhibiting variance stationarity.

FIGURE 5

Plot of autocorrelation and partial autocorrelation function.

Frontiers in BigData 09 frontiersin.org

https://doi.org/10.3389/fdata.2023.1282541
https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org


Arif et al. 10.3389/fdata.2023.1282541

TABLE 2 The significant estimated parameters of the ARFIMA model with their AIC or BIC value.

Model
Estimation parameter Model selection

Parameter Estimate Statistic Pr(> |z|) AIC BIC

ARFIMA(0, 0.4941, 1) θ1 [MA(1)] −0.7032 −15.0857 < 2.22e-16 −1653.5420 −1641.1900

ARFIMA(0, 0.4941, 2)
θ1 [MA(1)] −0.9077 −12.5615 < 2.22e-16

−1675.3520 −1659.9100

θ2 [MA(2)] −0.3414 −5.4321 6.4070e-08

ARFIMA(0, 0.4941, 3)

θ1 [MA(1)] −0.9137 −11.5841 < 2.22e-16

−1678.3420 −1659.8200θ2 [MA(2)] −0.4605 −5.3404 1.0573e-07

θ3 [MA(3)] −0.1701 −2.2116 0.0278

ARFIMA(0, 0.4941, 4)

θ1 [MA(1)] −0.9319 −11.7777 < 2.22e-16

−1681.1090 −1659.5000
θ2 [MA(2)] −0.5003 −4.7312 2.4497e-06

θ3 [MA(3)] −0.2863 −3.1530 0.0017

θ4 [MA(4)] −0.1724 −2.2212 0.0270

ARFIMA (1, 0.4941, 0) 81 [AR(1)] 0.7571 −14.4049 < 2.22e-16 −1681.1800 −1668.8300

ARFIMA(1, 0.4941, 1)
81 [AR(1)] 0.6141 −7.2804 4.5617e-13

−1686.4910 −1671.0500

θ1 [MA(1)] −0.3212 −3.0764 0.0021

ARFIMA(1, 0.4941, 3)

81 [AR(1)] −0.8938 −12.1332 < 2.22e-16

−1674.3120 −1652.7000
θ1 [MA(1)] −1.9758 −17.0232 < 2.22e-16

θ2 [MA(2)] −1.4138 −9.1893 < 2.22e-16

θ3 [MA(3)] −0.4371 −5.5881 7.6217e-12

After obtaining ARFIMA, the presence of a heteroscedasticity

effect in the residual ARFIMA prompted the need for an

improved model to address this issue. Sections 3.2 and 3.3

focused on alternative models for addressing heteroscedasticity

effects, including the linear model of Generalized Autoregressive

Conditional Heteroscedasticity (GARCH) and nonlinear model of

Long-Short Term Memory (LSTM).

3.2 Improving volatility residual ARFIMA
using GARCH

According to the residual assumptions of ARFIMA(1, 0.4941, 1)

shown in Table 3, the heteroscedasticity assumption had not been

met. Consequently, an advanced model was necessary to enhance

ARFIMA and minimize variance in the residuals. One traditional

time series, GARCH, had been developed to counteract the random

fluctuating variance or heteroscedasticity impact. The creation of

a GARCH involved using ACF and PACF charts to determine the

order of the model. Figure 6 showed the ACF and PACF charts for

GARCH.

Figure 6 showed the significance of the ACF and PACF

charts at lag 2. The initial conjecture for model orders P

and Q had been combinations of 2 and 0, respectively. Eight

potential models could be constructed using combinations

includingGARCH(0,1), GARCH(0,2), GARCH(1,0), GARCH(1,1),

GARCH(1,2), GARCH(2,0), GARCH(2,1), and GARCH(2,2). The

significant parameters had been identified based on the p-value,

which had been lower than the significance level after estimating

parameters for possible models using combinations from the

TABLE 3 Residual assumption test of ARFIMA (1, 0.4941, 1) model.

Residual assumption

Statistic χ2 p-value

Homoscedasticity 11.1380 0.0038

Autocorrelation [0.1114, 3.8949] >0.05

Normality 247.6700 <2.2e-16

ACF and PACF charts. Among these combinations, GARCH(0,1),

GARCH(0,2), GARCH(1,0), GARCH(1,1), and GARCH(2,0) had

been relevant parameters for constructing GARCH. Table 4 showed

the estimated parameters for these models, along with their AIC

and BIC values.

