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Integrating geometries of ReLU
feedforward neural networks

Yajing Liu1†, Turgay Caglar2*, Christopher Peterson1 and

Michael Kirby1

1Department of Mathematics, Colorado State University, Fort Collins, CO, United States, 2Department of

Computer Science, Colorado State University, Fort Collins, CO, United States

This paper investigates the integration of multiple geometries present within a

ReLU-based neural network. A ReLU neural network determines a piecewise

a�ne linear continuous map, M, from an input space R
m to an output space

R
n. The piecewise behavior corresponds to a polyhedral decomposition of Rm.

Each polyhedron in the decomposition can be labeled with a binary vector

(whose length equals the number of ReLU nodes in the network) and with

an a�ne linear function (which agrees with M when restricted to points in

the polyhedron). We develop a toolbox that calculates the binary vector for a

polyhedra containing a given data point with respect to a given ReLU FFNN.

We utilize this binary vector to derive bounding facets for the corresponding

polyhedron, extraction of “active" bits within the binary vector, enumeration of

neighboring binary vectors, and visualization of the polyhedral decomposition

(Python code is available at https://github.com/cglrtrgy/GoL_Toolbox). Polyhedra

in the polyhedral decomposition of R
m are neighbors if they share a facet.

Binary vectors for neighboring polyhedra di�er in exactly 1 bit. Using the

toolbox, we analyze the Hamming distance between the binary vectors for

polyhedra containing points from adversarial/nonadversarial datasets revealing

distinct geometric properties. A bisection method is employed to identify sample

points with a Hamming distance of 1 along the shortest Euclidean distance

path, facilitating the analysis of local geometric interplay between Euclidean

geometry and the polyhedral decomposition along the path. Additionally, we

study the distribution of Chebyshev centers and related radii across di�erent

polyhedra, shedding light on the polyhedral shape, size, clustering, and aiding in

the understanding of decision boundaries.

KEYWORDS

ReLU feedforward neural networks, binary vectors, polyhedral decomposition,

geometries, Chebyshev center, Hamming distance

1 Introduction

ReLU feedforward neural networks (FFNNs) exhibit a number of interesting local

and global geometric properties. These networks decompose the input space into convex

polyhedra and assign to each data point within the same polyhedron a common linear

affine function. This polyhedral decomposition offers a fundamental geometric framework,

enabling researchers to comprehend the network’s partitioning and modeling of the input

space. By investigating these geometric properties, including the decomposition of the input

space and the counting of linear regions, researchers can gain profound insights into the

expressive power, generalization abilities, and limitations of the network. The following

sections will present a thorough literature review focusing on the key aspects that have been

extensively examined.
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The exploration of neural networkmappings, which encompass

diverse architectures like convolutional neural networks, residual

networks, skip connected networks, and recurrent neural networks,

as max-affine spline operators, has been extensively investigated

by Balestriero and Baraniuk (2018). Sattelberg et al. (2020)

built intuition on how the polyhedral decomposition acts and

both how they can potentially be reduced in number and how

similar structures occur across different neural networks. The

number of polyhedra present in the input space, or within a

bounded region thereof, serves as a measure of the network’s

expressivity and complexity. Bounds, both upper and lower, on

the maximum number of attainable polyhedra for a given ReLU

FFNN architecture can be found in multiple studies such as

Pascanu et al. (2013), Montufar et al. (2014), Raghu et al. (2017),

Arora et al. (2018), Serra et al. (2018), Hanin and Rolnick (2019),

Hinz and van de Geer (2019), and Safran et al. (2022). In an

alternative approach, Wang (2022) investigated local properties of

the polyhedra, such as inspheres, hyperplane directions, decision

boundaries, and the relevance of surrounding regions, to analyze

the behavior of neural networks. Masden (2022) has given a

full encoding of the canonical polyhedral complex across all

dimensions.

Various algorithms in Xiang et al. (2018), Yang et al. (2020),

and Xu et al. (2021) have been devised to compute the precise

polyhedral decomposition of the input space by employing

a layer-by-layer linear inequality solving approach. For larger

decomposition instances, an efficient method proposed by Vincent

and Schwager (2021) and Liu et al. (2023), is available, which

systematically enumerates all polyhedra within the input space by

traversing the neighbors of each polyhedron.

Several studies have delved into the intricate geometric

properties of ReLU feedforward neural networks. Notably, Zhang

et al. (2018) established a profound connection between ReLU

FFNNs and tropical geometry, showcasing their equivalence to

tropical rational maps. Ergen and Pilanci (2021) focused their

attention on finite-width two-layer ReLU networks and revealed

that optimal solutions to the regularized training problem can be

characterized as extreme points within a convex set, capitalizing

on the advantageous attributes of convex geometry. Additionally,

Novak et al. (2018) conducted meticulous sensitivity analyses on

trained neural networks, scrutinizing the input-output Jacobian

norm and the quantification of linear regions in the realm of image

classification tasks.

The research conducted by Jamil et al. (2022) and Jamil et al.

(2023) has presented a binary vector representation for individual

polyhedra, emphasizing its ability to capture abundant information

related to both the data and the neural network. Their research

has compellingly demonstrated the practical utility of these binary

vectors as highly effective tools for enhancing the explainability

of neural networks and facilitating the detection of adversarial

instances. Building upon the foundational research mentioned

earlier, our primary objective is to construct a comprehensive

toolbox that effectively leverages the binary vectors and the

associated linear model for polyhedra. By harnessing these tools,

we aim to delve into and analyze the intricate geometric properties

exhibited by ReLU FFNNs.

