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The modern maritime industry is producing data at an unprecedented rate. The

capturing and processing of such data is integral to create added value for

maritime companies and other maritime stakeholders, but their true potential can

only be unlocked by innovative technologies such as extreme-scale analytics, AI,

and digital twins, given that existing systems and traditional approaches are unable

to e�ectively collect, store, and process big data. Such innovative systems are

not only projected to e�ectively deal with maritime big data but to also create

various tools that can assist maritime companies, in an evolving and complex

environment that requires maritime vessels to increase their overall safety and

performance and reduce their consumption and emissions. An integral challenge

for developing these next-generation maritime applications lies in e�ectively

combining and incorporating the aforementioned innovative technologies in an

integrated system. Under this context, the current paper presents the architecture

of VesselAI, an EU-funded project that aims to develop, validate, and demonstrate

a novel holistic framework based on a combination of the state-of-the-art HPC,

BigData and AI technologies, capable of performing extreme-scale and distributed

analytics for fuelling the next-generation digital twins in maritime applications and

beyond.
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1. Introduction

The modern maritime industry is producing data at an unprecedented rate, given that
naval vessels are now equipped with an ecosystem of sensors that capture data related to
the condition of a ship (performance, fuel consumption, emissions etc.) as well as external
conditions (e.g., weather) (Lytra et al., 2017). The capturing and processing of such data
is integral to create added value for maritime companies and other maritime stakeholders.
While traditional approaches do not have the capacity to uncover the true potential of
big data, innovative technologies, techniques, and approaches that were conceived for big
data management are required to deal with the increasing data volumes (Pau et al., 2022).
Indicative technologies that must be leveraged by maritime stakeholders to develop the
next generation of maritime systems and applications are extreme-scale analytics, artificial
intelligence (AI) and high-powered computing among others (Mouzakitis et al., 2023).
Such innovative systems are not only projected to effectively deal with maritime big data
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but to also create various tools that can assist maritime industries,
in an evolving and complex environment, to improve overall safety
and reduce naval accidents and human casualties caused by human
errors, improve ship performance, optimize naval routes and fleet
intelligence, and reduce fuel consumption and Greenhouse Gas
(GHG) emissions (Mouzakitis et al., 2022). The aforementioned
needs require innovative solutions and smarter systems, which can
be realized through AI, Machine Learning (ML), Deep Learning
(DL), digital twins and other digital technologies. Capitalizing on
these innovative tools in existing maritime processes requires the
incorporation of various advanced technologies into an integrated
system in a way that leverages both the increased capabilities of
the individual technology but also and more importantly the not
yet fully explored capabilities that stem from their combination.
For this reason, there is a growing interest from both the research
and the commercial community to create system architectures
that can effectively combine big data and AI, while taking
into consideration distributed computing, HPC, AI and other
technologies that require large amounts of data to effectively
operate and create value.

Stemming from the above, this study presents the
architecture of VesselAI, an EU-funded project that aims
to develop, validate and demonstrate a novel holistic
framework based on a combination of the state-of-the-art
HPC, Big Data and AI technologies, capable of performing
extreme-scale and distributed analytics for fuelling the
next-generation digital twins in maritime applications and
beyond, including vessel motion and behavior modeling,
analysis and prediction, ship energy system design and
optimization, unmanned vessels, route optimization and
fleet intelligence.

Below we mention some requirements, which have been
identified and used to drive the design of the VesselAI architecture:

• Data collection and management: The VesselAI platform
should be able to collect/store large volumes of historical data,
ingest real-time data from different data sources like AIS,
weather and geospatial data.

• Semantic enrichment and reasoning engine: The
harmonization of heterogeneous datasets is a critical
functionality that must be covered from VesselAI system as
also to extract hidden insights and patterns through maritime
data semantic representations.

• High performance computing for job scheduling and
parallelization: Acceleration infrastructure, like NNP, VPU
and GPU will be used to provide workflow scheduling and
scheduling, as well as parallelization will enable the scaling of
performance in extreme scenarios and provide inference and
algorithms training instantaneously.

• AI models and analytics: VesselAI must offer a fully
customized scientific environment that aids Data Scientists
andMaritime Analysts to train data driven models, store them
and in general to manage models lifecycle.

• Advanced visualizations and reports engine/analytics
environment: Set of pipelines to monitor Machine
Learning/Deep Learning pipelines, to configure data
engineering and inference jobs and offer data selection,
filtering, aggregation and attribute selection.

• Security and access control: The platform should provide
state of the art mechanisms that enable security and access
control protocols like OAuth 2.0 and UMA-2.0, to provide
finer grained authentication and authorization to ICT system
end users.

This paper is structured as follows: Section 1 provides the
introduction to the thematic area and the scope of the study.
In Section 2, indicative bibliographic research on four key
technological areas is presented. Section 3 presents the VesselAI
concept and architecture and finally, Section 4 concludes the
document and presents future pathways for expanding on the
current study.

