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Cardiovascular diseases, such as heart attack and congestive heart failure, are

the leading cause of death both in the United States and worldwide. The

current medical practice for diagnosing cardiovascular diseases is not suitable

for long-term, out-of-hospital use. A key to long-term monitoring is the ability

to detect abnormal cardiac rhythms, i.e., arrhythmia, in real-time. Most existing

studies only focus on the accuracy of arrhythmia classification, instead of

runtime performance of the workflow. In this paper, we present our work on

supporting real-time arrhythmic detection using convolutional neural networks,

which take images of electrocardiogram (ECG) segments as input, and classify

the arrhythmia conditions. To support real-time processing, we have carried out

extensive experiments and evaluated the computational cost of each step of the

classification workflow. Our results show that it is feasible to achieve real-time

arrhythmic detection using convolutional neural networks. To further demonstrate

the generalizability of this approach, we used the trained model with processed

data collected by a customized wearable sensor from a lab setting, and the results

shown that our approach is highly accurate and e�cient. This research provides

the potentials to enable in-home real-time heart monitoring based on 2D image

data, which opens up opportunities for integrating both machine learning and

traditional diagnostic approaches.
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1 Introduction

Heart disease is a key health problemworldwide; in the United States alone, over 850,000

people die each year from cardiovascular diseases (Virani et al., 2020). Associated costs run

into the hundreds of billions of dollars. Between 2014 and 2015, the US economy spent

almost $219 billion on diagnosis and treatment of heart disease (Fryar et al., 2012), and in

particular, direct medical costs associated with congestive heart failure (CHF) amounted to

$20.9 billion in 2012 (Cook et al., 2014). These are expected to increase to $53 billion by

2030 (Heidenreich Paul et al., 2013), with the majority of costs related to hospitalization.

However, hospitalizations may be avertible provided patients and clinicians are cued to

intervene prior to significant deterioration in cardiac functions. By acting upon an “early

warning,” a clinician could remotely instruct a patient to adjust a intake of fluids, salt,

or medication, thereby avoiding an avoidable hospitalization or informing just-in-time

palliative care strategies (Gadoud et al., 2013). This is becoming ever more realizable with the

recent advances in the Internet of Things (IoT) and data analytics. Healthcare is increasingly
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leveraging information technologies for more efficient diagnostics

and treatment by “smart” and “connected” systems (Akmandor and

Jha, 2018; Greco et al., 2020). These systems provide intelligent

services for health monitoring and medical automation in different

contexts and environments, e.g., home, on-the-go, etc., permitting

substantial reduction in cost of care (Ren et al., 2015; Kumar and

Rajasekaran, 2016).

Many heart conditions exhibit biophysical signals that can

be detected before acute, irreversible damage is sustained by

the heart or before more extensive damage is incurred, thereby

reducing adverse health events. For example, various types

of arrhythmia, can be monitored using home-based/mobile

health (m-Health) monitoring platforms based on single-mode

sensing (i.e., electrocardiogram (ECG), Singh and Jasuja, 2017;

Ahsanuzzaman et al., 2020; Xu, 2020). In our prior work (Yakut

et al., 2022), we designed a rechargeable, compact, and wearable

heart health monitor that acquires real-time ECG from the human

body. Recorded information can be transferred wirelessly to the

user’s phone or computer, where a machine learning model can

be used to monitor biophysical data and identify anomalies.

The relatively inexpensive cost of this device enables home

monitoring in many cases, if real-time ECG data processing can be

implemented.

Existing studies on applying big data and machine learning

technologies on ECG data for arrhythmic detection often focus on

the learning performance, such as accuracy, precision, etc., instead

of the potentials of supporting real-time processing. Some early

work on real-time analysis of ECG data uses 1-D representation

coupled with time-series based processing to achieve higher

computational performance (Petty et al., 2020; Zhou et al., 2020;

Bertsimas et al., 2021). However, representing ECG data in 1D loses

the rich 2D features, and may hinder the potential of integrating

data analytics technologies with traditional diagnostic approaches.