In this manuscript, we make several key contributions. Firstly,

we formulated the codebase for the toolbox as outlined in our

prior work (Liu et al., 2023). This codebase is now accessible to

the public, and it can be found at the following URL: https://

github.com/cglrtrgy/GoL_Toolbox. Leveraging this toolbox, we

delve into the intricate geometries of neural networks, utilizing the

Hamming distance as a dissimilarity metric for binary vectors to

gain insights into network geometry. Additionally, we employ the

bisection method to generate samples with Hamming distances of

1, revealing network connectivity. We further explore Chebyshev

centers and polyhedral radii, shedding light on polyhedral

shape and size, network clustering, decision boundaries, and

generalization capabilities. Our approach is validated through

implementations on toy datasets, MNIST, and CIFAR-10 datasets,

offering compelling insights into neural network geometries.

The remaining sections of the paper are organized as follows:

Section 2 introduces the toolbox, providing a comprehensive

overview of its functionalities. Section 3 details the methodologies

employed for analyzing the geometries of neural networks. It covers

the distance metric used, the application of the bisection method,

and the utilization of Chebyshev center analysis. In Section 4,

5, the toolbox and the aforementioned analysis methods are

demonstrated through illustrative examples using both toy datasets,

the MNIST, and CIFAR-10 dataset. Finally, Section 6 provides a

conclusive summary of the paper.

2 Definitions and methods

In this section, we will provide a comprehensive review of

the following key aspects: model of ReLU FFNNs, the definition

of binary vectors, the linear model for polyhedra decomposed

by ReLU FFNNs, and the traversal method employed for listing

these decomposed polyhedra. For more in-depth information and

references, please refer to Liu et al. (2023).

2.1 ReLU feedforward neural network
(FFNNs)

We consider an (L+1)-layer FFNNwith an input space denoted

as R
m and an output space denoted as R

n. Each hidden layer

consists of hi nodes. The weight matrix and bias vector of layer

i are denoted as Wi ∈ R
hi×hi−1 and bi ∈ R

hi , respectively. The

ReLU activation function is applied to the initial L layers, while the

final layer does not have an activation function. For a given input

x ∈ R
m, the output in layer i is denoted as Fi(x) ∈ R

hi . The given

notation represents the FFNN as follows:

R
m (W1 ,b1)
−−−−→
ReLU

R
h1 (W2 ,b2)

−−−−→
ReLU

R
h2 → . . . →

R
hL−1

(WL ,bL)
−−−−→
ReLU

R
hL

(WL+1 ,bL+1)
−−−−−−−→ R

n. (1)

The feedforward process of model (1) can be summarized as

follows:

1). Layer 0 (Input Layer): Given a data point x ∈ R
m, it serves

as the input to Layer 1.
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2). Layer 1 to L (Hidden Layers): The output of x at layer i can

be expressed as:

Fi(x) = ReLU(WiFi−1(x)+ bi)

=









max{0,wi,1Fi−1(x)+ bi,1}
...

max{0,wi,hiFi−1(x)+ bi,hi }









,
(2)

where wi,j is the jth row ofWi and bi,j is the jth entry of bi.

3). Layer L + 1 (Output Layer): The output of x at layer L + 1

(also the output of the FFNN) is WL+1FL(x) + bL+1. By iteration,

this implies that an FFNN represents an affinemapping given a data

point x.

2.2 Binary vector

A ReLU feedforward neural network performs a partitioning

of the input space into convex polyhedra (Sattelberg et al.,

2020), where each individual polyhedron is associated with a

corresponding binary vector representation (Liu et al., 2023). The

binary vector is defined based on the output of the ReLU activation

function in each hidden layer of model (1). The definition is as

follows:

For a given point x ∈ R
m to model (1), its binary vector at

hidden layer i is defined as

si(x) = [si,1(x) . . . si,hi (x)]
⊤ ∈ R

hi ,

where si,j(x) (with 1 ≤ j ≤ hi) is defined as follows:

si,j(x) =

{

1 if wi,jFi−1(x)+ bi,j > 0,

0 if wi,jFi−1(x)+ bi,j ≤ 0.
(3)

The binary vector of x in model (1) is obtained by stacking its

binary vectors from all hidden layers as follows:

s(x) = [s⊤1 (x) . . . s⊤L (x)]
⊤ ∈ R

h, (4)

where h =
∑L

i=1 hi is the total number of nodes across all

hidden layers.

It is worth noting that points residing within the same

polyhedron exhibit identical binary vectors, thereby allowing

each polyhedron to be represented by a single binary vector.

Subsequently, the forthcoming section will provide a review of the

linear model expressed in terms of the binary vector associated with

each polyhedron.

2.3 Linear model for polyhedra

Given a data point x, we assume that its binary vector s(x) is

obtained using Equation (4). To ensure consistent directionality in

expressing the linear inequalities, a sign vector s′i = [s′i,1 . . . s′
i,hi

]⊤

is defined for each hidden layer i, where s′i,j = 1 if si,j = 0 and

s′i,j = −1 if si,j = 1.

Let Ŵj = Wjdiag(sj−1)Ŵj−1 and b̂j = Wjdiag(sj−1)b̂j−1 + bj

for 2 ≤ j ≤ L with Ŵ1 = W1, b̂1 = b1. The linear model for the

polyhedron associated with the binary vector s(x) is expressed as

follows:

Ax ≤ c, (5)

where A = [A⊤
1 A⊤

2 . . . A⊤
L ]

⊤ and c = [c⊤1 c⊤2 . . . c⊤L ]
⊤ with

Aj = diag(s′j)Ŵj ∈ R
hi×m and cj = diag(s′j)(−b̂j) ∈ R

hi .

It’s essential to highlight that, within the polyhedron defined

by the bit vector s, the output of any input x is solely determined

by a single affine mapping: G(x) = WL+1diag(sL)ŴLx +

WL+1diag(sL)b̂L + bL+1.

Each facet of the polyhedron corresponds to a unique linear

inequality from (5), indicating the non-redundancy of these

inequalities. An active bit within the ith entry of s(x) indicates

that the ith linear inequality is essential and not redundant. The

following linear program can be used to determine whether the ith

linear inequality of (5) is redundant or not.