2. Related work

2.1. Extreme scale processing architectures

Distributed and extreme-scale processing architectures are in
the forefront of big data stream processing and High-Performance
Computing (HPC). Stream processing is the processing of data
that is ingested in real-time or near real-time (Akbar et al., 2015).
The majority of research publications apply approaches in which
IoT generated data are ingested directly by a cloud infrastructure
despite the shortcomings of the technology when it comes to
efficiently handling large data streams (Cao and Wachowicz,
2019a). To address big data dimensions such as volume and
velocity, the Lambda architecture was introduced (Warren and
Marz, 2015), which is a cloud architecture that deals with traditional
issues of big data volumes stemming from IoT applications as it
provides much better scalability and fault tolerance (Lin, 2017).
On the other hand, the Kappa Architecture is centered around
simplicity. For that reason, this approach replaces the batch
processor component with a streaming processor that is much
better suited to deal with data streams in a cloud infrastructure
due to higher data rates and retention times despite the fact that
it requires a larger in-memory storage space (Wingerath et al.,
2016). Finally, a new IoT architecture was proposed by Cao and
Wachowicz (2019b), that focuses on the optimization of analytical
tasks in IoT data streams and on uncovering useful insights about
the real-world (from where data are ingested in practice via the IoT
sensors), both for better understanding what is happening (what do
the data tell us) as well as improving the accuracy of predictions that
are produced by the system. This process was named the Analytics
Everywhere model and its primary focus is the automation of
analytical tasks that are known in prior.

2.2. Distributed data storage and
management

The maritime domain is a remarkably heterogeneous
environment. Maritime data processing applications often must
incorporate information frommany different data sets, such as ship
positions and movements, measurements from various maritime
devices and their metadata, weather information, geospatial data,
and environmental information (Lytra et al., 2017). The data can
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come in the form of streaming data or batch data, and they differ
in volume, velocity, variety, variability, veracity (Ishwarappa and
Anuradha, 2015) and formats. Another outstanding property of
the maritime domain is the diversity of the devices involved. A
broad range of IoT sensors produce a vast amount of streaming
data, which are often first (temporarily) stored, cleansed, filtered,
and aggregated on edge devices before being sent upstream to fog
devices, cloud instances or bare-metal server machines for their
further use (e.g., advance analysis powered by AI technologies
and visualization). There are five stages in (maritime) data storage
and processing workflow: data collection, data cleansing, data
storage, data processing, and data emission. In the following
paragraph, indicative approaches and technologies for each stage
are briefly presented.

For data collection, Apache Kafka is widely used as a distributed
system that can draw data from various sources, whether they
contain batch or streaming data. Data cleansing in the maritime
domain mainly focuses on AIS datasets, stemming from the
fact that AIS is an old technology that was not designed to
fit the big data paradigm (Svanberg et al., 2019). One of the
main challenges in cleansing AIS is the correction of data
inconsistencies, which some researchers (Abdallah et al., 2019)
tried to solve by applying text analytics and natural language
processing. For data storage, Distributed File Systems (DFSs) are
widely used as they allow data storage in multiple remote nodes,
while allowing data access as if the data was stored locally. In
practice, Hadoop Distributed File Systems (HDFSs) (Shvachko
et al., 2010) are one of the most popular solutions for systems that
utilize big data. For data processing and emission in distributed
systems, frameworks such as Apache Hive and Presto are utilized,
offering querying and analytics capabilities over large quantities of
distributed data.

2.3. Advanced ML and DL optimization
techniques

Research on Machine Learning (ML) and Deep Learning
(DL) models has created impressive achievements in the past
few years. Modern vessel positioning sensors produce large
quantities of data that can improve maritime knowledge and
applications. Vessel positioning data are dynamic, continuous,
and sparse on time and space, requiring methods capable of
handling spatiotemporal data to derive and learn the hidden
knowledge. Over the last decade, ML-based methods, and
especially Artificial Neural Networks (ANNs) have attracted
a renewed research interest to train large models on vast
amounts of spatiotemporal-related data to solve various difficult
problems, due to the advancements of Deep Learning (DL)
methods and GPS-based technologies. Recent literature
reviews have highlighted that several papers employ the
power of the special Recurrent Neural Network (RNN) based
architectures, which have become the State of the Art (SotA) for
temporal modeling.

The current status of the research bibliography in DL theory
and architectures, in general, is given in a comprehensive survey
(Alom et al., 2019). A detailed review of the SotA in applying

DL techniques for various spatiotemporal data mining tasks is
presented in Wang et al. (2022), while a systematic review of
ML methods for spatiotemporal sequence forecasting tasks is
provided in Shi and Yeung (2018). Focusing on the maritime
domain, ANNs and generally ML methods have been used to
solve various complex problems. The current status of SotA
navigation methodologies in the maritime intelligence research
field is presented in Tu et al. (2018). However, most of these
works do not take into account the entire range of special
characteristics or requirements of maritime real applications, while
the impact of ML methods on the maritime industry remains
largely unknown.

2.4. Simulation modeling and AI,
data-driven techniques for applications and
digital twins in the maritime domain

Properly analyzing and predicting various aspects of a
maritime vessel’s behavior is integral in maritime research as it
can provide the next generation of maritime applications with
use cases that include simulations, vessel traffic management
applications, route planning and optimization, among others.
The concept of co-simulation is referring to the modeling and
simulation of different subsystems in a distributed way, which
are composed and as a whole form and more generic simulation
model. The need for co-simulation arises, when large systems
consist of different parts, which are modeled and simulated
by different techniques tools or algorithms (Gomes et al.,
2018).

