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Subsurface interpretations and models rely on knowledge from subject matter

experts who utilize unstructured information from images, maps, cross sections,

and other products to provide context to measured data (e. g., cores, well

logs, seismic surveys). To enhance such knowledge discovery, we advanced the

National Energy Technology Laboratory’s (NETL) Subsurface Trend Analysis (STA)

workflow with an artificial intelligence (AI) deep learning approach for image

embedding. NETL’s STA method o�ers a validated science-based approach of

combining geologic systems knowledge, statistical modeling, and datasets to

improve predictions of subsurface properties. The STA image embedding tool

quickly extracts images from unstructured knowledge products like publications,

maps, websites, and presentations; categorically labels the images; and creates

a repository for geologic domain postulation. Via a case study on geographic

and subsurface literature of the Gulf of Mexico (GOM), results show the STA

image embedding tool extracts images and correctly labels them with ∼90 to

∼95% accuracy.

KEYWORDS
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1 Introduction

Artificial Intelligence (AI) shines in its capacity to perform intricate calculations and

uncover hidden patterns that surpass human capabilities (Zhan et al., 2023). This proficiency

finds notable application in geospecific research, particularly in the development of binary

and multimodal classification algorithms for subsurface analysis, effectively categorizing

features like reservoirs, aquifers, faults, and fractures by processing visual data, including

images, maps, and cross sections (Zhan et al., 2023).

AI also plays a pivotal role in advancing deep learning algorithms for seismic data

interpretation, exceeding traditional methods in precision and efficiency (Tschannen, 2020).

This heightened accuracy not only results in more precise geological models of the

subsurface but also reinforces AI’s potential to reshape the field of geoscientific research.
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However, pattern recognition’s role extends far beyond result-

based algorithms; it is a fundamental element that permeates

the entire research process. This significance becomes notably

pronounced during the literature review phase, where researchers

navigate through extensive volumes of unstructured data (Wagner

et al., 2022). Already, AI’s proficiency in rapid data parsing provides

invaluable assistance to researchers during this process, effectively

contributing to the identification and validation of research gaps,

the execution of repetitive tasks, the extraction of metadata, and

the facilitation of qualitative content analysis (Wagner et al., 2022).

The term “literature review” may conjure images of scientists

immersed in volumes of books, manuscripts, and densely written

material. However, in practice, the visual content within these

documents often facilitates knowledge acquisition as effectively,

if not more so, than written text. This dynamic is particularly

prominent in fields such as geography and geology. For example,

researchers can understand in seconds the distribution of fluvial

systems that deposit into the Gulf ofMexico when looking at a map;

a text description of where these fluvial systems are located would

require extreme detail or prior understanding of the geography to

comprehend their location.

Given the value of visualization to knowledge transfer in earth

sciences, like geography and geology, and the power of AI computer

vision in image-pattern recognition, this paper introduces an AI-

informed image segmentation/imbedding tool, which parses and

categorizes unstructured knowledge products like images, maps,

cross sections, and other visualizations from geoscientific and

related literature. The image embedding tool allows users to input

literature from their local machine (singularly or in batches) or

input a list of internet links. In either instance, the tool extracts

visualizations, categorizes the visualization via a convolutional

neural net (CNN) built on the VGG16 architecture, and gives the

user the opportunity to view them (Figure 1). The image imbedding

tool is part of a software suite that emerged from the National

Energy Technology Lab’s (NETL) Subsurface Trend Analysis (STA)

workflow, which was developed to assist subsurface research by

bringing greater contextual knowledge to measured data such as

cores, well logs, and seismic surveys (Rose et al., 2020).

2 Methods

2.1 The subsurface trend analysis method

The STAmethod is a theoretical foundation proposed by NETL

to enhance predictions of subsurface properties via the integration

of geologic context with geo- and spatial statistics (Rose et al.,

2020). Building upon that theoretical foundation, NETL developed

an STA software suite to integrate AI/ML with the STAmethod; the

image imbedding tool showcased in this paper is one part of that

broader tool (Mark-Moser et al., in prep). The STA method follows

four steps to achieve this integration: (1) gathering of geologic

knowledge and subsurface data, (2) postulating geologic domains,

(3) validating geologic domain, and (4) conducting advanced

analyses that integrate geologic domains. These first two steps

involve a literature review to identify geologic information (e.g.,

geologic maps, provinces, and stratigraphy) that can be used to

postulate geologic domains that bound areas of common geology

relative to the subsurface property the user investigates. In support

of steps 1 and 2, the deep learning technique of image embedding

was selected because it can harvest visual information on geologic

and geographic context from publications while reducing oversight

and shortening the user’s review time.