In this paper, we present a different approach in supporting real-

time arrhythmic detection using convolutional neural networks,

aiming to preserve the 2D features and also satisfy the real-time

processing needs. Specifically, we have developed a small-scaled

convolutional neural network and trained the model using images

of short duration ECG samples. We have carried out extensive

experiments to evaluate the capability of a neural network running

in real-time. This approach has an average accuracy of 90% and an

average classification time of about 0.02 s (20 ms). The proposed

method can be applied to a wearable sensor, where the sensors

collect raw data from an individual and the data is then passed

onto the neural network to analyze data in real-time. The proposed

method is a small-scaled convolutional neural network that is

feasible to execute on resource-constraint devices to support in-

home monitoring systems. This allows for faster diagnostic of

arrhythmia and can be deployed in a medical environment without

powerful hardware.

The rest of the paper is organized as follows. Section 2 reviews

related work. Section 3 describes the dataset that was used to

train and test the proposed approach. Section 4 presents the

convolutional neural network using image-based inputs, and its

evaluation. Section 5 explains the workflow for ECG detection

to evaluate its capability of meeting real-time processing needs.

Section 6 shows results using real world data collected from

our sensing platform. Finally, Section 7 concludes the paper and

presents future directions for this research.

2 Related work

Cardiovascular diseases are the leading cause of death both

in the U.S. and worldwide. The direct domestic medical costs

associated with congestive heart failure (CHF) are expected to reach

$53 billion by 2030 (Heidenreich Paul et al., 2013), with themajority

of costs related to hospitalization. However, hospitalization may

be avertible provided patients and clinicians are cued to intervene

prior to significant deterioration in cardiac functions. Long-term

and realiable in-home monitoring is needed to address these

challenges. Cardiac monitoring using ECG electrodes and bedside

monitors has been implemented in the medical field for over 70

years. The standard 12-lead ECG, along with other reduced-lead (5-

or 3-electrode) configurations, can accurately measure signals and

help diagnose complex heart conditions (Drew et al., 1999; Petrenas

et al., 2015; Francis, 2016; Zègre-Hemsey et al., 2016). Various

machine learning approaches have been applied for predicting

cardiovascular diseases (Krittanawong et al., 2017; Altan et al.,

2018a,b, 2021; Shameer et al., 2018; Vocaturo and Zumpano, 2021).

One of the most well-known and popular methods used to classify

ECG data is a Support Vector Machine (SVM) (Zadeh et al., 2010;

Li et al., 2015; Dinakarrao et al., 2019) with various kernels, feature

extraction methods, and categories of arrhythmia.

For neural network approaches, a common method is to

use a convolutional neural network. Güler and Übeyl propose a

method for data engineering for ECG signals, by using discrete

wavelet transform (DWT) to extract additional information about

the signal in the form of wavelets (Güler and Übeyli, 2005).

These wavelets, in addition to a few statistical features derived

from the signal, are used in a modular neural network, where

each input of the network has its own neural network and work

independently of each other. This network works because DWT

can be broken down multiple times and each wavelet can be

learned by the network. A 34-layer deep residual neural network is

proposed in Rajpurkar et al. (2017). Beside the 1D-convolutional

approaches, 2D-convolutional approaches exist (Acharya et al.,

2018; Wu et al., 2018; Dinakarrao et al., 2019). For example, Jun

et al. (2018) extracts an image from an ECG sample and uses a 2D-

convolutional neural network to learn patterns from images. The

network architecture of their proposed work is similar to that found

in existing deep learning imagemodels such as VGGNet (Simonyan

and Zisserman, 2014).

Real-time decision making is the key requirement of many

emerging applications that pose a set of new challenges to

the deployment of machine learning models (Nishihara et al.,

2017). Specifically, machine learning models must be able to

operate with low latency (Crankshaw et al., 2015) and high

throughput (Nair et al., 2015; Silver et al., 2016), in order to satisfy

the real-time requirement of these applications. In the area of

cardiovascular medicine, initial efforts have beenmade toward real-

time processing of ECG signals to diagnose relevant diseases (Jin

et al., 2009; Oresko et al., 2010). To this end, processing and

analyzing ECG data as time series attracts increasing attention, and
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TABLE 1 List of annotations for classification.

