
TYPE Original Research

PUBLISHED 04 August 2023

DOI 10.3389/fdata.2023.1200382

OPEN ACCESS

EDITED BY

Wang-Chien Lee,

The Pennsylvania State University (PSU),

United States

REVIEWED BY

Ya Wen Teng,

Academia Sinica, Taiwan

Yi-Ling Chen,

National Taiwan University of Science and

Technology, Taiwan

*CORRESPONDENCE

Yi-Ting Chang

chlu@m109.nthu.edu.tw

RECEIVED 04 April 2023

ACCEPTED 06 July 2023

PUBLISHED 04 August 2023

CITATION

Chang Y-T (2023) Kernel-wise di�erence

minimization for convolutional neural network

compression in metaverse.

Front. Big Data 6:1200382.

doi: 10.3389/fdata.2023.1200382

COPYRIGHT

© 2023 Chang. This is an open-access article

distributed under the terms of the Creative

Commons Attribution License (CC BY). The use,

distribution or reproduction in other forums is

permitted, provided the original author(s) and

the copyright owner(s) are credited and that

the original publication in this journal is cited, in

accordance with accepted academic practice.

No use, distribution or reproduction is

permitted which does not comply with these

terms.

Kernel-wise di�erence
minimization for convolutional
neural network compression in
metaverse

Yi-Ting Chang*

Department of Computer Science, National Tsing Hua University, Hsinchu, Taiwan

Convolutional neural networks have achieved remarkable success in computer

vision research. However, to further improve their performance, network models

have become increasingly complex and require more memory and computational

resources. As a result, model compression has become an essential area of

research in recent years. In this study, we focus on the best-case scenario for

Hu�man coding, which involves data with lower entropy. Building on this concept,

we formulate a compression with a filter-wise di�erence minimization problem

and propose a novel algorithm to solve it. Our approach involves filter-level

pruning, followed by minimizing the di�erence between filters. Additionally,

we perform filter permutation to further enhance compression. Our proposed

algorithm achieves a compression rate of 94× on Lenet-5 and 50× on VGG16.

The results demonstrate the e�ectiveness of our method in significantly reducing

the size of deep neural networks while maintaining a high level of accuracy. We

believe that our approach holds great promise in advancing the field of model

compression and can benefit various applications that require e�cient neural

network models. Overall, this study provides important insights and contributions

toward addressing the challenges of model compression in deep neural networks.

KEYWORDS

metaverse, computer vision, Hu�man coding, filter-level pruning, CNN

1. Introduction

Deep neural networks, especially deep convolutional neural networks, have achieved

remarkable success in computer vision tasks. However, to pursue better performance, many

convolutional neural network architectures (Simonyan and Zisserman, 2014; Szegedy et al.,

2015; He et al., 2016; Krizhevsky et al., 2017) have been designed. These CNNs with high

accuracy, however, tend to be heavy and consist of multiple convolution layers with a large

number of parameters (e.g., 248 MB for AlexNet and 552 MB for VGG16). Moreover,

many applications today demand good performance on mobile devices or embedded

platforms with limited storage space and computation power, making it challenging to utilize

heavy CNNs on these devices. Therefore, model compression has emerged as a popular

research topic in recent years. Various approaches, such as parameter pruning (Han et al.,

2015; Li et al., 2016; Wen et al., 2016; Luo et al., 2017; Huang et al., 2018), parameter

quantization (Gupta et al., 2015; Courbariaux et al., 2016; Umuroglu et al., 2017), low-rank

factorization (Lebedev et al., 2014; Kim et al., 2015), and knowledge distillation (Romero

et al., 2014; Hinton et al., 2015; Yim et al., 2017), have been proposed to reduce the model

size and computation costs while maintaining acceptable inference accuracy. However, the

authors of Han et al. (2015) did not consider the best-case scenario for model compression

Frontiers in BigData 01 frontiersin.org

https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org/journals/big-data#editorial-board
https://www.frontiersin.org/journals/big-data#editorial-board
https://www.frontiersin.org/journals/big-data#editorial-board
https://www.frontiersin.org/journals/big-data#editorial-board
https://doi.org/10.3389/fdata.2023.1200382
http://crossmark.crossref.org/dialog/?doi=10.3389/fdata.2023.1200382&domain=pdf&date_stamp=2023-08-04
mailto:chlu@m109.nthu.edu.tw
https://doi.org/10.3389/fdata.2023.1200382
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fdata.2023.1200382/full
https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org


Chang 10.3389/fdata.2023.1200382

using Huffman coding as we know that data with lower entropy can

be compressed more efficiently using Huffman coding. Therefore,

our proposed algorithm is designed based on this concept.

Although it is not possible to directly change the parameters into

low entropy distribution, as this could harm the model’s accuracy,

we employ delta coding on filters to transform the parameter

distribution for Huffman coding. To this end, we formulate a new

problem for model compression, named compression with filter-

wise difference minimization (CFDM), which aims to minimize the

differences between filters while maintaining acceptable accuracy.

This approach benefits from Huffman coding with delta coding

to further compress the model. To solve this problem, we

propose an algorithm that performs clustering on filters and

applies a new penalty function to minimize the difference between

filters in a cluster. Furthermore, we apply filter permutation to

lower the entropy of delta-coded parameters and achieve further

compression. Our proposed algorithm achieves a compression rate

of 50× for Lenet5 and 94× for VGG16, significantly outperforming

the state-of-the-art approach (Han et al., 2015). Overall, this study

contributes to the field of model compression by proposing a novel

algorithm that efficiently reduces the size of deep neural networks

while maintaining acceptable accuracy. The proposed approach

offers promising results and can benefit various applications that

require efficient neural network models with limited resources.