Co-simulation is used in ship design, vessels movement, system
design and more. It is described as an appropriate way to run
multiple scenarios for the analysis of maritime systems (Laesche
et al., 2013). Such scenarios include the evaluation of algorithms
for route planning and optimization, the efficiency evaluation of
shipping lanes, the valuation of traffic management systems, the
evaluation of risks like grounding and collisions andmore (Dibbern
and Hahn, 2014). Also, for maritime systems, the use of co-
simulation is preferred to full-system simulation, because the latter
has two main challenges. The complexity of the various physical
and engineering aspects of a vessel makes it difficult to effectively
simulate its behavior. At the same time, the existing simulation
tools are very specialized, mainly developed for research and
optimization of subsystems and lack interconnection capabilities.

2.5. Existing ICT architectures and
standards in the maritime

The VesselAI project leverages technological advances and
outcomes from other EU-funded projects in the context of ICT
systems and applications in the maritime sector. Specifically,
the VesselAI platform’s building blocks are based on existing
knowledge from projects, which are reported in Table 1. Also, this
table describes how VesselAI platform differs from the existing
EU-funded projects.
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TABLE 1 Existing projects/architectures.

Project Description

Big Data Oceana

(Lytra et al., 2017)
Big Data Ocean was a EU-funded project that delivers a
marketplace for maritime data sources and enables big
data scenarios. In particular, semantic and linked data
characteristics increase the value and extracted patterns
to monetize maritime information. VesselAI exploits Big
Data Ocean marketplace, and semantic mechanisms to
enforce decision-making in VesselAI pilot use cases. Big
Data Ocean focuses on maritime data monetization
through the instantiation of a marketplace. On the
contrary VesselAI re-uses the marketplace
functionalities to support data exchange between
stakeholders to support the knowledge exchange
through anonymized data and trained models exchange.

DataPortsb

(Belsa Pellicer et al.,
2022)

DataPorts provides a Data Platform in which
transportation and logistics companies around a seaport
are able to manage data like any other company asset, in
order to create the basis to offer cognitive services.
DataPorts provides insights for VesselAI services,
especially for vessel behavior and modeling related to
port operations. VesselAI collaborates with DataPorts by
exchanging know-how and tools for the AI and
cognitive services developed as well as collaboration in
dissemination activities and stakeholder engagement.

datACRONc

(Vouros, 2017)
datACRON advances the management and integrated
exploitation of voluminous and heterogeneous archival
data and streaming data sources, so as to significantly
advance the capacities of systems to promote safety and
effectiveness of critical operations for large numbers of
moving entities in large geographical areas, including
maritime domains. VesselAI broadens the application
spectrum of datACRON, targeting to a much wider
variety of application. Moreover, VesselAI puts more
focus on utilizing a combination of technologies (HPC,
IoT, and big data), in order to open new high-fidelity
vessel models for the proliferation of innovative
application and business horizons in the maritime
sector.

INFOREd (Vodas
et al., 2021)

INFORE’s mission is to address the challenges posed by
huge data sets and pave the way for real-time, interactive
extreme-scale analytics and forecasting, focusing on
three diverse application areas: maritime surveillance,
financial forecasting and life science. The ability to
forecast, as early as possible, a good approximation to
the outcome of a time-consuming and resource
demanding computational task allows quickly
identification of undesired outcomes and save valuable
amount of time, effort and computational resources.
VesselAI re-uses and extends the developed techniques
for trajectory data summarization and highly efficient
vessel event detection.

ahttps://www.bigdataocean.eu/.
bhttp://www.dataports-project.eu/.
chttp://datacron-project.eu/; https://cordis.europa.eu/project/id/687591.
dhttps://www.infore-project.eu/.

3. VesselAI concept and architecture

3.1. The VesselAI concept

VesselAI leverages and combines existing frameworks and
solutions in the areas of HPC, AI and big data to develop
analytical services and decision-making procedures to support
maritime digital twins and applications (Mouzakitis et al., 2022).
The VesselAI components capitalize the amount of data that
are generated from the maritime vessels (such as vessel sensor

data, autonomous vessels data, AIS data) and combine them with
data originating from weather & meteorological databases, satellite
images, oceanographic data, and port data to support the machine
and deep learning models training (Mouzakitis et al., 2023).
The data management and data fusion mechanisms of VesselAI
(Herodotou et al., 2020) support the inference functionalities in a
wide range of use cases under different perspectives like the vessel
traffic management (van Westrenen, 2014), vessel manoeuvering
(Gil et al., 2020), fuel consumption optimization (Yan et al., 2021),
collision avoidance (Mizythras et al., 2021) and other plethora
of scenarios that will be extended under front-end applications
utilized by maritime stakeholders. In general, VesselAI is an AI-
oriented solution that tackles data processing and computational
problems by leveraging state-of-the art HPC technologies, real
time analytics and cloud technologies for creating data driven
digital twins that offer (a) ship modeling for global vessel traffic
monitoring and management, (b) optimal design of ship energy
systems, (c) autonomous ships management in sea transport, and
(d) weather routing and fleet intelligence. Figure 1 depicts the
VesselAI concept.