2.2 Image imbedding

The STA image embedding tool uses a modified version

of Python’s Fitz library for image extraction (McKie and Liu,

2021), then categorically labels those extracted images via an

expanded convolutional neural net (CNN) built upon the VGG16

architecture (Ranjan, 2020). CNNs use image segmentation to

partition imagery into perceptual or visual regions, based on pixel

values and pattern recognition (Wang et al., 2018). Pixels with

similar values and patterns belong to the same object, parts of

objects, or to the background, which typically have smaller feature

differences. The pixel values are based on an ensemble of color,

textures, gradients, and light intensity. Consistent patterns of pixels

are grouped together as belonging to an object.

Theoretically, in a process referred to as computer vision, the

CNN is meant to mimic the human eye, which seamlessly uses

attributes like color or texture to partition imagery into an almost

infinite number of categories. In practice, a CNN model “reviews”

training data or thousands of pre-categorized images and over

time begins to recognize patterns, a process referred to as model

training (Wang et al., 2018). Like human learning, the accuracy of

the pattern recognition relies on repetition, so the model reviews

the training data several times. In the parlance of deep learning,

the number of times that a neural net reviews an entire training

dataset and accordingly adjusts the model is referred to as an

epoch. In practice, an epoch is also broken into batches, which

updates the model before the entire dataset is viewed (Kattenborn

et al., 2021). At the end of a batch, the predicted variables are

compared to the expected output allowing for error measurement

via a loss function (forward pass) and an adjustment (backward

pass) to model weights, which is a measure of the importance

of each input parameter (Figure 2). It is expected that error will

decrease and accuracy will increase during each epoch as the model

trains. However, there will eventually be a stabilization of error

and accuracy (i.e., convergence), at which point running more

epochs will have diminishing returns and an increased potential for

overfitting (Gavrilov et al., 2018).

While humans can easily recognize small perceptual differences

in objects or images, computer recognition, to date, is much less

advanced. For example, humans can easily recognize differences in

dog breeds, but at present, computers struggle to ascertain that an

image of a husky and pug would be categorized as the same species

(i.e., as a dog) (Moreira et al., 2017). Despite limitations, with the

advent of ever faster processing speeds, and greater amounts of

storage and data, the capabilities of computer vision have grown

exponentially during the past decade (Bayoudh et al., 2022). In fact,

computer vision technology is now part of daily life, particularly

for yes-or-no decisions. For instance, Apple’s iPhone uses binary

facial recognition to recognize phone owners vs. non-owners. In

a major world health development, computer vision is being used
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to distinguish the presence of malaria in blood samples (Pattanaik

et al., 2017).

2.3 Model development

In computer vision research, it is common to initiate the

modeling process by creating models capable of distinguishing

between two categories, for instance, differentiating between cats

and dogs. These models are subsequently extended to encompass

broader categories, such as specific breeds within the cat or dog

category (Khalifa et al., 2022). We adopted a similar approach in

the development of the NETL STA image embedding tool. Given

the focus of our research on geospatial and geologic data, our initial

objective was to design a model with the ability to classify images

into one of two primary geospecific data types, namely maps or

FIGURE 1

Visualization of NETL’s STA Image Imbedding Tool. At top, the model was trained on image data consistent with geospecific research. The tool then

extracts imagery from literature, labels, collects/organizes the imagery, and makes the data available for review and analysis.

FIGURE 2

Visualization of CNN. An epoch is a complete forward pass and backward pass, which adjusts parameter weights until error is minimized for the final

output. An epoch can take place with an entire dataset or with batches.
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FIGURE 3

Visualization of multi-category training data for STA image embedding tool.

charts. Our model was then further extended to include additional

categories, as seen in Figure 3.

Furthermore, in the realm of computer vision, transfer learning

is a widely adopted machine learning strategy. This technique

involves using a model originally designed for one specific task

as the foundational basis for a model intended for a different

task. This can be useful when the second task is like the first

task, but there is less data available to train a model from scratch
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FIGURE 4

The neural network layers of the STA Image Imbedding tool.

(Pan and Yang, 2009). We evaluated various pre-existing models,

including ResNet50, VGG16, VGG1, Inceptionv3, and EfficientNet

(Ranjan, 2020). Among these, the VGG16 model, readily accessible

in numerous software packages like TensorFlow, Keras, or PyTorch

(Ranjan, 2020), stood out as the most effective in initial tests.