The contributions of this study are summarized as follows.

1. We consider the best situation of Huffman coding, and we

propose a new problem, named compression with filter-wise

difference minimization (CFDM).

2. We propose an algorithm for convolution layer compression,

which considers the best situation for Huffman coding, then

train the model with a proposed penalty function. In addition,

we apply filter permutation for further compression.

2. Related work

2.1. Compression in big neural network

Neural network compression has become an important area

of research as it enables models to run faster by reducing their

size and computational requirements. This is particularly useful

for applications that require fast model performance (Yang et al.,

2021; Chang et al., 2022; Yang and Shen, 2022). Recent neural

network compression approaches can be broadly classified into

four categories: parameter pruning, parameter quantization, low-

rank factorization, and knowledge distillation. Parameter pruning

approaches (Han et al., 2015; Li et al., 2016; Wen et al.,

2016; Luo et al., 2017; Huang et al., 2018) are dedicated to

significantly reducing the model size with an acceptable accuracy

loss by removing redundant parameters and fine-tuning. Various

approaches have been proposed to select the redundant parameters,

such as iterative pruningmethods (Han et al., 2015) and structurally

pruning convolutional layers (Li et al., 2016; Wen et al., 2016;

Luo et al., 2017; Huang et al., 2018; Tung and Mori, 2018).

For example, structured sparsity learning (Wen et al., 2016) uses

proposed regularizers to learn structured sparsity, while filter-level

pruning (Li et al., 2016) selects redundant kernels by calculating

the L1-norm of each filter. In addition, some methods (Luo et al.,

2017) utilize information from the next layer to measure the

importance of filters. Parameter quantization approaches (Gupta

et al., 2015; Courbariaux et al., 2016; Umuroglu et al., 2017;

Tung and Mori, 2018; Jiao et al., 2021; Tonin and de Queiroz,

2022; Xu et al., 2023) aim to reduce the number of bits used

to represent each parameter to save memory. Early works such

as Kmeans clustering (Han et al., 2015) and HashedNet (Chen

et al., 2015) have been proposed to quantize each parameter.

HashedNet utilizes a hash function to group parameters into hash

buckets for quantization. The optimal quantization bit-width of

each layer can be found through optimal bit allocation (Chen et al.,

2015). Deep compression (Han et al., 2015) combines pruning

and quantization and then encodes the quantized parameter by

Huffman coding for further compression. Additionally, diagonal

block-wise difference minimization (Hsu et al., 2020) proposes a

novel method for compressing neural networks by minimizing

diagonal block-wise differences. HPTQ (Xu et al., 2023) proposes

a method for super-resolution neural networks that integrates

layer-wise quantization and piece-wise quantization based on error

sensitivity and the quantization error of parameters to reduce

the storage cost of these networks. Tonin and de Queiroz (2022)

discussed the quantization of neural networks for compression

and representation without retraining, aiming to facilitate their

deployment in standard formats. Jiao et al. (2021) presented a

technique called synchronous weight quantization-compression

(SWQC) to compress the weights of low-bit quantized neural

networks (QNNs). The SWQC technique quantizes the weights

based on compression efficiency and their probabilities of having

different quantized results, and with the help of retraining, a high

compression rate and accuracy can be achieved. However, Xu

et al. (2023) is predicated on the use of a super resolution (SR)

neural network, primarily intended for image super-resolution

applications. In contrast, our study examines neural networks that

primarily consist of convolution layers. The structural differences

between these two types of neural networks make the methodology

from Xu et al. (2023) non-transferable to ours directly. The focus

of Tonin and de Queiroz (2022) is on compression that avoids

retraining and seeks to prevent any substantial changes to the

model’s architecture, such as the insertion or removal of layers.

Contrarily, our study assumes a predetermined set of pruning

ratios for each convolution layer and stipulates the utilization

of filter clustering within each convolution layer. Tonin and

de Queiroz (2022) underscored the importance of preserving

the model’s performance post-compression without explicitly

defining the performance measure. Our study, however, sets a

clear target of minimizing filter-wise disparity within each filter

cluster after compression and promotes structural sparsity. The

central differentiation between Jiao et al.’s (2021) study and

our study lies in the underlying assumptions and employed

methodologies. Jiao et al. (2021) presumes that weights can

be quantized independently, and subsequent compression can

be achieved via symmetric quantization and encoding methods.

Conversely, our methodology posits that filters within the same

convolutional layer can be clustered and that these clusters can

be compressed by minimizing inter-filter discrepancies. As such,

given the fundamental differences in the assumptions and methods

Frontiers in BigData 02 frontiersin.org

https://doi.org/10.3389/fdata.2023.1200382
https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org


Chang 10.3389/fdata.2023.1200382

of the two studies, the method of Jiao et al. (2021) cannot be

straightforwardly applied to our study. In Jiao et al.’s (2021) study,

compression transpires at the individual weight level, whereas in

our study, compression occurs at the filter level. This distinction

forms the primary demarcation between the two methodologies.

2.2. Application for social network in
metaverse

The metaverse is a term used to describe a collective virtual

shared space created by the convergence of the internet and the

physical world. It is a place where users can interact with each

other and with virtual objects in a shared virtual environment.