The proposed VesselAI solution, relies on data stream
workflows, AI and HPC acceleration technologies (Pyzer-Knapp
et al., 2022) and on federated machine/deep learning algorithms
(LSTM, RNN, ANN) to detect anomalies at global scale and
monitor vessels and their direction at global scale (Han and Yang,
2021). Furthermore, model-driven and data-driven simulation
scenarios are conducted, to design optimal ship energy systems
(Trivyza et al., 2019). The simulation mainly focuses on the
vessels operating conditions performing inferences by executing
high performance analytical queries and data fusion procedures
on a large number of energy-related features and subsystems
to define the optimal conditions and practical operations (Niese
et al., 2015) throughout a vessel’s lifecycle. The VesselAI services
leverage pretrained forecasting algorithms and vessel historical
navigational data to predict anomalies compared to the normal
traffic pattern and predict the next ship maneuvers. Finally, the
VesselAI Analytical Services tackle the weather forecast uncertainty
by enabling fleet intelligence services and functionalities for
route updating and voyage optimization (Yu et al., 2021) to
avoid excessing fuel consumption and to ensure overall ship
safety. In this context the VesselAI deep learning models reuse
historical vessel voyage data, weather data and AIS data to perform
accurate predictions that reduce maintenance and fuel costs of
operating vessels.

3.2. The VesselAI architecture

Figure 2 demonstrates the VesselAI architecture. The depicted
schema is an elaborated view of Figure 1 being the result of the
technical specification elicitation process of the VesselAI platform.
The VesselAI platform is consisted of the Data Services layer, the
HPC Infrastructure and Resource Management layer, the VesselAI
Model Serving layer, the Analytics & Visualization Services layer
and finally, the VesselAI Launcher and Security Framework. In
the following sections, each one of these layers will be analyzed
and described.
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FIGURE 1

The VesselAI high level solution.

3.2.1. VesselAI data services
The VesselAI Data Services are responsible for the efficient

ingestion, cleansing, harmonization, and enrichment of extreme-
scale datasets stemming from different sources and targeting
meaningful preprocessing tasks for machine and deep learning
algorithm training. The VesselAI Data Services building blocks are
the following:

3.2.1.1. Data ingestion and harmonization service

The Data Ingestion and Harmonization Service is the entry
point of data into the VesselAI platform. It ingests both batch and
streaming data sources using different techniques suited to each
data type (Paladin et al., 2022). Batch data sources can consist of
local files, web resources or legacy databases, while streaming data
sources consist of web streams and message brokers. Batch data
can be preprocessed by the harmonization component before being
loaded into the database or it can be directly ingested into the
storage system. Stream data is immediately stored in the message
queuing component and stored back into the message queue,
providing a clean and standardized stream to the consumers. The
use of a streaming message queue abstracts some of the challenges
of streaming data while the use of the harmonization component
provides cleaned and standardized data to be stored or processed
by other services (Cazzanti et al., 2015).

3.2.1.2. Semantic enrichment and reasoning services

The semantic enrichment component of VesselAI is mainly
responsible for data transformation to common representation
with clear semantics and data interlinking with data that originates

from different data sources (Brüggemann et al., 2016). The process
of data transformation generates data in RDF, which is the
standard for semantics and linked data. In addition, the schema
of the generated RDF data is defined by the VesselAI ontology,
which provides a common vocabulary and representation of the
knowledge domain (Santipantakis et al., 2022).

3.2.1.3. Storage and querying service

The VesselAI Enriched Warehouse consists of an object
storage where the data from the Harmonization Service and
from the Semantic Enrichment Service are stored. In addition,
a schema meta-store mechanism [Apache Druid (Correia et al.,
2019)] is deployed on top of the object storage to query
the persisted harmonized information. A relational database
[MonetDB (Martinez-Rubi et al., 2015)] is deployed to store
the prepared data for ML and DL model training. Finally, a
Presto (Sethi et al., 2019) query engine is installed on top of
Apache Druid (meta-store component) and MonetDB to support
federated querying from both types of storages. The following
image (Figure 3) depicts the architecture of the VesselAI Storage
and Querying Service.

3.2.2. VesselAI HPC infrastructure and resource
management

High-performance computing (HPC) is an integral technology
as it provides the much-needed computational power that big
data-oriented technologies and applications require (Rajovic et al.,
2016). The generic architecture of an HPC is built around a set

Frontiers in BigData 05 frontiersin.org

https://doi.org/10.3389/fdata.2023.1220348
https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org


Ilias et al. 10.3389/fdata.2023.1220348

FIGURE 2

The VesselAI architecture.

of high-speed networks that interconnect computing nodes with
storage devices as well as service nodes. The variation dimensions
relate to the nature of the CPUs and associated computing
accelerators in conjunction with the memory size at the level of
the computing nodes as well as the distributed storage capacity and
access methods at the level of the storage nodes. Interconnection
networks vary according to their topology, routing strategy and
are characterized by speed and latency. A preliminary study of
the VesselAI use cases suggested a simple architecture made up of
a limited number of fully connected CPUs which are associated
with hardware accelerators through the standard PCIe protocol.
To serve a wide spectrum of applications with varying memory
requirements the compute node memory will adopt the standard
formula based on the HPL/HPCG benchmarks, i.e., 2 GB (resp.
1GB)/×86 (resp. PowerPC) core. The overall storage capacity is
estimated at about 300 TB according to the preliminary analysis of
use cases requirements. An important point to mention here will be
the presence of burst buffers (Herbein et al., 2016) to accelerate the
access to storage devices. These storage capacities can be increased
if required in the future.