Let

A =
[

a1 a2 . . . ah

]⊤
and c =

[

c1 c2 . . . ch
]⊤

with ai ∈ R
m and ci ∈ R. We define Ã as the matrix obtained

by removing the ith row a⊤i from A, and c̃ as the vector obtained

by removing the ith element ci from c. Consider the following

linear program

maximize
x

a⊤i x

s. t. Ãx ≤ c̃.
(6)

If the optimal objective value of (6) is less than or equal to

ci, it indicates that the ith linear inequality is redundant. In such

cases, we can remove the row a⊤i and the corresponding element

ci from A and c, respectively. This iterative process of removing

redundant constraints leads to the formation of the reduced set

(A′, c′), which represents the minimum set of constraints in (A, c).

Moreover, the indices of the active bits in s(x) can be obtained

through this process. It is noteworthy that the number of active bits

within a binary vector corresponds to the number of nonredundant

inequalities present in its linear model (5).

By flipping an active bit in s(x) (switching 1 to 0 or 0 to 1),

a binary vector corresponding to a neighboring polyhedron that

shares a facet with the given polyhedron can be obtained. The

validity of this claim can be demonstrated through a proof by

contradiction. This enables the derivation of the binary vectors that

determine all polyhedra decomposed by the neural network, along

with the corresponding derivation of the associated linear models.

This method, known as the traversal method, will be reviewed in

the subsequent section.

2.4 Traversal-and-Pruning method

In this section, we shall present the Traversal-and-Pruning

method as outlined in Algorithm 1. This method systematically

explores all bit vectors that define a polyhedron within the input

space through the activation of specific bits.

The method employed in this approach originates from Liu

et al. (2023), while the concept of flipping an active bit aligns with
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the findings presented in Vincent and Schwager (2021). However,

the key distinction lies in the fact that this method generates

binary vectors for all polyhedra, which holds significant importance

in the subsequent section as it facilitates the exploration of the

neural network’s underlying geometry. Furthermore, Liu et al.

(2023) also demonstrates the capability to enumerate polyhedra

within a bounded region, although specific details are omitted in

this context.

Require: A pretrained (L+1)-layer ReLU FFNN

with weights and biases {Wi, bi}
L
i=1 for all L hidden

layers and a random point x(0) in the input space

R
m. Denote by p(x(0)) the polytope to which x(0)

belongs and by s(x(0)) the specific bit string that

uniquely identifies p(x(0)).

Ensure: P: the set of bit vectors that determine

all polyhedra in the input space, and the size of

P as the number of polyhedra in the input space.

1) Initialize an empty set P to store all

bit vectors that determine a polyhedron and

define a label for each stored bit vector with

1 denoting if we have found all polyhedra adjacent

to p(x(0)) and 0 otherwise.

2) Calculate the bit vector s(x(0)) using (2) and

(4), add s(x(0)) to the set P, and give a label

of 0 to s(x(0)).

3) Traverse all the polyhedra adjacent to p(x(0)),

save their bit vectors to P, and update these

bit vectors’ labels using the following

process:

• Find the active bits of s(x(0)) by solving the

LP model (6). Without loss of generality,

say there are q active bits.

• Flip each of these q active bits of s(x(0)) (one

at a time), producing q new bit strings {ŝ(j) :

1 ≤ j ≤ q} =: Ŝ, which all differ from s(x(0))

by only one bit. Add the elements of Ŝ to P

that are not already in P.

• Label the added bit vectors with 0 and switch

the label of s(x(0)) from 0 to 1, indicating that

we have found all of the neighbors of p(x(0))

and have added their bit vectors to P.

4) Repeat 3 for bit vectors in P with label 0

until all the bit vectors in P have label 1.

Algorithm 1. Traversal-and-Pruning method.

The traversal method exhaustively enumerates all binary

vectors, and this assertion can be substantiated through the

following argument: Consider a set of binary vectors represented as

vertices in a graph, where two vertices are connected if they differ

by flipping a single active bit.

• We begin by selecting an initial binary vector arbitrarily. The

method identifies the active bits in this vector, flips one active

bit at a time to generate neighbors, and continues this process

iteratively until all possible neighbors are explored.

• To prove completeness, we employ mathematical induction.

In the base case, we establish that the method successfully

traverses all binary vectors within a small neighborhood of the

initial vector. By the inductive hypothesis, we assume that for

any binary vector within a certain radius of the initial vector,

the traversal method can reach it through a sequence of active

bit flips.

• For the inductive step, we show that the method can extend

this reach to binary vectors within an expanded radius. By

flipping active bits, we demonstrate that it’s possible to reach

any binary vector within this extended region. This ensures

that the method systematically explores the entire space of

binary vectors.

• Moreover, the graph formed by these binary vectors is

connected because any binary vector in the graph can be

transformed into any other binary vector by a series of single-

bit flips, ensuring the existence of a path between any two

binary vectors.

As a result, we conclude that the traversal method, starting from

an arbitrary binary vector, effectively enumerates all binary vectors

in the defined space by flipping active bits. This proof establishes

the method’s capability to traverse and enumerate all binary vectors

systematically.

3 Geometric aspects and
methodologies of neural networks

In this section, utilizing the toolbox developed in Section 2,

our primary aim is to thoroughly investigate the intricate

geometries that underlie neural networks. To achieve this, we

leverage the Hamming distance, which serves as a dissimilarity

metric based on the binary vectors. Moreover, we employ

the bisection method to identify the sample points along the

shortest Euclidean path between two given data points, imposing

the constraint that neighboring sample points must exhibit a

Hamming distance of 1. Additionally, we explore the Chebyshev

centers and the corresponding radii of the polyhedra, providing

valuable insights into the characteristics of the polyhedral

structures.

3.1 Distance metric

The Euclidean distance or L2 norm is widely adopted as the

primary distancemetric between two data points, including images.

Alternatively, for binary data, the Hamming distance is commonly

employed, quantifying the dissimilarity between two binary strings

by counting the differing positions. In this manuscript, we establish

the Hamming distance between two data points or polyhedra as

the count of dissimilar entries in their respective binary vectors,

which are obtained using Equation (4) based on a pre-trained

FFNN.