Annotation Description

N Normal beat

L Left bundle branch block beat

R Right bundle branch block beat

V Premature ventricular contraction

A Atrial premature contraction

f Fusion of paced and normal beat

F Fusion of ventricular and normal beat

j Nodal (junctional) escape beat

a Aberrated atrial premature beat

E Ventricular escape beat

J Nodal (junctional) premature beat

Q Unclassifiable beat

e Atrial escape beat

S Premature or ectopic supraventricular beat

Z Non-Beat

long short-term memory networks (Petty et al., 2020) have been

used to achieve higher performance.

The existing studies on real-time processing have not used

CNN based 2D approaches, due to its deep architecture which

presents challenges for meeting the real-time processing needs.

However, preserving 2D features offers the potential of integrating

machine learning based approaches with the traditional diagnostic

approaches, which opens up a broad range of opportunities to

enhance the at-home monitoring. In this paper, we bridge this

gap by exploring the potentials of using CNN based approaches to

support real-time arrhythmic detection. Specifically, we developed

and evaluated a simple 2D CNN that is trained by ECG images.

The baseline architecture for this model is derived from existing

work, with the model size reduced to address the challenge of a

resource-constrained environment. We then develop a simulator

to mimic the on-going monitoring, where the data are generated

continuously and the detection must be done on the fly. This

approach is evaluated using both open-source data and data

collected in a lab setting using our wearable sensor prototype (Yakut

et al., 2022).

3 Dataset

In this paper, we used the MIT-BIH Arrhythmia Database

(Goldberger et al., 2000) to train and evaluate our machine learning

models. The database provides 48 records of different individuals,

with varying age andmedical conditions. Each record includes a 30-

minute ECG recording recorded in two channels at a rate of 360 Hz

(samples per second). The database provides a list of annotations

that describes what conditions have been diagnosed in the nearby

ECG region, as well as where the conditions are located. The full

list of annotations contains various annotations that are labeled as

single characters. These labels are divided into two categories, beat

and non-beat annotations. Beat annotations describe the heartbeat

and non-beat may describe the start/end to a region, peaks, and

comments.

The original MIT-BIH Arrhythmia Database contains 40

different annotations for heartbeats. However, many of the

annotations are not useful in classifying arrhythmic conditions.

To improve the learning process, we grouped the non-beats

annotations into one annotation (annotation “Z”). Table 1 shows

the description of the annotations that are found in the database.

Figure 1 shows the ECG signals of nine different types of

heartbeats, with the first being a normal beat while the remaining

are arrhythmia. As the figure shows, the overall pattern of any

arrhythmia differs from the normal beat, making it possible for

a classification algorithm to recognize and classify different ECG

patterns.

4 Arrhythmic detection using
convolutional neural networks

4.1 Data preprocessing

Preserving the 2D features of ECG signals provides the

potential of integrating machine learning detection with the

traditional diagnostic approaches. Therefore, the first step of our

work is to preprocess the data from the MIT-BIH database, and use

the images to train the machine learning models. Given an image

width n and an ECG recording, each annotated sample x has up to
n
2 data points before and after x is captured, and we call this window

w. If the number of data points in w is less than n, w is discarded

and the next sample that has an annotation is analyzed. Next, create

a blank (0 value) 1-channel image I of dimension (n×h), where h is

the desired height of the image. Each column c represents a sample

in w, and the row r in column c is the the approximate value of wc.

For each columns c in image I, we fill a pixel white (value 255) at

position I(c, r) where r defined as:

r = ⌊wc/d ∗ h⌋

where d is the difference of the maximum limit and the minimum

limit of the ECG, wc is the cth reading of w.