The optimal model was determined by selecting those with the

lowest AIC or BIC value from among several potentially significant

ARFIMA model. The smallest values for AIC, BIC, and HQ

were identified from Table 4 as GARCH(1, 0), GARCH(2, 0), and

GARCH(1, 0), respectively. Since GARCH(1, 0) had the lowest AIC

and HQ values, it was selected to enhance the residual ARFIMA

model and address the issue of volatility. The residual GARCH(1,

0) ARFIMA(1, 0.4941, 1) model could be expressed as follows:

σ 2
t = α1ε

2
t−1 + ǫ∗t = 0.9989ε2t−1 + ǫ∗t (26)

where εt = σtet , et ∼ N(0, 1), and ǫ∗t as the residual of the

GARCH model. By combining the ARFIMA and GARCH models,

this new model of ARFIMA(1, 0.4941, 1)-GARCH(1,0) served as a

potential alternative for forecasting future inflation rates.
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FIGURE 6

The ACF and PACF chart for determining the order of GARCH model.

TABLE 4 The significant estimated parameters of the GARCHmodel with their AIC or BIC value.

Model
Estimation parameter The best model selection

Parameter Estimate z-value Pr (> |z|) AIC BIC HQ

GARCH(0,1) β1 0.9880 809.1039 0.0000 −6.9013 −6.8631 −6.8858

GARCH(0,2)
β1 0.4433 10.2208 0.0000

−6.8736 −6.8165 −6.8504

β2 0.5329 12.4415 0.0000

GARCH(1,0) α1 0.9989 20.9141 0.0000 −7.0468 −7.0087 −7.03137

GARCH(1,1)
α1 0.7335 4.0984 4.1600e-05

−7.0373 −6.9802 −7.0141

β1 0.2655 6.4339 1.2400e-10

GARCH(2,0)
α1 0.9905 5.2035 1.9600e-07

−7.0506 −6.9934 −7.0274

α2 0.0085 1.9832 0.04735

3.3 Improving volatility residual ARFIMA
using LSTM

After fitting ARFIMA to the long-patterned inflation

data series, efforts were directed toward improving the

heteroscedasticity of the model by addressing the residual.

Visual diagnosis could be used to identify the presence of the

heteroscedasticity effect. Outlier data indicated that an advanced

model was necessary to adjust the effect due to data variability.

Modifying the residual heteroscedasticity effect of ARFIMA was

essential. The persistent vanishing/exploding gradient problem

resulting from long-term dependencies, even with substantial

data, posed a challenge due to the random fluctuation in residuals.

Consequently, the application of LSTM neural network was

deemed necessary (Shewalkar et al., 2019).

The original residual of ARFIMA initially applied to inflation

data from February 2009 to July 2022 was shown in Figure 7. This

presentation aimed to provide insights into the fluctuation patterns

of the residual model.

Analysis of Figure 7 showed that the residual ARFIMA model

continued to exhibit considerable fluctuations, indicating the

persistence of volatility in the residual data. However, the residual
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FIGURE 7

Historical residual of ARFIMA model.

ARFIMA became stationary concerning the mean value, with the

data fluctuating around zero. This was the reason a nonlinear

model was considered for improving the residual data of ARFIMA.

The performance level would then be compared with the linear

GARCH discussed earlier. Figure 8 showed the ACF and PACF of

the processed data.

The ACF and PACF plots in Figure 8 showed a significant

impact at the twelfth lag. This observation implied that the

inflation in each year was dependent on the value of the next

year. Consequently, a preferred model aimed at mitigating the

heteroscedasticity effect would involved employing 12 as the

number of significant lags. To enhance the residual of ARFIMA,

LSTM neural network, which was a nonlinear model, would be

applied. This model included training the network on 80% of

the dataset and testing it on the remaining 20% to evaluate

performance. Parameter settings for LSTM model were clearly

shown in Table 5.

During the data processing, themodel loss for each training and

testing data was shown in Figure 9.

Figure 9 showed the training process, which exhibited a

substantial decrease in error from 0.45 to ∼0.10 on LSTM neural

network. However, during testing, the output error proved to be

lower than those observed during training. The testing process

indicated a strong reduction in the output error from 0.42

to ∼0.05, surpassing the performance of the training process.

Consequently, validation suggested that the error in testing

would be smaller compared to the training. Based on the result,

the constructed LSTM neural network effectively recognized

new data and reached the actual values through numerical

processing.