It is important to highlight that the Hamming distance

between polyhedra serves as an approximation for quantifying the
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minimum number of steps required to transition between two

polyhedra. This observation establishes the Hamming distance as

a valuable metric for capturing the geometric relationship and

connectivity among polyhedra. Notably, the effectiveness of the

Hamming distance in unveiling the underlying mechanisms of

neural network functionality has been substantiated in Jamil et al.

(2023). Inspired by these findings, we leverage the Hamming

distance between data points or polyhedra to probe the geometric

characteristics of a pretrained FFNN.

3.2 Bisection method

The Hamming distance serves as an estimate for determining

the shortest path between vertices on the dual graph of the

polyhedral decomposition. In our case, we focus on finding the

samples along the shortest Euclidean path given two data points,

ensuring that the Hamming distance between adjacent samples

is precisely 1. To achieve this, we introduce a bisection method,

described in Algorithm 2, that allows us to generate data points

and their corresponding binary vectors between any two given data

points, while satisfying the following properties:

(1) The Hamming distance between two adjacent data points is

exactly 1.

(2) The sampled data points align with the same line defined by

the initial two data points.

Formulating this mathematically, we consider two data points,

denoted as A and B, within the input space. Our objective is to

identify a series of points {Ai}
n
i=1 that meet the following criteria:

(1) Ai = A+ δi ∗ (B−A), where δi ∈ (0, 1) for 1 ≤ i ≤ n. Here,

we set A0 = A and An+1 = B.

(2) The Hamming distance between the bit vectors of Ai and

Ai−1, for 1 ≤ i ≤ n+ 1, is equal to 1.

3.3 Chebyshev center

In our exploration of convex polyhedra in R
N , various

statistical characteristics are of interest. For example, determining

the number of d-dimensional faces in P or calculating its volume

is a fundamental pursuit. The count of (N − 1)-dimensional

faces, analogous to the number of active bits, is computable via

linear programming. On the contrary, pinpointing the number

of zero-dimensional faces (i.e., vertices) poses challenges due to

combinatorial complexities. To illustrate, a convex polytope with

30 faces in R
15 can possess over 150,000 vertices, rendering

calculations intractable in R
1000. Estimating the radius and

center of the largest inscribed sphere (the Chebyshev center)

is achievable through linear programming, while determining

the radius and center of the smallest bounding sphere remains

infeasible. Similarly, exact volume calculations elude us, but the

Chebyshev center provides a coarse approximation. The Gaussian

mean width offers another proxy for volume but relies on

probabilistic algorithms. Leveraging the Chebyshev center as a

representation of the polyhedron’s “center" and the associated

sphere’s radius as a volume indicator, we gain insights into

Require: • A,B: Two given data points.

• Flag = 1: Determines whether the algorithm

stops.

• Aleft = A: The starting point of {Ai} from 0 to

n+ 1.

• a = 0, b = 1: Defines the search interval for δi.

• δlist: An empty list to store {δi}
n
i=1.

Ensure: {δi}
n
i=1.

While Flag = 1:

1) Perform the following calculations:

• Calculate the middle point, δ, as a+b
2 ;

• Calculate C as A+ δ · (B− A);

• Compute the binary vectors for Aleft, C, and B;

• Compute the Hamming distance between the binary

vectors of Aleft and C, denoted by d1.

2) Check the Hamming distance, d1:

• If d1 = 1, return δ;

• If d1 > 1, set b = δ, and return to step 1;

• If d1 = 0, set Aleft = C and a = δ, then return

to step 1.

Append δ to δlist.

3) Update a = δ and Aleft = A+ δ · (B− A).

4) Compute the Hamming distance between the binary

vectors of Aleft and B, denoted by d2; If d2 = 1,

set Flag = 0 to exit the loop; Otherwise, repeat

the above process.

Algorithm 2. Bisection method.

polyhedral attributes, network clustering, decision boundaries, and

generalization capabilities.

Consider a bounded set Q. The Chebyshev center refers to the

center of the largest inscribed ball within Q, as defined in Boyd

and Vandenberghe (2004). In our case, we aim to determine the

Chebyshev center and its corresponding radius for a polyhedron

that has been decomposed by a pretrained FFNN.

Assume that A′x ≤ c′ represents a minimal set defining a

bounded polyhedron resulting from the decomposition performed

by an FFNN. Here,

A′ =
[

a′1 a
′
2 . . . a′

l

]⊤
∈ R

l×m and c′ =
[

c′1 c
′
2 . . . c′

l

]⊤
∈ R

l.

Note: In the case of an unbounded polyhedron, the inclusion

of bounds on each dimension can be implemented to render it

bounded.

To describe the center of the ball inscribed within the

polyhedron A′x ≤ c′, we introduce xc ∈ R
m and r ∈ R, where

xc represents the center and r denotes the radius. Any point within

the ball can be expressed as xc+ t, with ||t||2 ≤ r, and it must satisfy

the constraints:

a′
⊤
i (xc + t) ≤ c′i for 1 ≤ i ≤ l.
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We know that sup‖t‖2≤r{a
′⊤
i t} = r||a′i||2 for 1 ≤ i ≤ l, which

allows us to rewrite the constraints as:

a′
⊤
i xc + r||a′i||2 ≤ c′i for 1 ≤ i ≤ l.

Therefore, the problem of maximizing the radius r can be

formulated as the following optimization problem:

maximize
r,xc

r

s. t. a′⊤i xc + r||a′i||2 ≤ c′i for 1 ≤ i ≤ l.
(7)

Define

x =

[

r

xc

]

∈ R
m+1, e =













1

0
...

0
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∈ R
l×(m+1).

The optimization problem (7) can then be reformulated as:

minimize
x

−e⊤x

s. t. Âx ≤ c′.
(8)

Problem (8) is a linear program, which can be effectively solved

using the cvxpy package in Python.