As an example (Figure 2), consider the ECG sequence

[300, 325, 600, 100, 300] with a minimum and maximum value of

[0, 700] and an image height h = 5. The value d is calculated

as 700 − 0 = 700. The first value reads 300 and r is calculated

as ⌊ 300700 ∗ 5⌋ = ⌊2.14⌋ = 2. Repeat the same calculation for the

rest of the sequence, and they are translated to the y values of the

image as [2, 2, 4, 0, 2]. We then fill a pixel white at a position in

the order it appears. That is, from the left most column we fill a

pixel white at row 2, move one column to the right and fill a pixel

at row 2, move one column right and fill row 4, and so on. The

coordinate of pixels that needed to be filled for this example are

(0, 2), (1, 2), (2, 4), (3, 0), (4, 2). The images are generated up-side

down, but this is correct due to how image coordinate works. We

can rework the algorithm so that it is human-readable, but this

is unnecessary as the images are meant for the neural network.

This method is an effective way to convert ECG signals into a 2-

dimensional greyscale graph, while capturing the patterns in ECG.
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FIGURE 1

ECG signals of nine di�erent types of heartbeat.

We chose this method because it allows the flexibility to adjust

resolution of the 2D images, making it easier to meet the real-time

challenges on edge devices.

Note that if the machine learning based arrhythmia detection

is used in practice, signals that are generated by the ECG

hardware may not be centered around the peak measurement,

as shown in Figure 2. To address this issue, a random skew

is applied to each signal during the data generation step:

before the image is generated, the signal is randomly shifted

± n
4 samples and the same image creation steps are applied

as normal. Therefore, we generate two datasets, centered

alignment (aligned) and skewed alignment (skewed). Both datasets

are used to evaluate the proposed approach to provide a

comprehensive evaluation.

4.2 Model architecture

The structure of this network is inspired by existing widely

used CNN models, such as AlexNet (Krizhevsky et al., 2012)

and VGGNet (Simonyan and Zisserman, 2014), with simplified

architecture to enable execution on resource constrained devices

and meet the real-time processing requirement. Most visual

learning network uses a large amount of filters in the convolutional

layers to learn features found in RGB images. Even with gray-

scaled images, the number of filters can be moderate (about

32 filters) for these convolutional neural networks. Given that

our image data are simple and have small dimensions, the goal

is to build a CNN with simple structure to mitigate training

overhead and meet the resource bounds on wearable devices.

Specifically, we selected 3 sets of 2D convolutional and max

pooling layers, with the number of filters of 8, 16, and 32,

respectively. The first convolutional layer of 8 filters attempts

to learn the pattern of the input image, and the subsequent

convolutional layers will learn from those features. We also need

to determine a suitable kernel size on the first convolutional layer

so that the model can easily identify the ECG pattern. Initial

experiments have been carried out to evaluate various kernel sizes,

and we selected size of 6, 5, and 4 for the respective layers,

which allows to detect the few features of the input image and

done so in a timely manner. We selected these parameters for

the network to additionally address the challenge of real-time

processing. Table 2 shows the structure of the proposed CNN

model.

To establish a baseline model to compare against, we used a

simplified version of the CNN architecture presented in Jun et al.

(2018).We keep the original architecture, but reduce the number of

filters in each of the convolutional layers by 1
8 , in order to support

resource-constraint environment. We use the same data processing
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FIGURE 2

ECG to image conversion example.

TABLE 2 2D CNN network architecture.

Layer Filters/nodes Kernel size Activation

Input (180, 64, 1) - -

Conv2D 8 (6,6) ReLU

MaxPooling2D - - -

Conv2D 16 (5,5) ReLU

MaxPooling2D - - -

Conv2D 32 (4,4) ReLU

MaxPooling2D - - -

Flatten - - -

Dense 512 - ReLU

Dense 256 - ReLU

Dense 128 - ReLU

Dense 15 - SoftMax

method to prepare training/testing data for the network with the

image dimension 128× 128. The architecture of the baseline model

is shown in Table 3.

4.3 Model evaluation

A comprehensive set of experiments were carried out on

classifying ECG signals using the proposed model with both

datasets with centered and skewed alignment, respectively. All

experiments use a traditional training method of splitting the

dataset into a 9:1 training/testing split. Both our proposed model

and the baseline model were evaluated using the MIT-BIH dataset.