Social networks play an important role in the metaverse, allowing

users to connect and form communities within virtual worlds (Shen

et al., 2011, 2017). One potential application of social networks in

the metaverse is in organizing events and activities within virtual

worlds. Yang et al. (2012) and Shen et al. (2015) proposed a socio-

spatial group query (SSGQ) for location-based social networks

that could be used to select a group of nearby attendees with

tight social relationships for impromptu activities within a virtual

world. Similarly, an Unfamiliarity-Aware Therapy Group Selection

with Noah’s Ark Principle (UTNA) could be used for automatic

selections of therapy group members from the social network

while addressing crucial criteria such as avoidance of isolation and

loneliness, the unfamiliarity of patients, and size of the therapy

group (Hsu et al., 2018). Social networks could also be used

to organize online soirees with live multi-streaming within the

metaverse. A social-aware diverse and preferred live streaming

channel query (SDSQ) could jointly select a set of diverse and

preferred live streaming channels and a group of socially tight

viewers for an activity within a virtual world (Shen et al., 2018).

3. Problem description and
observations

3.1. Problem formulation

The compression with filter-wise difference minimization

(CFDM) problem is formulated as follows. Given a neural

network with L convolution layers, a set of pruning ratios P =
{

p1, . . . , pl, . . . , pn
}

for each convolution layer 1 ≤ l ≤ L, where

pl% of parameters would be kept [i.e., (1 − pl)% of parameters

should be pruned], the quantization bits ql for parameters, and

the cluster number k for each convolution layer, suppose the filter

matrix of a convolution layer is presented by 4D tensors Wl =
{

wl
1,w

l
2, . . . ,w

l
i, . . . ,w

l
Nl

}

, where wl
i ∈ R

M×h×w. Let Nl denote

the number of filters in the l-th layer and M, h,w be the number

of input feature maps, the height, and the width of the l-th layer

kernel. The proposedmethod in this study will cluster filters of each

convolution layer into k clusters. The goal of CFDM is to minimize

model size with an accuracy drop in 1%, such that each convolution

layer forms in structure-sparsity after pruning and the filter-wise

difference in each filter cluster should be small.

TABLE 1 Preliminary result for minimizing filter-wise di�erence.

H Min.di�erence+H Min.di�erence+D+H

Conv1 420B 430B 383B

Conv2 13747B 13571B 11252B

3.2. Observations

In this section, we introduce the observation that applying

delta coding with Huffman coding on similar filters (minimum

filter-wise differences) after quantization is the benefit to the

model compression, which is the main concept in this study.

After quantization, parameters are stored in only fewer index

numbers (i.e., if q is 5, parameters are only stored in 0–31).

Therefore, Han et al. (2015) applied Huffman coding for lossless

further compression after quantization. However, Han et al. (2015)

did not consider controlling the distribution of parameters to

optimize the effectiveness of Huffman coding. As we know,

Huffman coding could significantly compress the data when the

data form in the bias distribution, that is, lower entropy of

parameters could make better compression. According to this

concept, we observed that generating similar filters, then applying

filter-wise delta coding could generate the delta-coded parameters

with lower entropy. Due to that when quantization on similar

filters, more parameters tend to share the same indices, so delta

coding on these filters could convert distribution into a more

biased distribution. To validate the idea above, we did a simple

preliminary experiment for Lenet5 on MNIST. There are two

convolution layers in Lenet5 (called conv1 and conv2), and the

corresponding number of filters are 20 and 50, doing compression

with 5 bits quantization to each layer and then applying delta

coding to convert filters into delta-coded parameters. For validating

theminimum filter-wise differences benefits to model compression,

we added the penalty term to the loss function to minimize the total

differences of consecutive filter-pairs (i.e., suppose filters of conv1

represent as {F1, . . . , Fi, . . . , F20}). The consecutive filter-pairs are
{

(F1, F2), . . . , (Fi, Fi+1), (F19, F20)
}

) during training. Table 1 shows

the model size comparison of two kinds of models: model (H),

the model trained by penalty function without delta coding

(min. difference +H) and the model trained by penalty function

with delta coding (min. difference +D+H). All of these models

apply quantization and Huffman coding. Note that the further

compression by delta coding is due to the distribution of the delta-

coded parameters being more biased than the distribution of the

original parameters, and the comparison is shown in Figure 1. To

summarize this preliminary experiment, the idea of minimizing

filter-wise differences could achieve better model compression.

4. Proposed algorithm

In this section, we propose an algorithm for solving the

compression with filter-wise difference minimization (CFDM)

problem for compressing convolution layers. The proposed

algorithm consists of the following steps: filter-level pruning, filter-

wise differences minimization, quantization, filter permutation,

Frontiers in BigData 03 frontiersin.org

https://doi.org/10.3389/fdata.2023.1200382
https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org


Chang 10.3389/fdata.2023.1200382

FIGURE 1

Lenet5 distribution, (A) is conv1. index, (B) is conv1. delta-coded, (C) is conv2. index, and (D) is conv2. delta-coded.

delta coding, and Huffman coding. As we mentioned in Section

3.2, the filter-wise differences minimization benefits Huffman

coding with delta coding as the delta-coded parameters have

lower entropy. Therefore, the proposed algorithm flow is designed

based on the observation in Section 3.2. Since most models

have redundant parameters, pruning is necessary for an effective

model compression approach. Thus, in the first step, we applied

filter-level pruning to reduce the model size. In the second step,

based on the observation of filter-wise difference minimization,

we clustered the pre-trained filters into k filter clusters of each

layer and then apply a new loss function to minimize the total

differences between consecutive filter pairs within each cluster. In

the third step, we applied k-means quantization as in Han et al.