4 Examples

In this section, we initially showcase the efficacy of our toolbox

using toy datasets and the MNIST dataset. Subsequently, we apply

the bisection method and Chebyshev center analysis to the MNIST

dataset, enabling a detailed investigation of the intricate geometries

present in neural networks.

4.1 Basic FFNN

4.1.1 Toy examples 1: 20 nodes
We initially employed model (1) composed of two hidden

layers, each consisting of 10 nodes, to approximate the function

f1(x1, x2) = x21+x22−0.4. The training of this model was performed

using PyTorch, a Python library known for its capabilities in deep

learning (Paszke et al., 2019). To create a representative dataset, we

uniformly sampled 10,000 points from the interval [−1, 1]2. The

training process iterated until a predefined early stopping criterion,

based on the convergence of the validation loss, was satisfied.

Figure 1 is generated through the following procedure: (1)

Enumerate all the binary vectors using Algorithm 1. (2) Determine

the linear model associated with each polyhedron using equation

(5). (3) Compute the vertices of each polyhedron using the Python

package intvalpy and plot each polyhedron using the vertices.

Figure 1 illustrates the decomposition of polyhedra achieved by

the aforementioned model. Within the bounded region [−1, 1]2,

Algorithm 1 yields a total of 218 polyhedra, contributing to the

overall count of 237 polyhedra in the 2-dimensional space R
2.

FIGURE 1

2-D visualization of polyhedral composition within [−6, 6]2. The

central bounded region, indicated by white dotted lines,

encompasses [−1, 1]2.

Among these polyhedra, 211 are classified as bounded, while 26 are

deemed unbounded.

Observations: The size of the polyhedra within the training

area is relatively small, and their size increases as they move farther

away from the training area. Furthermore, for points located on the

two white dotted lines at a fixed Euclidean distance, their Hamming

distance is greater within the training area and decreases as the

points move away from it. To illustrate this, consider the following

example: the Hamming distance between the points (0,−1) and

(0, 1) is greater than the Hamming distance between the points

(6,−1) and (6, 1). This trend highlights how the Hamming distance

varies with respect to the proximity to the training area.

4.1.2 Toy examples 2: di�erent model structures
The relationship between the number of polyhedra

decomposed by an FFNN and the network depth/width has

been extensively explored in prior studies such as Pascanu

et al. (2013), Montufar et al. (2014), Raghu et al. (2017), and

Hanin and Rolnick (2019).This study aims to investigate the

relationship between the mean square error (MSE) of the

objective function on the validation dataset and the number

of polyhedra. The examination involves exploring different

network structures while keeping a consistent number of nodes

or layers. By analyzing this relationship, we aim to gain insights

into the influence of network structure on the performance of

the model.

We conducted a series of experiments where we varied the

number of hidden layers while maintaining a consistent number of

5 nodes per layer. Additionally, we adjusted the number of nodes

in each hidden layer while keeping a consistent total number of

3 layers. To assess the stability and consistency of the results, we

repeated each scenario 50 times with different initializations. The
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TABLE 1 Comparison of model architectures: polyhedra count and MSE statistics on validation dataset.

Models # Polyhedra stats Model training stats

# layer # nodes Avg SD Median Min Max Avg MSE SD MSE

2 5 55.10 8.28 56 37 70 0.001389 0.000618

4 5 163.33 43.99 156.5 101 277 0.001086 0.001553

6 5 260.70 108.29 249 114 664 0.000947 0.001926

8 5 472.53 232.09 392 265 1,081 0.000593 0.000518

10 5 588.80 181.59 539.5 378 1,072 0.000635 0.000711

3 5 110.20 27.35 105 75 210 0.000651 0.000300

3 10 392.20 64.65 379 302 532 0.000081 0.000021

3 15 788.83 138.14 774 572 1,051 0.000036 0.000014

3 20 1,405.30 233.28 1,376 970 1,938 0.000019 0.000003

3 25 2,225.60 315.68 2,245.5 1,592 3,153 0.000014 0.000002

experimental setup aligns with the details described in Section 4.1.1.

The results on the polyhedra count and MSE statistics are listed in

Table 1.

The results presented in Table 1 reveal significant trends.

Firstly, when the number of nodes is held constant, increasing

the number of layers leads to improved average performance and

an increase in the number of polyhedra. Moreover, maintaining

a fixed number of layers while increasing the number of nodes

also results in improvements in both the number of polyhedra

and performance.

4.1.3 Toy examples 3: visualizing polyhedral
compositions in 3D

Following the same procedure outlined in Section 4.1.1,

we utilized a neural network model comprising three hidden

layers, each containing 10 nodes, to approximate the function

f1(x1, x2, x3) = x21 + x22 + x23 − 3. To ensure an accurate

representation of the function, we randomly sampled 125,000

points from the range [−1, 1]3. Figure 2 illustrates the

decomposition of polyhedra in three-dimensional space. This

decomposition encompasses a total of 2,212 polyhedra within the

range of [−1, 1]3 in all three dimensions.

4.2 MNIST

In this experimental study, we conducted our analysis using the

well-known MNIST dataset with dimensions of 28 × 28. Model

(1), comprising five hidden layers, was trained on the training

dataset using five distinct configurations. Notably, the loss function

utilized was cross-entropy, optimization was conducted with the

Adam optimizer, and the maximum training epochs were limited

to 50. The node configurations for these layers were chosen as

300, 350, 400, 450, and 500, respectively, for each of the five

structures, surpassing the input dimension of 784. Remarkably,

all configurations consistently yielded training and test accuracies

surpassing 98%. Subsequently, we randomly selected 30 images

from the training dataset and computed their corresponding binary

FIGURE 2

3-D visualization of polyhedral composition within [−1, 1]3.

vectors and the linear model (5) representing the polyhedra they

belong to for the five different structures. To determine the active

bits for each binary vector across the five different model structures,

we solved a varying number of instances of model (6), specifically

1,500, 1,750, 2,000, 2,250, and 2,500, by considering different

values of i. The coefficient matrix Ã in the constraint of model

(6) had dimensions of 1, 499 × 784, 1, 749 × 784, 1, 999 × 784,

2, 249 × 784, and 2, 499 × 784 for the respective instances. To

optimize computational efficiency, we leveraged parallel processing

on a Linux machine equipped with AMD EPYC 7,452 2.35 GHz

processors, utilizing 48 CPUs to efficiently solve model (6) for the

corresponding number of times: 1,500, 1,750, 2,000, 2,250, and

2,500, respectively.