The distribution of normal and arrhythmia samples in both the

training and testing datasets is 66.6%:33.4%. All experiments were

performed on a computer with an Intel i5 core @ 2.5 GHz, 8 GB

RAM, and an NVIDIA Geforce 1050.

TABLE 3 2D CNN Baseline Network Architecture.

Layer Filters/nodes Kernel size Activation

Input (128, 128, 1) - -

Conv2D 8 (3,3) ReLU

BatchNormalization - - -

Conv2D 8 (3,3) ReLU

BatchNormalization - - -

MaxPooling2D - - -

Conv2D 16 (3,3) ReLU

BatchNormalization - - -

Conv2D 16 (3,3) ReLU

BatchNormalization - - -

MaxPooling2D - - -

Conv2D 32 (3,3) ReLU

BatchNormalization - - -

Conv2D 32 (3,3) ReLU

BatchNormalization - - -

MaxPooling2D - - -

Flatten - - -

Dense 512 - ReLU

BatchNormalization - - -

MaxPooling2D - - -

Dense 15 - SoftMax

Table 4 shows the performance of the proposed CNNmodel on

the testing dataset. Across a few different number of epochs, the

network shows that it can provide good result within 10 epochs.

On average, both networks that used aligned and skewed data

points takes approximately 72 s to train per epoch and testing takes

approximately 63 ms per batch of 512 samples. The testing time
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alone is fast enough for real-time classification, as it takes a 360 Hz

ECG device about 2.7 ms to generate a single reading. In theory, a

single sample would take 11µs under the same hardware that it was

trained on, satisfying the requirement for real time classification.

If places such as clinics and hospitals use similar hardware, then a

deeper model is preferred because of its potentially higher accuracy.

Table 5 shows the performance of the baseline model on the

testing dataset. In comparison to the result of the proposed model

in Table 4, the modified baseline model takes approximately 2–3

times long to complete its tasks, 161 second per epoch for training

and 127 ms per batch of 512 samples for testing (about 24 µs per

item), but with similar results when compared to the proposed

model. In both aligned and skewed ECG data, the differences in

accuracy between the proposed and the baseline mode is about

±1%. These results indicate that the proposed model can perform

the same task with less time.

5 Workflow

To evaluate the proposed model’s performance in a real-time

setting, we have developed a computational workflow which can be

used to test the feasibility of real-time processing. This workflow is

divided into two components: the simulator and the detector.

TABLE 4 Performance of the proposed 2D model.

Aligned Skewed

Epochs 1 10 20 1 10 20

Accuracy 0.956 0.968 0.969 0.905 0.941 0.939

Precision 0.962 0.969 0.970 0.921 0.945 0.943

Sensitivity 0.997 0.967 0.969 0.888 0.937 0.936

Specificity 0.994 0.997 0.997 0.994 0.996 0.995

Bold numbers shows the best performance in these epochs.

TABLE 5 Performance of the Baseline 2D Model.

Aligned Skewed

Epochs 1 10 20 1 10 20

Accuracy 0.967 0.966 0.939 0.894 0.935 0.938

Precision 0.969 0.966 0.940 0.903 0.937 0.940

Sensitivity 0.964 0.965 0.939 0.888 0.935 0.937

Specificity 0.997 0.997 0.995 0.993 0.995 0.995

Bold numbers shows the best performance in these epochs.

TABLE 6 Classification (C) average timing.

Model Check
center

Average
classification

time (s)

Average number of
samples removed

during
classification

Baseline Yes 0.024024 8.648583

No 0.024731 8.903034

Proposed Yes 0.020661 7.438066

No 0.020651 7.434187

This ECG simulator mimics the hardware that generates ECG

readings from the ECG leads. It loads the entire prerecorded ECG

into memory (about 9 MB in size for a MIT-BIH ECG record) and

pushes a sample about every 1
fs
second to a buffer b of size n, where

fs is the recorded frequency. If the buffer b is full, it removes the

oldest sample and pushes the new sample. During experiments,

pushing a sample at the exact requested time of 1
fs
seconds causes

the whole workflow to run on average 10% longer than expected

(i.e. an ECG recording of 30 seconds actually runs for 33 seconds).