(2015) on each convolution layer and retrained the k-centroids

until the model accuracy is recovered. In the fourth step, to further

minimize the entropy of delta-coded parameters, we applied a

permutation of filters in each filter-cluster to minimize the cyclic

distance between consecutive filters. Finally, in the last step, we

applied Huffman coding on the delta-coded matrix parameters,

which are generated by doing delta coding on each reordered

filter-cluster. In the following, we present the details of each

step. Overall, the proposed algorithm takes advantage of multiple

techniques to achieve effectivemodel compression while preserving

model accuracy.

4.1. Filter-level pruning

At the pruning step, it is needed to consider the pruning effect

for the filter-wise difference minimization in the next step. For

example, suppose that we apply the pruning method in Han et al.

(2015) which pruned the parameters whose values are below the

given threshold and the pruned parameters are directly assigned

the value zero. However, these fixed and irregular zero parameters

are a huge constraint for minimizing the filter-wise differences. It

is hard to control the delta-coded parameter distribution on these

irregular sparse parameters due to the fixed zero index value cannot

be changed. Especially, recent studies such as Li et al. (2016), Wen

et al. (2016), and Luo et al. (2017) focused on structure pruning

on convolution layers, and some of them had applied channel-level

pruning, which removes the redundant channels of filters and some

had applied filter-level pruning which removes the filters and the

corresponding output feature maps. Therefore, for not to affect

the performance of the minimization of filter-wise difference, we

applied the filter-level pruning method proposed by Li et al. (2016).

input: Remaining filters of each layer:
{

F
1 =

{

f 11 , . . . , f
1
r1

}

, . . . ,Fl =

{

f l1, . . . , f
l
rl

}

, . . . ,FL =
{

f L1 , . . . , f
L
rL

}

}

,

training epochs k

function K-means(Fl)

return filter-clusters of l layer
{

S
l
1, . . . ,S

l
K

}

,

cluster-centroids of l layer
{

cl1, . . . , c
l
K

}

function LP(filter-clusters, cluster-centroids)

i← 1, j← 1,Lp ← 0

for i ≤ K do

for j ≤ size(Sli) do

Lp ← Lp +

∥

∥

∥
slij − cli

∥

∥

∥

j← j+ 1

i← i+ 1

Lp ←
Lp

rl

l← l+ 1

return
Lp

rl

for each Remaining filters of each layer: F
l do

{

S
l
1, . . . , S

l
K

}

,
{

cl1, . . . , c
l
K

}

← K-means(Fl)

filter-clusters ← filter-clusters

+

{

S
l
1, . . . , S

l
K

}

cluster-centroids ← cluster-centroids

+

{

cl1, . . . , c
l
K

}

for each training epoch do

Input batch data and calculate the MSE(or

cross-entropy)

Loss ← MSE; Loss ← Loss +

LP(filter-clusters, cluster-centroids)

Compute gradient, back propagation

Algorithm 1. Filter-wise di�erence minimization.

We pruned the filters which are the top (1 − pl) percent smallest

L1-norm
∥

∥

∥
wl
i

∥

∥

∥
filters on the l-th convolution layer and then we

retrained the model to recover the model accuracy.

4.2. Filter-wise di�erence minimization and
quantization

In step 1, we pruned the filters of convolution layers not only

for reducing the model size but also to avoid irregular sparse

parameters, so that it does not exist the fixed zero issue which

Frontiers in BigData 04 frontiersin.org

https://doi.org/10.3389/fdata.2023.1200382
https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org


Chang 10.3389/fdata.2023.1200382

could affect the calculation of filter-wise difference. In step 2, the

goal is to minimize the filter-wise difference with an acceptable

accuracy drop. By doing so, in step 3, the minimum filter-wise

difference is a good property for applying delta coding on quantized

filters. First, recalling the preliminary experiment in Section 3.2,

we added a penalty term to the loss function and minimized the

differences of consecutive filter pairs during training. It seems

that it is the most straightforward method for minimizing the

differences between the filters. However, when applying the above

method to the convolution layers with many filters, it will be hard

to converge without an accuracy drop. In addition, there is an

issue that as we know the filters are regarded as the patterns for

convolutional neural networks, it is hard to make whole filters in a

convolution layer similar without any accuracy drop, especially in

the layer with many filters. Therefore, we proposed the algorithm,

at first, we cluster filters into k clusters in which filters have similar

patterns so that it could avoid the issue mentioned above. For

filter clustering, we applied k-means to the remaining filters Fl =
{

f l1, . . . , f
l
i , . . . , f

l
rl

}

of each convolution layer l, where F
l ∈ W

l.

Let rl =
⌈

Nl (̇1−pl)
100

⌉

denote the remaining number of filters of l-

th convolution layer. Denote k filter-clusters as
{

S
l
1, . . . , S

l
i, . . . , S

l
k

}

and S
l
i =

{

sli1, . . . , s
l
ij, . . . , s

l
iml

i

}

, where ml
i is the number of filters

of i filter-cluster in l layer. Note that slij ∈ F
l and ∪iS

l
i = F

l and

∩iS
l
i = ∅. The corresponding centroids which are generated by k-

means are denoted as
{

cl1, . . . , c
l
i, . . . , c

l
k

}

in each convolution layer.