Table 2 provides a comprehensive summary of the experimental

results, presenting various metrics for different configurations

represented by the “Variable nodes per hidden layer” columns. The

table includes measurements such as the average (Avg), standard
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TABLE 2 Results of active bits for di�erent model structures.

Variable nodes per hidden layer

300 nodes 350 nodes 400 nodes 450 nodes 500 nodes

Avg # active bits 658.30 740.57 780.00 886.87 975.00

SD # active bits 64.07 82.18 97.48 105.19 124.29

Min # active bits 520 525 556 636 719

Max # active bits 785 885 942 1,056 1,181

FIGURE 3

Time taken to find active bits vs. node sizes per hidden layer. Error

bars represent 1 SD.

deviation (SD), minimum (Min), and maximum (Max) number of

active bits.

The results summarized in Table 2 reveal the following insights:

As the number of nodes per hidden layer increases (from 300 to

500), the average number of active bits also increases, indicating a

positive correlation between the number of nodes and the number

of polyhedra; The standard deviation of active bits shows some

variation across different configurations, with larger numbers of

nodes generally leading to higher variability. The minimum and

maximum number of active bits demonstrate an increasing trend

as the number of nodes per hidden layer increases.

The computational complexity for solving problem (6) can be

described asO(m3h). Figure 3 showcases the average and standard

deviation of computation time across various node quantities

using the Python cvxpy solver. The results demonstrate a positive

correlation between the number of nodes per hidden layer and

the average computation time. Furthermore, configurations with

a larger number of nodes demonstrate increased variability in

computation time. In future work, we plan to investigate the

scalability of these computations on GPUs.

4.2.1 Hamming distance and bisection method
In this section, we begin by showcasing the efficacy of the

Hamming distance in capturing data features and its properties

across different source points. We then utilize the bisection method

to generate samples along the shortest Euclidean distance path

between two designated data points, subsequently analyzing the

TABLE 3 Classification accuracy rates of the nearest neighbors for

training/test data using Euclidean and Hamming distances.

Data points

Metrics Training Test

Euclidean 97.37% 95.58%

Hamming for structure 1 99.50% 98.26%

Hamming for structure 2 99.52% 98.06%

Hamming for structure 3 99.58% 98.05%

fluctuations in the number of polyhedra among nearest neighbors

as the neural network’s layer count undergoes variation.

4.2.1.1 Why using hamming distance?

In this section, we aim to elucidate the rationale behind utilizing

the Hamming distance as a representation for the neural network,

subsequently leveraging it to delve into the intricate geometric

properties inherent within the network.

We examine three distinct structures of the neural network

(1). The first comprises 3 layers with 200 nodes per layer, the

second consists of 5 layers with 300 nodes per layer, and the

third is composed of 5 layers with 500 nodes per layer. The

training accuracies for the three structures are 99.08%, 99.01%,

and 99.11%, respectively. Correspondingly, the test accuracies for

these structures are 97.57%, 97.95%, and 97.64%. We compute the

binary vectors corresponding to each training and test data point

for the three structures. Subsequently, we determine the nearest

neighbor for each data point in both the training and test sets,

employing both Euclidean and Hamming distances. Additionally,

we investigate whether the nearest neighbor belongs to the same

class as the data point under consideration. Table 3 presents the

classification accuracy rates of the nearest neighbors for training

and test data points belonging to the same class, using both

Euclidean distance and Hamming distance for the three structures.

From the table, we observe that the Hamming distance yields

higher accuracy rates compared to the Euclidean distance for both

training and test data. This suggests that the utilization of the

Hamming distance measure leads to more precise classification

of data points, resulting in superior classification accuracy

rates compared to those obtained with the Euclidean distance

measure. The superior performance of the Hamming distance

can be attributed to its calculation based on binary vectors,

which are derived from the pretrained neural networks. By

considering only the differing entries between binary vectors, the
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TABLE 4 Comparison of Hamming distance between data points from training/test/adversarial datasets and sampled data points with fixed Euclidean

distance.

Euclidean distance

0.5 0.75 1.0

Hamming distance Hamming distance Hamming distance

Datasets Avg SD Avg SD Avg SD

Training (Structure 1) 52.97 13.80 102.76 30.90 131.82 35.73

Test (Structure 1) 52.48 13.66 101.40 29.71 130.51 34.43

FGSM (Structure 1) 75.27 13.37 128.01 35.27 151.09 36.89

Training (Structure 2) 99.97 41.88 173.59 69.61 251.73 93.69

Test (Structure 2) 99.36 42.65 170.45 67.51 246.99 90.01

FGSM (Structure 2) 178.57 83.69 264.66 99.79 339.07 106.60

Training (Structure 3) 129.98 56.91 234.34 92.26 329.89 107.36

Test (Structure 3) 129.05 56.73 242.05 87.36 344.97 106.26

FGSM (Structure 3) 219.92 99.16 351.10 113.61 439.77 118.09

TABLE 5 The Hamming distance vs. the number of polyhedra along shortest Euclidean path length.

Pairs number 1 2 3 4 5 6

Hamming distance 98 132 184 232 282 320

# of polyhedra along the shortest Euclidean path 100 135 193 252 299 351

Hamming distance captures crucial features that are highly relevant

for determining similarity within the dataset. Consequently, it

effectively discriminates between data points and contributes to the

improved classification accuracy observed in the results.