VGG16 was developed by Karen Simonyan and Andrew Zisserman

at the University of Oxford in 2014 (Simonyan and Zisserman,

2014). The VGG16 model has 16 convolutional layers and three

fully connected layers (Yosinski et al., 2014). While other models

demonstrated slight improvements of ∼10–15% above chance

levels, the VGG16 model outperformed them. It’s worth noting,

however, that even though VGG16 showed superior performance

compared to other pre-built models, it still achieved a classification

accuracy of only around 20% above chance when distinguishing

between maps and charts.

To enhance the accuracy of the VGG16 model for our STA

image embedding tool, we introduced additional sequential layers

to the Convolutional Neural Network (CNN). These included

dense layers, flattening, and dropout (Figure 4). We also applied

the appropriate loss functions based on the number of modeled

classes, utilizing binary-cross entropy for binary classification and

categorical-cross entropy for multi-categorical models. In our quest

to refine the VGG16 model, we followed standard deep learning

model development practices, drawing inspiration from Ranjan

(2020). Nevertheless, it’s important to note that creating our model

was an iterative process, requiring adjustments to both layers

and hyperparameters until we achieved optimal accuracy while

preventing over-tuning by minimizing cross-entropy (Srivastava

et al., 2014; Goodfellow et al., 2016).

For clarity, dense layers refer to fully connected layers, meaning

that each neuron in the layer is connected to every neuron in

the previous layer. These layers are typically used for classification

tasks (Goodfellow et al., 2016). Flattening, on the other hand,

involves converting the output of a convolutional layer into a

one-dimensional vector, which is necessary before passing it to a

fully connected layer (LeCun et al., 2015). Dropout is a technique

utilized to prevent overfitting in neural networks by randomly

deactivating neurons during training. This encourages the network

to learn from multiple features rather than relying on just a few

(Srivastava et al., 2014). In our model, the input image initially goes

through the VGG16 model, and the output is then flattened into

a one-dimensional vector. This vector is subsequently processed

through a series of STA Image embedding dense layers, followed

by a dropout layer (Figure 4). The final output layer contains one

neuron for each class, with the class having the highest output value

being the predicted outcome.

2.4 Model categories

A key component to deep learning model development is the

training data. We began collecting training data with a web-scraper

and labeled images manually as map or chart. Initial accuracy was

poor, so we fine-tuned both the training data (collecting more

specific maps from scientific literature) and fine-tuned the CNN

model itself.

Multi-classes were defined to capture common figures in

literature, balanced between specificity and the model’s ability to

differentiate imagery. Table 1 provides a short description of each

class and a breakdown of each dataset size. The dataset size varies

for a number of reasons:

(1) some classes were combined to better represent visual

differences, (2) the results of the google image search changed in

size and quality, and (3) some classes hadmany duplicates that were

removed upon inspection.
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TABLE 1 Description of model categories.

Class Description Train/validation/test
set size

Chart Acts as a catch all for data representations that are not line charts, tables, or histogram/bar charts. Dataset

includes many examples of pie charts, gantt charts, organizational charts, scatter plots. This class came from

charts that were not common enough to create their own class.

164/15/6

Histogram/bar chart Data representation containing clearly defined bars representing categorical or binned continuous data. 151/18/14

Photo A standard RGB photograph taken from a consumer camera with minimal editing. 399/31/12

Image Different from “Photo” this is expected to capture figures beyond what a regular camera would produce.

Examples include 3D renders and electron microscope scans.

38/14/13

Infographic Information displayed as multiple objects, may contain examples of other classes. 122/12/17

Line chart Data displayed using connected line segments. 151/20/29

Logo A graphic that may contain text representing an organization, method, or tool. 266/32/14

Map A display expected to contain some geospatial boundary. 275/27/18

Stratigraphy/cross

section

A graphic containing subsurface and/or geologic information at depth. 563/55/16

Table Data displayed in cells, ideally with defined borders around each cell, in even rows and columns. 380/33/10

Total 2,509/257/149

2.5 Testing the model

To train the STA image embedding CNN, we split the data

into three categories: (1) training, (2) validation, and (3) testing.