As we are aiming for a relatively small configuration, separate
interconnection networks dedicated to computation, storage and
management nodes will be considered. InfiniBand interconnection
network and high-speed Ethernet network will (Chen et al.,
2019) be the preferred protocols for those interconnection
fabrics. In association with the hardware architecture described

above, a software stack is put in place to accommodate the
implementation of applications in the system. The starting
point is the SuperComputer SCS5 software stack [including
Luster File System, SLURM Scheduler (Yoo et al., 2003), System
Monitoring tools, Programming models, Libraries and debugging
tools] developed by Bull as the basic operating layers of its HPC
systems. Upon this basic software stack, successive software
layers dedicated respectively to specific acceleration technologies
(e.g., FPGA/GPU compiler, driver, debugger), intermediate
interface (e.g., Intel/OpenVINO, Intel/OneAPI dedicated to
Intel Acceleration, etc.) and AI frameworks (TensorFlow/Keras)
(Nguyen et al., 2019) will be added to efficiently support a variety
of AI-based applications.

3.2.3. VesselAI AI model serving, analytics and
visualization services

This layer comprises the intelligence of the VesselAI ecosystem.
The trained ML and DL models are stored in the VesselAI Model
Registry and served to the application layer via the VesselAI Serving
Framework. The Service Execution and Orchestration component
is responsible for launching and submitting model training jobs to
the HPC Infrastructure and finally the Advanced Visualization &
Reporting Engine is responsible for data exploration and training
metadata visualization.
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FIGURE 3

VesselAI storage and querying service.

TheVesselAI machine and deep learning models for maritime
applications and digital twins employ state of the art AI
methods and techniques. Specifically, the artificial neural
networks approach is used in forecasting vessel routes and
traffic flows (Groba et al., 2018), detecting anomalies and
vessel collisions. The AI models that are being implemented
in the VesselAI framework concern route forecasting,
traffic flow forecasts, collision detection, fuel consumption
and others.

The AI model registry and serving framework is the sub-
module responsible for hosting the trained VesselAI machine &
deep learning models. In addition to the models themselves, the
VesselAI Model Registry (Zaharia et al., 2018) stores metadata
about the data and the training jobs used to create the model.
The base technology that is used as a model registry is
the MlFlow open-source component. The Serving Framework
functionalities are also based on the MlFlow Registry that exposes
the inference and prediction capabilities of the trained models as
REST APIs.

The service execution and Orchestration component is
responsible for managing the execution of analytical pipelines
in the context of the VesselAI platform. The core component is
the Service Execution Handler, which encapsulates the definition
of multiple analytical services that are used to train AI and
digital twin models (Anwar et al., 2020), and then use the
trained models to perform inferences and generate forecasts
and optimization outcomes. In addition, it orchestrates the
whole lifecycle of the execution of the analytical pipelines
(Hojaji et al., 2019), accepting the execution requests and input
arguments, triggering the execution of the analysis, and finally
serving the results by leveraging the VesselAI Model Registry
& Serving Framework functionalities. The Service Execution

Handler, as mentioned above, which is implemented on top of
Apache Airflow, has integrated different data storages (MonetDB
and MongoDB) during VesselAI Development cycles/releases.
Pythonic Dynamic Acyclic Graphs (DAGs) are enabled to
define periodical jobs in the VesselAI that implemenent the
following tasks:

• Connection with maritime data sources.
• Execution of data pre-processing and curation routines.
• Periodical Models Training (e.g., when new data arrive on

VesselAI data storage).
• Perform trained models evaluation based on test/validation

datasets.
• Serving of trained artifacts to VesselAI Platform User

Interfaces (UIs).

The second component of the service is Apache Airflow
that acts as the Execution Orchestrator. It contains the
code of the analytical tasks, forms pipelines and manages
execution.

The advanced visualization and reporting engine is responsible
for providing user interfaces with visualization and reporting
capabilities. This component is based on known visualization
technologies, such as Apache Superset (Michele et al., 2019), but
it will be extended with the necessary visualization and reporting
mechanisms and strategies according to the VesselAI stakeholders
needs and goals. The main goal is to enable users to select
one or more visualization techniques, setup their own custom
dashboards and produce insightful visualizations for specific
Maritime Domain scenarios.

3.3. VesselAI launcher and security
framework

The VesselAI Launcher aims to enable efficient and cost-
effective design and deployment of innovative services in the
maritime industry, by leveraging state-of-the-art technologies in
Data Engineering, AI and HPC (Yi and Loia, 2019). In essence,
VesselAI’s goal is to provide a novel holistic framework, capable of
performing extreme-scale and distributed analytics for fuelling the
next-generation of maritime digital twins and applications. Hence,
the VesselAI solution envisions to provide a set of interoperable
and modular data, AI, and HPC services, in an integrated
package that has the potential to be deployed on the premises
of each stakeholder (e.g., a maritime company) and operate
independently, or interoperate with existing maritime applications
of different architectures and deployment environments. The
VesselAI platform will also include a visualization and data
analytics environment that will offer a programming interface to
a specific group of users, as well as access to dashboards/jupyter
notebooks (Piazentin Ono et al., 2021) that will be created to
serve as demonstration showcases for the deployed services. As
such, the VesselAI Launcher was developed to “gather” all these
services in the same environment. The VesselAI launcher will be
a single page front-end application, through which the users will
be able to sign in and obtain access to different services, based on
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FIGURE 4

VesselAI launcher user groups and functionalities.