Figure 1 illustrates a notable observation: data points that

maintain a constant Euclidean distance can exhibit varying

Hamming distances as they traverse the input space. This intriguing

finding motivates us to explore the potential differences in the

Hamming distance when comparing a data point to a sampled data

point, while maintaining a fixed Euclidean distance. Specifically,

we aim to explore whether the Hamming distance varies based

on whether the data point is sourced from the training, test, or

adversarial set.

We compute the Hamming distance between a given data point

and a sampled data point, while maintaining a fixed Euclidean

distance of 0.5, 0.75, and 1, respectively. This analysis encompasses

data points sourced from the training, test, and adversarial datasets.

The adversarial dataset is generated using the Fast Gradient Sign

Method (FGSM) (Goodfellow et al., 2015) and is derived from the

test dataset. The results presented herein are based on a dataset

comprising 10,000 data points from the training set, as well as the

entire test and corresponding adversarial datasets.

Table 4 demonstrates that the average Hamming distance

between training data points and their sampled counterparts

mirrors that of test data points and their corresponding samples.

This consistent behavior underscores the Hamming distance’s

efficacy in capturing fundamental features and affinities across data

points, regardless of their belonging to the training or test set.

However, a notable disparity emerges in the Hamming

distances between adversarial data points and their corresponding

samples, compared to those of training and test data points. This

discrepancy suggests a distinctive and divergent relationship in

terms of their binary vector representations. These observations

highlight that adversarial examples manifest a substantially

dissimilar geometric nature compared to the original training and

test data points.

The larger Hamming distances between adversarial data points

and their sampled counterparts signify heightened dissimilarity and

divergence in their binary vectors. This underscores that adversarial

data points occupy a distinct region in the input space separate

from both training and test data.

Despite the average Hamming distance between training/test

data points and their samples being smaller than that between

adversarial data points and corresponding samples, an overlap

within the range exists. Consequently, the Hamming distance alone

cannot definitively discern the adversarial nature of a point.

4.2.1.2 Bisection method

In this section, we used the bisection method (Section 3.2)

to systematically enumerate samples along the shortest Euclidean

path between two specified data points. Initially, we analyzed the

correlation between the Hamming distance and the number of

polyhedra along this path, considering a given data point and its

nearest neighbors in the training dataset. Furthermore, we explored

how the number of polyhedra changes along the shortest Euclidean

path between two nearest neighbors from the training dataset with

increasing layer numbers.

Firstly, we aim to demonstrate that the Hamming distance

of two given data points does not equate to the number of

polyhedra along the shortest Euclidean path between these two
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FIGURE 4

Mean values with error bars (maximum and minimum) for the

number of polyhedra along the shortest Euclidean path for 1000

pairs of two nearest neighbors versus the number of layers.

given data points. To accomplish this, we computed the Hamming

distance for six pairs of nearest neighbors within the train dataset

and the results are listed in Table 5. The experiment was carried

out using the pretrained model Structure 2, as discussed in the

preceding section.

Table 5 illustrates the relationship between the Hamming

distance and the number of polyhedra along the shortest

Euclidean path between two nearest neighbors (in terms of

the Hamming distance). It reveals that when the Hamming

distance is small, there is a close correspondence between the

Hamming distance and the number of polyhedra along the shortest

Euclidean path. However, as the Hamming distance increases,

the disparity between the Hamming distance and the number

of polyhedra along the shortest Euclidean path becomes more

pronounced.

Next, we apply the bisection method to 1000 pairs of nearest

neighbors from the training dataset to investigate the variation in

the number of polyhedra along the shortest Euclidean distance as

the number of layers increases. For this analysis, we utilize the

Euclidean distance to determine nearest neighbors, as it remains

consistent regardless of any alteration in the neural network

structure. We increase the number of layers from 1 to 5 and keep

the number of nodes in each layer as 200 for the neural network (1).

Figure 4 illustrates the relationship between the number of

layers and the number of polyhedra along the shortest Euclidean

path between two nearest neighbors. The results reveal an

exponential increase in the maximum number of polyhedra,

ranging from 41 to 303, as the number of layers is increased.

In contrast, the mean number of polyhedra shows a gradual rise

from 21 to 49. This discrepancy suggests that for nearest neighbor

pairs with larger Euclidean distances, the number of polyhedra

changes significantly with the addition of layers, while most nearest

neighbor pairs exhibit a relatively slow change in the number of

polyhedra as the number of layers increases.

4.2.2 Chebyshev center
In this section, we employed the same pretrained models

discussed in Section 4.2.1.1, along with the MNIST dataset, to

conduct our analysis. Specifically, we randomly sampled 1000

data points from the training, test, and adversarial datasets. For

each of these data points, we computed the linear models (6)

corresponding to the polyhedra on which they reside. Additionally,

we utilized model (8) to solve for the Chebyshev centers and their

associated radii. The corresponding results for Structure 2 are

presented in Figure 5 and Table 6. Additionally, Figure 6 showcases

the distribution of radii for the 1000 data points across the three

datasets. It is worth noting that the Chebyshev center for each

polyhedron resides in a 784-dimensional space, while Figure 5

provides a visual representation limited to three dimensions.

Figure 5A visually depicts the close proximity of the Chebyshev

center between the polyhedra containing randomly selected

training and test samples. Additionally, Table 6 and Figure 6

present the similarity in size between the polyhedra for the

training and test samples. Conversely, Figure 5B reveals a

noticeable disparity in the Chebyshev center between the polyhedra

encompassing the randomly selected training and adversarial

data points. Furthermore, Table 6 and Figure 6 highlight the

comparatively smaller size of the polyhedra housing the adversarial

data samples in relation to the polyhedra encompassing the

training and test data samples. These findings are consistent with

the observations from Table 4, which indicates larger Hamming

distances when sampling the original points from the adversarial

dataset, while maintaining a fixed Euclidean distance.

The above observations provide insights into the behavior and

characteristics of the neural network.