Then, we proposed the penalty function LP for minimizing the

total differences of filters of each filter-cluster Sli, which is shown

as follows:

LP =
1

L

L
∑

l=1

∑k
i=1

∑ml
i

j=1

∥

∥

∥
slij − cli

∥

∥

∥

2

rl
(1)

The penalty function is designed to minimize the total

difference between filters and their corresponding centroid. Thus,

the penalty will lead to filters in a filter-cluster more similar. Based

onLP, for training within 1% accuracy drop, the loss functionLtotal

is designed as follows:

Ltotal = Lacc + αLP, (2)

where Lacc is the accuracy loss which can be cross-entropy or

MSE depending on the training task, and α is a hyper-parameter

to control the trade-off penalty between the compression rate

and the model accuracy. If large α value is applied, it means the

training procedure is more dominant to minimize the differences

between filters and their corresponding centroids. Therefore, it

is more likely that parameters share the same index value in

each filter-cluster after quantization. Thus, the larger α value will

result in more compression but may lower the model accuracy.

In contrast, a smaller α would be more likely to minimize

the original error loss. Therefore, α is an important factor for

compression rate, and there is an α sensitivity experiment in

Section 5.3. The pseudocode for filter-wise difference minimization

is listed in Algorithm 1. After the model converges, next, we

applied k-means quantization in Han et al. (2015), quantizing

filters
{

S
l
1, . . . , S

l
i, . . . , S

l
K

}

according to the given ql of each

convolution layer l and then we retrained the centroids until

model recovers the accuracy. Let the quantized filters which are

stored in index value denote as
{

B
l
1, . . . ,B

l
i, . . . ,B

l
K

}

, where Bl
i =

{

bli1, . . . , b
l
ij, . . . , b

l

iml
i

}

and blij ∈ Z =

{

0, . . . , 2q
l
− 1

}

.

4.3. Filter permutation with delta and
Hu�man coding

In this section, we proposed a penalty to minimize the

differences between filters and their corresponding centroids in

each filter-cluster, so that the filters in a filter-cluster will tend to

be more similar. Thus, the filters in a filter-cluster will be more

likely to share the same index value after quantization. Based on

this property, in this section, we applied delta-coding to convert the

filters into a first filter and delta-coded filters of each filter-cluster

Bli, where 1 ≤ i ≤ K in the l layer. Here, we give an example to

easily understand.

Example 1. Consider a scenario where we have three quantized

filters in a filter-cluster. These filters are represented as b1, b2, and

b3, where each filter is a 2×2matrix quantized to 3 bits. Specifically,

the individual filters are defined as

b1 = [[0, 1], [2, 1]], b2 = [[7, 2], [7, 2]], and b3 = [[1, 3], [1, 3]]

Our goal is to apply delta coding on these filters in a sequential

order, taking into account their cyclic distance. The cyclic distance

gives us the measure of difference between two successive filters in

our given sequence.

In implementing delta coding, we first select b1 as the starting

filter. Subsequently, we calculated the cyclic distance from b1 to b2,

represented as
∣

∣b1− b2
∣

∣. This gives us a new 2× 2 matrix:
∣

∣b1− b2
∣

∣ = [[−1, 1], [5, 1]]. Next, we calculated the cyclic

distance from b2 to b3, represented as
∣

∣b2− b3
∣

∣. This operation

results in another 2× 2 matrix:
∣

∣b2− b3
∣

∣ = [[2, 1], [2, 1]]. Therefore, after applying delta

coding with cyclic distances, our original sequence of filters b1, b2,

and b3 transforms into the delta-coded sequence b1,
∣

∣b1− b2
∣

∣,

and
∣

∣b2− b3
∣

∣. This new sequence effectively represents the relative

differences between each consecutive pair of filters.

Note that the selection of b1 as the initial filter is not a

hard-and-fast rule. Depending on the specific requirements or

constraints of the problem, we could begin the delta coding process

with any filter in the sequence.

In Example 1, note that
∥

∥b1− b2
∥

∥ is delta-coded as [−1, 0]

instead of [7, 0] because that computing cyclic-distance could

ensure the delta-coded bit range remains the same as encoded

by the original quantized bits. The result of delta-coding on a

filter-cluster in this example is formed of the first filter (b1) and

delta-coded filters (
{
∥

∥b1− b2
∥

∥ ,
∥

∥b2− b3
∥

∥

}

).

For whole layer filters, we grouped k first filters in a

matrix (called first filter matrix Dl∗), and k delta-coded filters

in another matrix (called delta-coded filter matrix Dl), and

the detailed pseudocode for delta coding on a convolution

layer is listed in Algorithm 2. At last, we separately apply

Frontiers in BigData 05 frontiersin.org

https://doi.org/10.3389/fdata.2023.1200382
https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org


Chang 10.3389/fdata.2023.1200382

input: Quantized filter-clusters:
{

B
l
1, . . . ,B

l
i, . . . ,B

l
L

}

,

quantized bit ql

Output: Delta-encoded form of Dl∗,Dl

function Cyclic-distance(B∗,BR, r)

for M,w, h in size of B∗do

BR
M,w,h

← min
{
∣

∣

∣
B∗
M,w,h

− BM,w,h

∣

∣

∣
, r −

∣

∣

∣
B∗
M,w,h

− BM,w,h

∣

∣

∣

}

return BR

for each Quantized filter-cluster: B
l
i do

j← j+ 1

for each j from 1 to size(Bl
i) do

Dl ←

{

Dl ,Cyclic− distance(blij , b
l
ij+1, 2

ql )
}

return Dl∗,Dl

Algorithm 2. Delta coding on a convolution layer.

Huffman coding to the first filter matrix and delta-coded

filter matrix.