FIGURE 5

Security framework architecture.

the user group categorization. The VesselAI launcher will provide
authentication and authorization functionalities for the users, as
shown in Figure 4.

The VesselAI security framework is used to apply role-based
access control over the VesselAI Launcher assets (services, data,
frontend environments). Each VesselAI user group can apply
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specific actions over the Launcher UI. When users are logged into
the platform, they get anOAuth2 Access Token (Sendor et al., 2014)
which is then distributed to the Security Layer and introspected by
its routines. The OAuth 2.0 protocol is among the most popular
and widely used authorization/single sign-on (SSO) protocols and
is also tailored for the new SSO standard, OpenID Connect (Fett
et al., 2016). The Access Token Introspection procedure returns the
user information, such as username, user roles and metadata. This
information is sent back to the VesselAI platform and according to
the user roles, it is decided if the logged-in user can access a specific
VesselAI asset.

The VesselAI Security framework/layer consists of two
components as shown in Figure 5. KeyCloak, which is an
open-source identity and access management framework is the
first component, providing role-based access management with
minimal development effort through implementation of the
OAuth2 and UMA2 standards (Divyabharathi and Cholli, 2020).
The second one is a custom component developed using Node.js,
the Axios library, and express framework and acts as the
Admin Middleware for KeyCloak. In fact, it is the orchestrator
mechanism, which programmatically implements processes that
the administrator of KeyCloak could potentially operate.

A workflow that depicts the scenario of a user must be
established as the Homepage will not be accessible until the user
is authenticated for security/consistency reasons.

The Oauth2.0/OIDC mechanism redirects a user from a web
page to a KeyCloak server, where the user must provide his/her
credentials (Sersemis et al., 2022). The credentials are transferred
to KeyCloak, through the additional Security Layer (Security
Enabler). KeyCloak, which is a user management platform offers
the necessary mechanisms to decide if the credentials are valid. If
they are, the user obtains an OAuth2 access token which, following
the same logic, is passed, and stored to the user’s browser, through
the Security Enabler. On the contrary, if the credentials are not
valid, an error message is sent, and the user is redirected to the
login page.

After the login procedure, the user’s access token which is
stored in the browser’s local storage is introspected by leveraging
the Security Layer functionalities. After the introspection process
the platform receives the user’s information (roles, attributes, and
other metadata) and by following a role-based access control policy
it decides the VesselAI services and assets that the user can be given
access to. In this way, the VesselAI Launcher will be dynamically
altered to display links and relative resources according to the
services that the user can have access to.

4. Discussion

To assess and evaluate the effectiveness of the VesselAI
Architecture, there are some Key Performance Indicators (KPIs)
which are described in detail in Table 2.

The attempt to combine the different technologies, i.e.,
distributed data storage and management, HPC Infrastructure
and Resource Management, Machine and Deep Learning
Models’ training, and Machine Learning Operations, entails the
following challenges:

TABLE 2 KPIs for assessing the VesselAI architecture.

KPI description Target

Time from decision to the implementation of a data
processing framework handling large-scale and diverse data
(streaming and batch).

70% decrease

Time from decision to the implementation of a ML and DL
framework (preparation, training, serving).

70% decrease

Time from decision to the implementation of an HPC
workflow for AI and big data workloads.

50% decrease

Time from decision for production to market launch for new
maritime products and services based on vessel and vessel
components models and behavior.

5% decrease

Increase in ML and DL predictions quality (accuracy, error
rate, precision, recall and sensitivity).

10% increase

• The data management procedures: Actions that include data
curation, harmonization, semantic enrichment and storage of
streaming data.

• HPC Infrastructure is the key ecosystem in VesselAI, where
persisted data and database technologies must be hosted.
Orchestration environments and modules, like Kubernetes,
Cuda, Docker Swarm, and others, must enable functionalities
that are computation and load intensive for optimizing data
pre-processing and interoperability.

• The VesselAI Platform includes frameworks and components
that offer scientific environments to VesselAI technical users
(data scientits, data analysts), in the form of web-based
notebooks, to train their machine learning and deep learning
models. Artifacts after training phase are stored to VesselAI
Models Repository, that acts as a storage of trained models.
Machine Learning Operations (MLOps) are conducted on
top of Models Repository to expose trained models via
REST Services.

5. Conclusions and next steps

It is evident that the VesselAI Architecture presented under
the scope of this paper provides a framework that enables state
of the art techniques such as HPC, ML, and DL to facilitate
maritime stakeholders in their everyday tasks, regardless of whether
they possess advanced or non-advanced technical skills, and of
course to create business value via the development and connection
of the advanced maritime analytics services. The proposed
architecture consists of multiple layers each one addressing
the different requirements of the system. More specifically,
the Data Services layer is responsible for the acquisition and
enrichment of data originating from vessels, sensor, and/or noon
reports. The Data Analytics layer is responsible for the analytics
implementation, the model training and storage of the trained
artifacts and finally the serving of the inference functionalities
of the intelligence components. Finally, the VesselAI application
layer is the central point of the VesselAI toolbox. The different
stakeholders interact with the layers of the architecture to retrieve
insights about their vessels regarding route forecasting, vessel
route collision, creation and assembly of optimal energy systems
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and other functionalities that are exposed to the users through
a library of AI models. AI acceleration technologies and HPC
infrastructure are leveraged to provide insights and forecasts in
real time.