The close proximity of the Chebyshev centers and the similarity

in size between the polyhedra containing the training and test

samples suggest that the neural network exhibits consistent

behavior and decision boundaries for these two datasets. This

indicates that the network generalizes well and maintains stability

in its predictions when presented with new test samples.

On the other hand, the noticeable disparity in the Chebyshev

centers and the smaller size of the polyhedra for the adversarial

data points indicate that the neural network behaves differently

when faced with adversarial inputs. Adversarial examples are

intentionally designed to mislead the network and exploit

vulnerabilities in its decision-making process. The observed

differences in the Chebyshev centers and polyhedra sizes

suggest that the network’s decision boundaries are more

susceptible to manipulation and exhibit variations in response to

adversarial inputs.

5 CIFAR-10

To demonstrate the practical applicability of our toolbox and

the methodologies outlined in Sections 2 and 3, we conducted

experiments using the CIFAR-10 dataset. CIFAR-10 is characterized

by its inclusion of real-world images that exhibit heightened

complexity, encompassing variations in lighting, orientation, and

backgrounds, a notable departure from the MNIST dataset.

For training purposes, we employed model (1) with eight

hidden layers, each comprised of 400 nodes. The training
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FIGURE 5

The Chebyshev center for randomly selected training, test, and adversarial samples. (A) The Chebyshev center for training and test samples. (B) The

Chebyshev center for training and adversarial samples.

TABLE 6 Statistics of the radius of the largest inscribed ball within polyhedra: training, test, and adversarial datasets.

Mean SD Max Min

Train 0.23 0.081 0.43 0.016

Test 0.21 0.079 0.43 0.018

Adv 0.13 0.092 0.54 0.097

FIGURE 6

Histogram with Gaussian normal distribution for the radius of

training, test, and adversarial datasets.

configuration, encompassing the choice of loss function, optimizer,

and maximum number of training epochs, remained consistent

with the parameters utilized in our MNIST experiments. The

training process culminated in a remarkable training dataset

accuracy of 99.39%, while the test dataset accuracy reached 53.59%.

In the initial phase of our experimentation, we computed the

Hamming distance between a selected data point and a reference

data point, maintaining a predefined fixed Euclidean distance of

0.1. These data points were sourced from the training, test, and

adversarial datasets. It’s essential to note that the adversarial dataset

was generated using the same methodology applied to the MNIST

dataset. Furthermore, the training dataset consisted of 10,000 data

points, aligning with the identical number of data points present in

the test and adversarial datasets.

The computed mean Hamming distances across the three

datasets reveal values of 109.47, 130.19, and 142.80, accompanied

by respective standard deviations of 40.44, 50.66, and 63.42 for

the 10,000 data point pairs. Notably, these results diverge from

our MNIST experiments, as they indicate a notable dissimilarity

in the average Hamming distance between training data points

and their corresponding samples compared to that observed in the

test dataset. This discrepancy can be attributed to the suboptimal

generalization of the trained neural network when applied to

the test dataset, resulting in disparate Hamming distance profiles

between the training and test datasets.

It’s important to underscore the significance of Hamming

distance as a lower boundary for quantifying the number of

polyhedral boundaries traversed during the trajectory between

two polyhedra. The variance in mean Hamming distances among

the three datasets implies that, on average, a greater number of

polyhedral boundaries exist between an adversarial dataset and its

sampled data point.

Subsequently, we conducted a random sampling of 200 data

points from the training, test, and adversarial datasets and

computed the linear models of the polyhedra within which they
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TABLE 7 Statistics of the radius of the largest inscribed ball within

polyhedra: training, test, and adversarial datasets.

Mean SD Max Min

Train 0.038 0.015 0.081 0.015

Test 0.021 0.016 0.069 0.089

Adv 0.017 0.0095 0.051 0.0054

resided. We then calculated the Chebyshev centers and their

corresponding radii. The statistics concerning the radii of the

polyhedra containing the sampled training, test, and adversarial

data points are presented in Table 7. The results shed light on

the distinctive nature of the average polyhedral sizes across the

three datasets. Notably, the training data points exhibited the most

substantial polyhedral size, followed by the test data points, with the

adversarial data points displaying the smallest polyhedral size. This

observation aligns with the findings derived from the Hamming

distance measurements.

Similar to the obersvation on MNIST dataset, the

reduced polyhedral size within the adversarial dataset

accentuates the network’s decision boundaries’ susceptibility

to manipulation and their propensity to undergo variations

when exposed to adversarial inputs. These insights

underscore the intricate interplay between geometric

characteristics and network behavior, reinforcing the

critical need for comprehensive and robust neural

network assessments.

The analysis on MNIST and CIFAR datasets has revealed

valuable insights into the performance and adaptability of

trained neural networks. By employing a combination of

Hamming distance and the Chebyshev center method, we

are capable of gauging a network’s generalization capability

and its resilience to real-world data variations and adversarial

challenges. These insights not only enhance our understanding

of neural network behavior but also provide practical guidance

for creating more robust and versatile neural systems capable

of effectively navigating the complexities of real-world data and

adversarial scenarios.

6 Conclusion

In this work, we present a toolbox for exploring aspects of

the polyhedral decomposition (and other associated geometries) of

neural networks. Our toolbox allows for the calculation of binary

vectors, derivation of polyhedron linear models, extraction of

active bits, and enumeration of neighboring polyhedra. Leveraging

this toolbox, we investigate the geometric properties of neural

networks using the Hamming distance, bisection method, and

Chebyshev centers. Through implementation on toy datasets

and the MNIST dataset, we validate the effectiveness of our

approach and gain insights into the underlying geometries of

neural networks. Overall, our work provides a contribution to the

understanding and analysis of ReLU neural network structures,

decompositions, and behaviors. This paper serves as a proof of

concept, laying the foundation for future endeavors. Subsequent

work will extend the application of the toolbox and methodologies

to conduct comprehensive geometric analyses on much larger real-

world datasets together with much more intricate neural network

architectures. This includes enhancing model generalization,

optimizing model structures, and exploring the design of novel

network architectures.
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