FIGURE 3

The ECG detection workflow diagram.

TABLE 7 Image conversion average timing.

Model Check
center

Average time
for image
conversion

(s)

Average number of
samples removed
during image
conversion

Baseline Yes 0.00013 0.046923

No 0.000148 0.053171

Proposed Yes 0.000177 0.06341

No 0.000182 0.06538
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Because of this, the frequency for the simulator is adjusted by a

factor of 0.9.

The detector component contains the neural network, which

will detect ECG samples that it acquires from the simulator. First,

it loads the pre-trained neural network and waits for the buffer b

from the simulator to be full. Once the buffer b is full, the detector

creates a copy of the buffer and we call this copy of the buffer bc. The

detector may perform a check to determine if the signal bc contains

a beat at the center of the buffer. If the check determines that the

signal is not centered, the signal is rejected and the detector process

starts over. The classifier will generate an image I from the buffer

bc described in Section 4, then feed to the pre-trained network and

output a result. This process continues until the simulator has no

more samples. During the classification process, the detector will

not check at the buffer b until its task is complete, and the detector

will miss several samples that were pushed to the buffer b by the

simulator as a result of this.

We can solve the issue of missing samples during classification

by creating a buffer of buffers (bb). However, this is unnecessary. If

this buffer of buffers creates copies of the buffer b at every sample

that is generated by the simulator, the buffer bb will eventually

contain the whole recording and will cause delay between when the

sample is copied and when the same sample is classified. We can

also create a delay between samples being pushed into this buffer.

TABLE 8 Check center average timing.

Model Check
center

Average time
for check
center (s)

Average number of
samples removed

during check
center

Baseline Yes 0.001973 0.710142

No - -

Proposed Yes 0.002218 0.798551

No - -

FIGURE 4

Prototype of wearable heart monitoring device.

But if this timing is too short, it can create the problem of eventually

containing the whole recording. Conversely, if the timing is too

long such that the detector already finishes its task, the detector can

get data from the buffer b directly.

The experiments for the workflow were carried out on a laptop

with a i7–8565U CPU @ 1.8 GHz, 8 GB of RAM, and Ubuntu

20. This was done so that timing for the detection component is

similar to machines that are found in a hospital environment. This

minimum sleep time causes the the whole workflow to stall (in

particular the simulator thread) until the sleep function exits and

throw off the timing results.

Table 6 shows the runtime result of the first 30 s of a random

MIT-BIH record in the testing dataset using the workflow shown

in Figure 3 averaged across 10 runs. The records can be picked

randomly, as all of the records in theMIT-BIH arrhythmia database

are at the same frequency. We only need to look at the run time

of the implemented features of this workflow. “Check Center” is a

simple check that determines if the input signal contains a heartbeat

that is located near the center. This check is optional and can be

performed to lessen the amount of outputs.

Overall, both the proposed and baseline model shows great

result in terms of the computational performance. Table 6 shows

the classification time for a single image, and this shows that a small,

compact model (i.e., the proposed model) slightly outperforms a

larger model (baseline). Other processes such as image conversion

TABLE 9 Small sample of results for 360 hz recording with center check.

ID Location Classification Confidence

0 249–429 N 99.99%

1 458–638 N 100.00%

2 465–645 N 100.00%

3 472–652 N 99.99%

4 685–865 N 99.99%

5 692–872 N 99.33%

6 699–879 N 99.60%

7 919–1099 N 99.99%

8 927–1,107 N 99.99%

9 934–1,114 N 54.41%

10 1,163–1,343 N 99.99%

11 1,170–1,350 N 100.00%

12 1,177–1,357 N 99.88%

13 1,440–1,620 N 100.00%

14 1,448–1,628 N 99.96%

15 1,455–1,635 N 97.18%

16 2,036–2,216 N 100.00%

17 2,043–2,223 N 99.80%

18 2,335–2,515 N 99.99%

19 2,640–2,820 N 100.00%

20 2,648–2,828 N 99.99%
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FIGURE 5

Distribution of the 360 Hz recording by confidence.