Future steps of the current body of work will mainly focus
on the deployment of the described architecture in several pilot
platforms for testing its capabilities under different points of
view and analyzing in greater detail the impact of the maritime
digitalization process in selected scenarios and use cases.
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Paladin, Z., Kapidani, N., Lukšić, Z., Nicoletti, T., Moutzouris, M., Blum, A.,
et al. (2022). “A maritime big data framework integration in a common information
sharing environment,” in 2022 45th Jubilee International Convention on Information,
Communication and Electronic Technology (MIPRO) (IEE: Opatija), 1161–1166.
doi: 10.23919/MIPRO55190.2022.9803777

Pau, M., Kapsalis, P., Pan, Z., Korbakis, G., Pellegrino, D., Monti, A., et al. (2022).
MATRYCS—a big data architecture for advanced services in the building domain.
Energies 15, 2568. doi: 10.3390/en15072568

Piazentin Ono, J., Freire, J., and Silva, C. T. (2021). Interactive data visualization in
jupyter notebooks. Comput. Sci. Eng. 23, 99–106. doi: 10.1109/MCSE.2021.3052619

Pyzer-Knapp, E. O., Pitera, J. W., Staar, P. W., Takeda, S., Laino, T.,
Sanders, D. P., et al. (2022). Accelerating materials discovery using artificial

intelligence, high performance computing and robotics. NPJ Comput. Mater. 8, 84.
doi: 10.1038/s41524-022-00765-z

Rajovic, N., Rico, A., Mantovani, F., Ruiz, D., Vilarrubi, J. O., Gomez, C.,
et al. (2016). “The mont-blanc prototype: an alternative approach for hpc systems,”
in SC ’16: Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis (Salt Lake City, UT: IEEE), 444–455.
doi: 10.1109/SC.2016.37

Santipantakis, G.M., Kotis, K. I., Glenis, A., Vouros, G. A., Doulkeridis, C., Vlachou,
A., et al. (2022). RDF-GEN: generating rdf triples from big data sources. Knowl. Inf.
Syst. 64, 2985–3015. doi: 10.1007/s10115-022-01729-x

Sendor, J., Lehmann, Y., Serme, G., and Santana de Oliveira, A. (2014). “Platform-
level support for authorization in cloud services with OAuth 2,” in 2014 IEEE
International Conference on Cloud Engineering (Boston, MA: IEEE), 458–465.
doi: 10.1109/IC2E.2014.60

Sersemis, A., Papadopoulos, A., Spanos, G., Lalas, A., Votis, K., Tzovaras, D., et al.
(2022). “A novel cybersecurity architecture for iov communication,” in Proceedings of
the 25th Pan-Hellenic Conference on Informatics, PCI ’21 (New York, NY: Association
for Computing Machinery), 357–361. doi: 10.1145/3503823.3503889

Sethi, R., Traverso, M., Sundstrom, D., Phillips, D., Xie, W., Sun, Y., et al. (2019).
“PRESTO: SQL on everything,” in 2019 IEEE 35th International Conference on Data
Engineering (ICDE) (Macao: IEEE), 1802–1813. doi: 10.1109/ICDE.2019.00196

Shi, X., and Yeung, D.-Y. (2018). Machine learning for spatiotemporal sequence
forecasting: a survey. arXiv. [preprint]. doi: 10.48550/arXiv.1808.06865

Shvachko, K., Kuang, H., Radia, S., and Chansler, R. (2010). “The hadoop distributed
file system,” in 2010 IEEE 26th Symposium on Mass Storage Systems and Technologies
(MSST) (Incline Village, NV: IEEE), 1–10. doi: 10.1109/MSST.2010.5496972

Svanberg, M., Santén, V., H’́orteborn, A., Holm, H., and Finnsgård, C. (2019). AIS
in maritime research.Mar. Policy 106, 103520. doi: 10.1016/j.marpol.2019.103520

Trivyza, N. L., Rentizelas, A., and Theotokatos, G. (2019). Impact of carbon
pricing on the cruise ship energy systems optimal configuration. Energy 175, 952–966.
doi: 10.1016/j.energy.2019.03.139

Tu, E., Zhang, G., Rachmawati, L., Rajabally, E., and Huang, G.-B. (2018).
Exploiting AIS data for intelligent maritime navigation: a comprehensive survey
from data to methodology. IEEE Trans. Intell. Transp. Syst. 19, 1559–1582.
doi: 10.1109/TITS.2017.2724551

van Westrenen, F. (2014). Modelling arrival control in a vessel traffic management
system. Cogn. Technol. Work 16, 501–508. doi: 10.1007/s10111-014-0279-x

Vodas, M., Bereta, K., Kladis, D., Zissis, D., Alevizos, E., Ntoulias, E., et al. (2021).
“Online distributed maritime event detection and forecasting over big vessel tracking
data,” in 2021 IEEE International Conference on Big Data (Big Data) (Orlando, FL:
IEEE), 2052–2057. doi: 10.1109/BigData52589.2021.9671732

Vouros, G. (2017). DATAACRON, big data analytics for time critical mobility
forecasting, h2020. Impact 2017, 75–77. doi: 10.21820/23987073.2017.5.75

Wang, S., Cao, J., and Yu, P. S. (2022). Deep learning for spatio-
temporal data mining: a survey. IEEE Trans. Knowl. Data Eng. 34, 3681–3700.
doi: 10.1109/TKDE.2020.3025580

Warren, J., and Marz, N. (2015). Big Data: Principles and Best Practices of Scalable
Realtime Data Systems. Manhattan, NY: Simon and Schuster.