For further compression, we observed that the order of filters

in a filter-cluster could affect the compression rate due to the

delta-coding step calculating the cyclic-distance on consecutive

filters. Thus, by changing the order of filters in a filter-cluster, we

could minimize the entropy of the delta-coded filter matrix. In

this study, we take an easy example for explaining the effect of

the permutation on filters. Suppose there exists 5 elements that

index in [0, 2, 1, 3, 2]. When directly applying the delta coding, the

delta-coded part will be [2,−1, 2,−1] whose entropy is 1.0 and

the absolute distance is 6. However, it can lower the entropy by

reordering the elements into [0, 1, 2, 2, 3] and then the delta-coded

part is [1, 1, 0, 1], which gets 0.81 entropy and absolute distance

is 3. According to the above idea, there comes a sub-problem

: given a quantized filter-cluster Bli, the objective is to find the

new order of filters in the given filter-cluster which makes the

minimum total absolute cyclic-distance between the consecutive

filters. The sub-problem can be viewed as the variant traveling

salesman problems (TSP) (Lin and Kernighan, 1973). Different

from the TSP problem which is to find a minimum Hamiltonian

cycle, our sub-problem is to find the minimum Hamiltonian path

which means that is no need to calculate the distance between

the last node and the start node. It seems to slightly affect the

total distance at the end; thus, for our subproblem, we applied

a 2-approximation TSP algorithm for the permutation on filters

in a quantized filter-cluster. At first, we generated the symmetric

adjacency matrix in which each element represents the distance

between filters. This symmetric adjacency matrix can be regarded

as the weighted fully-connected graph G, and the filters are viewed

as the nodes of graph G. Therefore, the problem can be converted

into finding the minimum Hamiltonian path of graph G. Next,

Kruskal’s algorithm is utilized to find the minimum spanning three

M of G and the Euler tour traversal for M is applied with the

first filter in the given filter-cluster as the start point and then the

Hamiltonian path in the traversal order was returned. The order

of the Hamiltonian path is the new order for filters in the filter-

cluster. In the end, the final compression model is obtained by

directly recalling the delta and Huffman coding step introduced in

the Algorithm 2 to these filter-clusters in the new orders of each

convolution layer.

5. Experimental results

In this section, we provide experimental results by

comparing our algorithm with other baselines and penalty

sensitivity evaluation.

5.1. Experiment settings

In this section, we introduce the models for testing the

compression and the baseline approaches with different experiment

settings. For a fair comparison of compression with other baselines,

the model accuracy after compression is given in Table 2.

5.1.1. Models and datasets
We test our algorithm on the well-known convolutional neural

networkmodels and datasets, including Lenet-5 onMNIST (Lenet5

for short) (LeCun et al., 1995) and VGG16 on CIFAR-10 [VGG

(C10) for short] (Simonyan and Zisserman, 2014). Lenet-5 is a

slight convolutional neural network, which has two convolution

layers formed in 20 and 50 filters. In contrast, VGG16 is a deep and

wide convolutional neural network, formed in 13 convolution layer,

and the filter number ranges from 64 to 512. The MNIST dataset

is a comprehensive set of 70,000 grayscale images of handwritten

digits, widely acknowledged for benchmarking in machine learning

algorithms. The images represent individual numerals ranging

from 0 to 9, with each image dimension being 28 × 28 pixels.

The CIFAR-10 dataset encompasses 60,000 color images, each of

32 × 32 pixels, distributed across 10 classes, ensuring an equal

representation of 6,000 images per class.

5.1.2. Baseline approaches
We compared our proposed algorithms (OUR) in Section

4 with other baselines. The baseline approaches are (i) the

original convolutional neural network model (CONV), which

does not apply any operation to compression of the model,

stands for a base accuracy; (ii) the original convolution layer

with quantization and Huffman coding (CONV+Q+H); (iii) deep

compression (DeepC) (Han et al., 2015), one of the state-the-

art model compression method; and (iv) the proposed algorithm

without filter permutation (OUR/P). In the following, we will

introduce the experiments set on different baselines in different

models. For Lenet5 model compression, the algorithms which have

pruning step are DeepC and OUR/P, and our algorithm OUR

as well. Table 3 shows the pruning rate of these algorithms. For

DeepC, we assigned the pruning rate according to the experiments

in the proposed work. For OUR and OUR/P, filter-level pruning

the whole filter lead to more accuracy sensitivity than threshold

pruning in DeepC. Therefore, for pruning with an acceptable

accuracy drop, the pruning rate of OUR andOUR/P are higher than

DeepC. In addition, all the algorithms quantize each convolution

layer to 3 bits for Lenet5. The specific hyper-parameter k of OUR

and OUR/P is 2 for this model. For VGG (C10), we set quantization

bit 5 according to the baseline DeepC. Again, the pruning rate for

Frontiers in BigData 06 frontiersin.org

https://doi.org/10.3389/fdata.2023.1200382
https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org


Chang 10.3389/fdata.2023.1200382

TABLE 2 Accuracy (%) of di�erent approaches.

CONV CONV+Q+H DeepC OUR/P OUR

LeNet5 99.34 99.1 99.25 98.5 98.5

VGG (C10) 91.32 91.52 91.6 90.51 90.5

TABLE 3 Pruning rate (%) on Lenet5 of di�erent approaches.

DeepC OUR/P OUR

Conv1 66 65 65

Conv2 12 12 12

TABLE 4 Pruning rate (%) on VGG (C10) of di�erent approaches.

DeepC OUR/P OUR

Conv1 58 100 100

Conv2 22 100 100

Conv3 34 60 60

Conv4 36 60 60

Conv5 53 80 80

Conv6 24 40 40

Conv7 42 50 50

Conv8 32 40 40

Conv9 27 27 27

Conv10 34 34 34

Conv11 35 35 35

Conv12 29 29 29

Conv13 35 35 35

model VGG (C10) is shown in Table 4 and cluster number k of

OUR and OUR/P is 4.