(Table 7) and check center (Table 8) can be completed within one

sample the ECG recording frequency, therefore, they do not cause

additional overhead for the integrated system.

6 Integrated system evaluation

Using the open-sourced MIT-BIH Arrhythmia Database

(Goldberger et al., 2000), we have demonstrated the effectiveness

of the proposed CNN model in terms of detecting signals with

arrhythmia. The next step is to demonstrate the applicability of this

method in real-world scenario.

We have previously developed a portable device (Yakut

et al., 2022) that captures the sound of the heart beat

(Phonocardiogram, PCG) and the chest vibration generated by the

heart (Seismocardiography, SCG), along with the heart’s electrical

activity (Electrocardiogram, ECG). The electrodes are intended to

be placed on three different location of the patient’s chest, two on

the left and one on the right, along with a microphone for the PCG

data collection. The hardware also include a Bluetooth module that

can communicate to a mobile device or PC, and a back-up storage

via a micro-SD card. The prototype is shown in Figure 4.

Using the 360 Hz recording we have collected in the lab

setting (Yakut et al., 2022), the proposed model from Section

4 and the workflow mentioned in Section 5, the model returns

good results with an average confidence of 97% (weighted

confidence 97%±0.02%). Note that the confidence score from

the classification is an indication of how likely (probability) the

predictions of a machine learning algorithm are correct. The

classification mostly returns N, indicating that the model, without

having to train in-between beats, can correctly identify a beat.

Given that the data was collected from a healthy individual,

TABLE 10 Distribution of the 360 Hz recording.

Classification Occurrences

A 6

F 1

N 220

R 5

V 5

Z 3

all testing data were normal signals. A sample result with the

first 10 seconds of the newly recorded signals is shown in

Table 9. The table shows the ID of the heartbeat peaks, the

position of the heartbeat peak in the whole signal (360Hz,

10 seconds), classification results, as well as the confidence

scores. Note that these results are denoised with discrete

wavelet transform and contain a center check to help align

the signals.

We also performed the same experiment mentioned above

on the whole recording. As shown in Figure 5 and Table 10,

the proposed model shows high confidence in detecting normal

heart beat.

In term of performance, the workflow runs within the expected

time frame. The whole workflow takes 64 s to complete, it

detected and classified 240 samples, most of which are detected

almost immediately after the detector finished its previous task.

On average, the workflow skips only 7.4 samples (about 0.02 s)

per classification, demonstrating the potentials for applying in a

real-time environment.
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7 Conclusion

Arrhythmia such as atrial fibrillation is a common cause of

death in the United States. While the most common way to

diagnose arrhythmia is through an ECG reading, a challenge

that comes from this method of diagnosis is that it requires

a trained medical profession to evaluate the ECG reading. The

development of a machine assisted method can speed up the

diagnostic process and potentially reduces fatality. In this paper, we

present a convolutional neural network basedmethod that classifies

a short ECG sample. Additionally, we have created a workflow

that tests the model’s potential in a real-world environment. Our

result shows that a 2D convolutional neural network that uses

image representation of the input signal shows a high degree of

confidence of around 90%. The proposed workflow determines

that the proposed network is capable of classifying ECG samples,

and its performance is feasible to implement real-time arrhythmia

detection on wearable devices.

For future work, we will build on top of the classification

results, and develop feature extraction methods and machine

learning models for anomaly detection. Classification provides a

good guidance on diagnosis, because it classifies data samples to

a number of known conditions. However, in a real-time setting,

it might not be necessary to diagnose the underlying problems.

Instead, being able to quickly detect abnormal heart rhythms is

more critical, i.e., anomaly detection. Therefore, a binary classifier

which detects anomaly signals from the normal ones is the essential

part of real-time monitoring and detection of arrhythmia. In

addition, we will develop real-time sensing techniques to collect

data at real-time, and evaluate our models using data collected

from patients.
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