This splitting process is typically automated, but we selected the

test dataset by hand to ensure there were no similar or duplicated

images from the training and validation sets. The division of the

training, validation, and testing set was∼85/7.5/7.5%, respectively,

except for some classes where the test set was kept closer to the size

of the less represented classes. From the training and validation

results, we found that 20 epochs balanced the variance and bias

trade off (i.e., avoiding overfitting). Following training, we used the

unseen test set for accuracy assessment.

2.6 Deploying the model

The model is available in the STA tool as part of the

literature analysis workflow. The weights from the trained model

are packaged with the tool and loaded on demand to classify

extracted images. The STA user interface allows researchers to

import (Figure 5) hundreds of unstructured knowledge products

and rapidly receive a repository (Figure 6) of structured data to

assist in geologic domain postulation.

3 Results

3.1 Binary classification

We applied the STA image embedding tool to geologic and

geographic knowledge products about the northern Gulf of Mexico

(GOM), which has been the use case for the entire development

of the STA tool suite. Following binary training, the STA image

embedding tool extracted images from the GOM and correctly

labeled them with ∼90 to ∼95% accuracy for binary classification

(Figure 7, left) with a loss entropy of <10% for ∼30 to ∼35 epochs

(Figure 7, right). Beyond ∼30 to ∼35 epochs, the classification

began to overfit and did not generalize to unseen datasets. For

the binary classification, the image classification model maintained

∼90% accuracy on unseen inputs, similar to the training/test split

(Figure 8).

3.2 Multiclass classification

When expanded beyond a binary classification, the STA image

embedding tool still maintained a robust accuracy of ∼86.67%

on the validation dataset and 79.87% on the test dataset. The

confusion matrix in Figure 9 shows the accuracy for each category

in the multiclass model. The multiclass model begins to stagnate

at 15 epochs and overfit after ∼20 epochs. The metrics for 10

consolidated classes improved over the previous version with

14 classes, seeing accuracy in training change from 86.68 to

87.67% and accuracy in validation change from 84.25 to 86.67%.

Additionally, it is worth noting that to achieve these results, the

target size was increased to 256 from 64, as finer details for visually

similar classes were causing incorrect predictions notable from the

confusion matrix.

3.3 Classification speed

We tested the speed of the STA image embedding tool

by importing a list of geological based knowledge products

that were selected using NETL’s Smart Search Tool (Rose

et al., 2018). The tool was able to parse imagery from 1,000

documents and complete both the binary and multiclass models in

<10 min.
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FIGURE 5

User interfaces for the STA image embedding tool: the image embedding UI allows users to import a list of online or local knowledge products (left)

to create a repository of structured data to assist in domain postulation. Showing progress as images are labeled (right).

FIGURE 6

Data repository of labeled images created from unstructured knowledge products. The example shown is a simple binary classification with an

accuracy of ∼90%.

4 Discussion

Image imbedding has been widely used in tasks, such as object

proposal generation (Uijlings et al., 2013; Pont-Tuset et al., 2017;

Zhang et al., 2017), tracking (Shrestha et al., 2020; Yang et al., 2021),

object detection/recognition (Kohli et al., 2009; Juneja et al., 2013),

and semantic segmentation (Noh et al., 2015; Wang et al., 2018).

Despite such uses, rarely, if ever, has image imbedding been used to

facilitate the literature review process.

The research presented in this paper envisions a space of AI

and subject matter expert cooperation, where scientists utilize AI-

informed models to assist in parsing literature and unstructured

data like images, maps, cross sections, and other products to

provide context to measured data (e.g., cores, well logs, seismic

surveys). As part of the STAmethod, we presented a tool that allows

researchers to more rapidly parse relevant geo-specific contextual

knowledge to accelerate knowledge- and data-driven subsurface

property analyses.

With a binary accuracy of ∼90% and a multi-categorical

accuracy of ∼80% on unseen data sources, the STA image

embedding tool can facilitate literature reviews, particularly in the

geosciences, by parsing thousands of documents and images in a

short time (<10 min).

From our personal experiences with the tool, we can attest to

the image embedding tool’s remarkable time-saving capabilities in

the context of literature reviews. This categorization tool excels in
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FIGURE 7

Classification accuracy (left) of the STA’s image embedding tool during the training/testing (∼30 epochs). Above 30 epochs overfitting occurred,

which can be seen (right) with the convergence of cross entropy error.

FIGURE 8

Classification accuracy on unseen data for the STA binary image

embedding model. The model maintained an accuracy of roughly

90% on unseen data.

swiftly parsing and labeling data, far outpacing human capabilities.