5.2. Compression rate comparison with
baselines

Figure 2 compares the compression rate of our proposed

approach with other baselines. The compression rate is calculated

as the memory size of the original parameter in convolution

layers, divided by the memory size of the compression algorithm

(including the codebook size and the filter-cluster assignment

size if any). As shown in Figure 2, OUR/P and OUR outperform

the other baselines. Especially, despite the higher pruning rate

than DeepC on VGG (C10), our approach still achieve significant

success in compression rate due to the great success of converting

the distribution by delta coding similar filters. Table 5 gives a

comparison of the entropy which explain the better compression

rate for our algorithm.

CONV+Q+H only has a 7× compression rate on the VGG

(C10) model and an 11× compression rate on the Lenet5 model.

It is a very limited improvement on the compression rate for

only applying quantization and Huffman coding. DeepC, the

FIGURE 2

Compression rates of di�erent approaches.

compression algorithm, proposed the compression pipeline for

model compression. It achieves 13× on VGG (C10) model and

24× on the Lenet5 model. In the pruning step, DeepC achieves a

3× compress ton VGG (C10) model. It means that quantization

and Huffman coding act an important role in the improvement

of compression rate from 3× up to 13×. For the Lenet5 model,

pruning compresses with a 7× compression rate, and after

quantization and Huffman coding, the compression rate is up to

24×. Although quantization and Huffman coding seem to improve

compression rates a lot in DeepC, it does not consider the best

situation for Huffman coding compression. That is the reason that

OUR significantly outperforms DeepC despite the higher pruning

rate given in OUR. Therefore, OUR consider the best situation

for Huffman coding to lead to a big success on the Lenet5 model

and VGG (C10) model with 94× and 50× compression rate. For

the VGG (C10) model, the filter-level pruning only compresses

2.8×. After the step for minimizing the filter-wise difference, the

distribution of parameters tends to be more biased; if we directly

apply quantization and Huffman coding without delta coding, it

still can have a 21× compression rate higher than DeepC. With

delta coding, make the compression rate twice times improvement

due to the effect of low entropy for Huffman coding. However,

for comparison on OUR/P and OUR, we found that the filter

permutation could only slightly improve the compression rate on

both models. The season for this situation is that the distance

between filters is all similar, the way to permute the filter could only

slightly reduce the total distance and also the entropy.

5.3. Penalty evaluation

To understand the effect of α, Table 4 shows the OUR/P

compression approach makes different entropy with different α

of each convolution layer on VGG (C10). The column Org.

index stands for the original index value distribution, and the

column is Delta-coded. The index stands for the distribution

after delta coding with different α. Comparison with Org. index

and Delta-coded. Index, the entropy significantly decreases with

delta coding, as I mentioned in Section 5.2, Delta-coded. The

index makes twice the compression than the Org. index. In this

Frontiers in BigData 07 frontiersin.org

https://doi.org/10.3389/fdata.2023.1200382
https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org


Chang 10.3389/fdata.2023.1200382

TABLE 5 Layer-wise parameter entropy on VGG (C10).

Org. index α = 0.05 α = 0.01 α = 0.02

Conv1 4.41 4.76 4.81 4.66

Conv2 4.10 4.40 4.23 3.98

Conv3 4.39 4.78 4.75 4.62

Conv4 4.25 3.72 3.74 3.72

Conv5 4.24 3.77 3.74 3.76

Conv6 4.47 4.50 4.47 4.43

Conv7 4.24 2.84 2.83 2.79

Conv8 4.36 3.24 3.10 2.86

Conv9 4.30 1.91 1.62 1.23

Conv10 4.26 1.47 1.22 0.99

Conv11 4.07 1.09 0.79 0.63

Conv12 4.22 1.06 0.76 0.64

Conv13 4.05 0.71 0.52 0.45

table, we can observe that our penalty have a great effect at

the last seven convolution layer of the VGG (C10) model. It

is reasonable that the first convolution layers are more likely

to dominate the model accuracy. With larger α = 0.02, the

entropy of the last layer reduces to 0.45 and the compression

rate is 46× with 90.10% model accuracy. With smaller α =

0.005, the entropy of the last layer is 0.71 and is 40× with

90.23% accuracy. Therefore, the α is an important fact that affects

the compression rate and trade-off between test accuracy and

compression rate.

6. Conclusion

In this study the author proposed a new problem, called

compression with filter-wise differenceminimization which aims to

minimize the difference between filters with an acceptable accuracy

drop for further compression with Huffman coding and delta

coding. The author proposed the algorithm to solve this problem

and achieve significant compression rates, which are 94× of Lenet5

and 50× on VGG16. However, note that our current framework

requires careful tuning of the penalty parameter to optimize the

balance between the compression rate and test accuracy, which

may pose a challenge for less experienced practitioners. In future,

focus will be on enhancing the model compression methodology,

specifically through the optimization of quantization bits. The

author hypothesize that adjusting the quantization bit depth to suit

individual filters will strike a more refined balance between model

compression and performance. This line of research opens the door

to making our compressionmethod not only more efficient but also

more adaptable to various problems.

Data availability statement

Publicly available datasets were analyzed in this study. This data

can be found at: http://yann.lecun.com/exdb/mnist/ and https://

www.cs.toronto.edu/~kriz/cifar.html.

Author contributions

All studies was completed by Y-TC.