In determining the sensitivity of random initial weights of

LSTM model and parameters of GARCH model, five random

experiments will be executed. The results of five experiments will

be shown in following Table 6.

Table 6 shows sensitivity random initial weights against the

actual data. Based on Table 6, all five experiments has the values that

approach measures of dispersion actual values: mean, variance, or

standard error. It concludes that LSTM has the best performance to

capture the long-pattern data and fluctuation of the inflation data

because ARFIMA-LSTM has better performance than ARFIMA-

GARCH to approach the measures of dispersion inflation data. The

results also show that the ARFIMA-GARCH doesn’t change for

each experiments since this hybrid model use Newton Raphson to

approach the optimal parameters using high dimensional matrices.

3.4 Evaluating the volatility model

After adjusting the heteroscedasticity effect within the residual

ARFIMA, a comparison of ARFIMA-GARCH and ARFIMA-LSTM

models was conducted to evaluate their performance. Figure 10

graphically showed this comparison, including the actual inflation

rate data, ARFIMA(1, 0.4941, 1), ARFIMA(1, 0.4941, 1)-LSTM, and

ARFIMA(1, 0.4941, 1)-GARCH(1, 0). These four representations

were respectively depicted in blue, black, red, and purple. A model

that closely associated with the actual value and accurately tracked

its movements would likely be more accurate.

The black, red, and purple lines in Figure 10 represented

ARFIMA, ARFIMA-LSTM, and ARFIMA-GARCH models,

respectively. These lines smoothly estimated the blue line (actual
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FIGURE 8

The ACF and PACF plot of residual data of ARFIMA model.

value) using a numerical model to imitate and recognize the actual

value. This indicated that the improved models represented by the

red and purple lines closely approximated the blue line, surpassing

the accuracy of the black line. Essentially, the red line performed

better than the purple line in estimating the blue line. In other

words, the sensitivity of residual data, representing volatility data,

could be effectively handled through the application of numerical

models, specifically LSTM neural network. The validity of this

statement was supported by evaluating the model using metrics

such as MSE, MAE, and MAPE. A comparison between ARFIMA

and ARFIMA-LSTM could be seen in Table 7.

From Table 7, ARFIMA-LSTM model yielded the smallest

values for all three evaluation criteria. This outcome suggested that

employing the numerical model of LSTM neural network enhanced

and refined the predicted inflation values. After adjusting the long

memory pattern of inflation data, the residuals of ARFIMA went

through further processing using LSTM to address the vanishing

gradient issue inherent in ARFIMA volatility component, often

referred to as heteroscedasticity effects. Consequently, the preferred

LSTM neural network effectively improved the heteroscedasticity

issue of the classical ARFIMA. Mitigating the impact of

heteroscedasticity was achieved through either linear or nonlinear

models (Devianto et al., 2023). The application of GARCH served

as a linear model, while using the Feed Forward Neural Network

(FFNN) represented the nonlinear. Among the models, FFNN

appeared to be the most effective for addressing heteroscedasticity

TABLE 5 Parameter settings for LSTMmodel.

Parameters Values

Total layers 4

The number of lags 12

The number of neurons (16, 32, 64, 128)

Learning rate 0.001

Optimization approach Adam

Size of batch 32

Total repetition (epochs) 300

Training data 118

Testing data 44

when compared to GARCH and hybrid GARCH-FFNN. The

results in Table 7 also showed that the neural network employing

LSTM outperformed the classical GARCH in terms of nonlinear

modeling. The same scenario is also obtained in the financial

market, where the rapid development of artificial intelligence

(LSTM) allows for a more accurate prediction of financial market

volatility than the baseline model of GARCH (Liu et al., 2022). The

results also underscored the optimal performance achieved through

the fusion of the neural network and ARFIMA, particularly when
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FIGURE 9

Validation error.

TABLE 6 Sensitivity evaluation inflation model of Indonesia.

Experiments
ARFIMA-GARCH ARFIMA-LSTM

Mean Variance Standard error Mean Variance Standard error

Actual data 0.0428 0.0004 0.0193 0.0428 0.0004 0.0193

1. 0.0406 0.0003 0.0171 0.0427 0.0004 0.0191

2. 0.0406 0.0003 0.0171 0.0458 0.0004 0.0190

3. 0.0406 0.0003 0.0171 0.0428 0.0004 0.0189

4. 0.0406 0.0003 0.0171 0.0457 0.0004 0.0190

5. 0.0406 0.0003 0.0171 0.0438 0.0004 0.0190

applied to inflation data. The assessment was based on metrics

including MSE, MAE, and MAPE.