As a result, we were able to efficiently review hundreds of images,

bypassing the laborious process of sifting through thousands of

pages of literature.

Nevertheless, while the STA Image Embedding tool holds

promise, it is crucial to acknowledge its limitations. The tool is

constrained by the categorization scope, confined to the categories

explicitly discussed in the paper. Consequently, the STA Image

Imbedding tool may struggle to accurately categorize images that

diverge from these predefined categories (Wagner et al., 2022).

Furthermore, the tool’s accuracy is inextricably linked to the

quality and availability of the training data it relies upon. In

instances where training data is scarce or biased, the tool’s capacity

for accurate categorization may be compromised (Shorten and

Khoshgoftaar, 2019). An additional limitation inherent, not just to

this tool, but all image embedding, is its context-specific nature

(Xu et al., 2019). This means that the tool’s ability to categorize

images accurately may be contextually bounded. For example, an

image embedding tool trained on a dataset of medical images might

not perform well when tasked with categorizing images of natural

landscapes or other unrelated domains.

Overall, the results in this paper demonstrate the nascent

potential for image embedding to help with literature reviews in

a geospecific domain. Future research of the STA image embedding

tool will include expanding the categorization and making it

more specific to geological and geographic terms. In addition,

current research of NETL’s STA tool includes developing natural

language processing (NLP) models to work in tandem with the

image embedding to further facilitate knowledge discovery. We

imagine that the NLP model will be able to improve image

embedding accuracy by reading image figure labels and feeding

that information to the CNN model. As well, we plan to receive

user-specific feedback on the tool’s capabilities and incorporate that

feedback into future versions of the tool.

5 Conclusion

As AI continues to inform more high-stakes decisions

(Bernabé-Moreno and Wildberger, 2019), a rich set of literature

has been devoted to understanding how experts and AI can work

together in various domains like education (Chen et al., 2020),

health care (Han et al., 2020) supply chain economics (Toorajipour

et al., 2022), human rights (Rodrigues, 2020), and software

engineering (Hutchinson et al., 2021). As well, there has been

substantial philosophical discussion regarding the “responsibility

gap” associated with AI (i.e., determining culpability when AI

systems fail) (Santoni de Sio and Mecacci, 2021).

At its core, this AI-expert-relationship delves into the

nuanced dynamics of the AI-expert relationship, emphasizing

the need for AI to augment decision-making without impeding

or compromising the process (Bernabé-Moreno and Wildberger,

2019). With the research presented in this paper, we endorse the

perspective that AI should inform decision-making, but not replace

human expertise. Specifically, AI-enhanced tools, as exemplified

in this paper, could enhance geo-specific research by parsing

information about the heterogeneous physical environment.

Researchers in the physical and earth sciences could be more

easily informed on the essential attributes in an area of interest

(AOI), allowing them greater insight during analysis. For instance,
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FIGURE 9

Accuracy matrix of the STA image labeling model expanded to 10 categories. While the accuracy has decreased, the model still accurately labels

unseen data ∼80% of the time.

researchers investigating the Gulf of Mexico’s natural-engineered

energy system, including petroleum exploration, wave energy, and

carbon storage, can gain valuable insights into the region’s unique

attributes. These insights include the Gulf of Mexico’s susceptibility

to hurricanes (Kossin et al., 2010), high sedimentation rates at the

Mississippi River Delta Front (Chaytor et al., 2020), and distinctive

geological features influenced by subsurface salt migration (Rowan

et al., 2003). Understanding the Gulf of Mexico’s unique climatic

and geologic attributes equips researchers with the knowledge

needed to make informed decisions regarding infrastructure in

the region.

However, it is essential to recognize the limitations of

AI. AI-informed insights are fundamentally reliant on the

availability of data, which may not offer comprehensive coverage

across entire subject areas, as the deepest understanding often

resides with domain experts. Moreover, AI outputs are typically

context-specific and my not be directly transferable to different

conditions (Dunjko and Briegel, 2018). In contrast, human

expertise is versatile and adaptable to various problems

across different fields. Additionally, AI models often lack

transparency and may be challenging for non-experts to

understand (Yampolskiy, 2020). Consequently, subject matter

experts are still essential for interpreting and validating

AI-generated results.

In summary, while AI and ML are increasingly integral to

high-stakes decision-making, they are most effective when they

complement human expertise rather than replace it. The synergy

between AI and expert knowledge allows for more informed

and robust decision-making across a spectrum of domains,

addressing both the potential and limitations of AI in guiding

critical choices.
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