Wingerath, W., Gessert, F., Friedrich, S., and Ritter, N. (2016). Real-time
stream processing for big data. IT-Inf. Technol. 58, 186–194. doi: 10.1515/itit-2016-
0002

Yan, R., Wang, S., and Psaraftis, H. N. (2021). Data analytics for fuel consumption
management inmaritime transportation: status and perspectives. Transp. Res. E: Logist.
Transp. Rev. 155, 102489. doi: 10.1016/j.tre.2021.102489

Yi, G., and Loia, V. (2019). High-performance computing systems and
applications for ai. J. Supercomput. 75, 4248–4251. doi: 10.1007/s11227-019-
02937-z

Yoo, A. B., Jette, M. A., and Grondona, M. (2003). “SLURM: simple linux utility
for resource management,” in Job Scheduling Strategies for Parallel Processing: 9th
International Workshop, JSSPP 2003, Seattle, WA, USA, June 24, 2003. Revised Paper
9 (Cham: Springer), 44–60. doi: 10.1007/10968987_3

Yu, H., Fang, Z., Fu, X., Liu, J., and Chen, J. (2021). Literature review on emission
control-based ship voyage optimization. Transp. Res. D: Transp. Environ. 93, 102768.
doi: 10.1016/j.trd.2021.102768

Zaharia, M., Chen, A., Davidson, A., Ghodsi, A., Hong, S. A., Konwinski, A., et al.
(2018). Accelerating the machine learning lifecycle with mlflow. IEEE Data Eng. Bull.
41, 39–45.

Frontiers in BigData 11 frontiersin.org

https://doi.org/10.3389/fdata.2023.1220348
https://doi.org/10.1016/j.engappai.2018.08.015
https://doi.org/10.1109/ICCCWorkshops52231.2021.9538897
https://doi.org/10.1145/2907294.2907316
https://doi.org/10.1007/978-3-030-50892-0_19
https://doi.org/10.1007/s10270-019-00724-1
https://doi.org/10.1016/j.procs.2015.04.188
https://doi.org/10.7148/2013-0156
https://doi.org/10.1109/MIC.2017.3481351
https://doi.org/10.1109/ICE.2017.8280019
https://doi.org/10.1145/2744700.2744702
https://doi.org/10.1007/978-3-030-36599-8_24
https://doi.org/10.1016/j.oceaneng.2021.109004
https://doi.org/10.1109/IISA56318.2022.9904345
https://doi.org/10.1007/978-3-031-16075-2_16
https://doi.org/10.1007/s10462-018-09679-z
https://doi.org/10.1016/j.oceaneng.2015.06.042
https://doi.org/10.23919/MIPRO55190.2022.9803777
https://doi.org/10.3390/en15072568
https://doi.org/10.1109/MCSE.2021.3052619
https://doi.org/10.1038/s41524-022-00765-z
https://doi.org/10.1109/SC.2016.37
https://doi.org/10.1007/s10115-022-01729-x
https://doi.org/10.1109/IC2E.2014.60
https://doi.org/10.1145/3503823.3503889
https://doi.org/10.1109/ICDE.2019.00196
https://doi.org/10.48550/arXiv.1808.06865
https://doi.org/10.1109/MSST.2010.5496972
https://doi.org/10.1016/j.marpol.2019.103520
https://doi.org/10.1016/j.energy.2019.03.139
https://doi.org/10.1109/TITS.2017.2724551
https://doi.org/10.1007/s10111-014-0279-x
https://doi.org/10.1109/BigData52589.2021.9671732
https://doi.org/10.21820/23987073.2017.5.75
https://doi.org/10.1109/TKDE.2020.3025580
https://doi.org/10.1515/itit-2016-0002
https://doi.org/10.1016/j.tre.2021.102489
https://doi.org/10.1007/s11227-019-02937-z
https://doi.org/10.1007/10968987_3
https://doi.org/10.1016/j.trd.2021.102768
https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org

	Leveraging extreme scale analytics, AI and digital twins for maritime digitalization: the VesselAI architecture
	1. Introduction
	2. Related work
	2.1. Extreme scale processing architectures
	2.2. Distributed data storage and management
	2.3. Advanced ML and DL optimization techniques
	2.4. Simulation modeling and AI, data-driven techniques for applications and digital twins in the maritime domain
	2.5. Existing ICT architectures and standards in the maritime

	3. VesselAI concept and architecture
	3.1. The VesselAI concept
	3.2. The VesselAI architecture
	3.2.1. VesselAI data services
	3.2.1.1. Data ingestion and harmonization service
	3.2.1.2. Semantic enrichment and reasoning services
	3.2.1.3. Storage and querying service

	3.2.2. VesselAI HPC infrastructure and resource management
	3.2.3. VesselAI AI model serving, analytics and visualization services

	3.3. VesselAI launcher and security framework

	4. Discussion
	5. Conclusions and next steps
	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Publisher's note
	References