Based on Table 7 that tells about inflation data in Indonesia,

the United States inflation model is also built employing

ARFIMA-GARCH and ARFIMA-LSTM. Analogically, the inflation

evaluationmodels in the United States are shown in Table 8. Table 8

represents the evaluation model of ARIMA, ARIMA-GARCH, and

ARIMA-LSTM models of inflation data. Based on Table 8, the

ARIMA-LSTM is still having the best performance in all proposed

model of inflation data in United States. However, the ARIMA-

GARCH does not give the better performance than the classical

model of ARIMA in adjusting the error but it can do adjustment

of the hetroscedasticity effect.

Based on these two cases about the modeling of inflation data in

Indonesia andUnited States, the hybridization between the classical

model and LSTM method gives the best performance in adjusting

the heteroscedasticity effects and also the error of the classical

model of ARFIMA for inflation data in Indonesia and ARIMA for

inflation data in United States. In addition, the fractional time series

datamodeling can be applied if the series data has the long-memory

pattern data.

4 Conclusion

In conclusion, this paper proposed an enhanced sensitivity

model by incorporating Long Short-Term Memory (LSTM)

neural network and Generalized Autoregressive Conditional

Heteroscedasticity (GARCH) into a long-memory model of

ARFIMA. To achieve stability, the GARCH model will reconstruct

the volatility in residual of ARFIMA using numerical processing

of Newton Raphson and the LSTM will reconstruct the volatility in
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FIGURE 10

Comparison between actual data of inflation and ARFIMA-LSTM model.

residual of ARFIMAusing the adjustment of random initial weights

until the threshold error is obtained. Recognizing the limitations

of the classical long-memory ARFIMA in accurately predicting

inflation, this study underscored the necessity for ARFIMA-LSTM

and ARFIMA-GARCHmodels.

The proposedmodels, ARFIMA-LSTM andARFIMA-GARCH,

are then compared by using Mean Absolute Error (MAE), Mean

Square Error (MSE), andMeanAbsolute Percentage Error (MAPE).

The results show that the ARFIMA-LSTM and ARFIMA-GARCH

improve the error and also the heteroscedasticity effect of the

classical ARFIMA model. In addition, the advantages of ARFIMA-

LSTM are to achieve of the stability by learning the previous

data with the dynamical system will increase the complexity in

processing the networks, to approximate the gradient of ARFIMA

through numerical computations until a defined threshold error

was met, to retain information and patterns in residual data caused

LSTM to effectively mitigate the heteroscedasticity issue present

in ARFIMA. Despite capturing the long-pattern data inherent

in inflation, the ARFIMA model does not adequately optimize

inflation prediction. This led to the investigation of a nonlinear

solution to the gradient problem. The method included using

the LSTM, which is known for its ability to retain information

and patterns in residual data. Due to this implementation, LSTM

effectively mitigated the heteroscedasticity problem in ARFIMA.

As a result, the model handled the vanishing gradient problem,

allowing the LSTMneural network to learn and bridge considerable

temporal gaps even spanning more than 1,000 discrete time steps.

However, the randomness of initially weights and the number

of iterations persist the limitations of the ARFIMA-LSTM model,

with the number of iterations increasing as the threshold error

of the networks decreases. It will require an extended period to

determine a suitable weighting parameter. Furthermore, because

TABLE 7 Evaluation inflation model in Indonesia.

Model MAE MSE MAPE

ARFIMA 0.0063 5.8901 e-05 16.4297

ARFIMA-GARCH 0.0043 4.0726 e-05 9.7766

ARFIMA-LSTM 0.0039 3.3326 e-05 9.5185

TABLE 8 Evaluation inflation model in United States.

Model MAE MSE MAPE

ARIMA 0.0015 4.4778E-06 8.3694

ARIMA-GARCH 0.0023 12.9270E-06 13.0368

ARIMA-LSTM 0.0012 3.5897E-06 6.8719

the initial weights are random, the ideal parameters do not have

the same values across experiments, necessitating validation of the

training data while developing networks. If the error of the training

data is less than the error of the testing data, the networks are

required to be stopped and the processing repeated until the error

of the training data is more than the error of the testing data to

ensure that the networks can recognize the new data using the

obtained model of ARFIMA-LSTM.
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