Conflict of interest

The author declares that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

References

Chang, C.-C., Chang, M.-Y., Jhang, J.-Y., Yeh, L.-Y., and Shen,
C.-Y. (2022). Learning to extract expert teams in social networks.
IEEE Trans. Comput. Soc. Syst. 9, 1552–1562. doi: 10.1109/TCSS.2022.
3152179

Chen, W., Wilson, J., Tyree, S., Weinberger, K., and Chen, Y. (2015). “Compressing
neural networks with the hashing trick,” in International Conference on Machine
Learning (PMLR), 2285–2294.

Courbariaux, M., Hubara, I., Soudry, D., El-Yaniv, R., and Bengio, Y.
(2016). Binarized neural networks: training deep neural networks with weights
and activations constrained to +1 or -1. arXiv preprint arXiv:1602.02830.
doi: 10.48550/arXiv.1602.02830

Gupta, S., Agrawal, A., Gopalakrishnan, K., and Narayanan, P. (2015). “Deep
learning with limited numerical precision,” in International Conference on Machine
Learning (PMLR), 1737–1746.

Han, S., Mao, H., and Dally, W. J. (2015). Deep compression: compressing deep
neural networks with pruning, trained quantization and huffman coding. arXiv
preprint arXiv:1510.00149. doi: 10.48550/arXiv.1510.00149

He, K., Zhang, X., Ren, S., and Sun, J. (2016). “Deep residual learning for image
recognition,” in Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, 770–778.

Hinton, G., Vinyals, O., and Dean, J. (2015). Distilling the knowledge in a neural
network. arXiv preprint arXiv:1503.02531. doi: 10.48550/arXiv.1503.02531

Hsu, B.-Y., Lan, Y.-F., and Shen, C.-Y. (2018). On automatic formation of effective
therapy groups in social networks. IEEE Trans. Comput. Soc. Syst. 5, 713–726.
doi: 10.1109/TCSS.2018.2859580

Hsu, Y.-J., Chang, Y.-T., Shen, C.-Y., Shuai, H.-H., Tseng, W.-L., and Yang,
C.-H. (2020). “On minimizing diagonal block-wise differences for neural network
compression,” in ECAI 2020 (IOS Press), 1198–1206.

Frontiers in BigData 08 frontiersin.org

https://doi.org/10.3389/fdata.2023.1200382
http://yann.lecun.com/exdb/mnist/
https://www.cs.toronto.edu/~kriz/cifar.html
https://www.cs.toronto.edu/~kriz/cifar.html
https://doi.org/10.1109/TCSS.2022.3152179
https://doi.org/10.48550/arXiv.1602.02830
https://doi.org/10.48550/arXiv.1510.00149
https://doi.org/10.48550/arXiv.1503.02531
https://doi.org/10.1109/TCSS.2018.2859580
https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org


Chang 10.3389/fdata.2023.1200382

Huang, Q., Zhou, K., You, S., and Neumann, U. (2018). “Learning to prune filters
in convolutional neural networks,” in 2018 IEEE Winter Conference on Applications of
Computer Vision (WACV) (IEEE), 709–718.

Jiao, Y., Li, S., Huo, X., and Li, Y. K. (2021). “Synchronous weight quantization-
compression for low-bit quantized neural network,” in 2021 International Joint
Conference on Neural Networks (IJCNN), 1–8.

Kim, Y.-D., Park, E., Yoo, S., Choi, T., Yang, L., and Shin, D. (2015). Compression of
deep convolutional neural networks for fast and low power mobile applications. arXiv
preprint arXiv:1511.06530. doi: 10.48550/arXiv.1511.06530

Krizhevsky, A., Sutskever, I., and Hinton, G. E. (2017). ImageNet classification with
deep convolutional neural networks. Commun. ACM 60, 84–90.

Lebedev, V., Ganin, Y., Rakhuba, M., Oseledets, I., and Lempitsky, V. (2014).
Speeding-up convolutional neural networks using fine-tuned cp-decomposition. arXiv
preprint arXiv:1412.6553. doi: 10.48550/arXiv.1412.6553

LeCun, Y., Jackel, L., Bottou, L., Brunot, A., Cortes, C., Denker, J., et al.
(1995). “Comparison of learning algorithms for handwritten digit recognition,” in
International Conference on Artificial Neural Networks (Perth), 53–60.

Li, H., Kadav, A., Durdanovic, I., Samet, H., and Graf, H. P. (2016). Pruning filters
for efficient convnets. arXiv preprint arXiv:1608.08710. doi: 10.48550/arXiv.1608.08710

Lin, S., and Kernighan, B. W. (1973). An effective heuristic algorithm for the
traveling-salesman problem. Operat. Res. 21, 498–516.

Luo, J.-H., Wu, J., and Lin, W. (2017). “ThinET: a filter level pruning method for
deep neural network compression,” in Proceedings of the IEEE International Conference
on Computer Vision, 5058–5066.

Romero, A., Ballas, N., Kahou, S. E., Chassang, A., Gatta, C., and Bengio,
Y. (2014). FitNets: hints for thin deep nets. arXiv preprint arXiv:1412.6550.
doi: 10.48550/arXiv.1412.6550

Shen, C.-Y., Fotsing, C. K., Yang, D.-N., Chen, Y.-S., and Lee, W.-C. (2018).
“On organizing online soirees with live multi-streaming,” in Proceedings of the AAAI
Conference on Artificial Intelligence.

Shen, C.-Y., Huang, L.-H., Yang, D.-N., Shuai, H.-H., Lee, W.-C., and Chen, M.-S.
(2017). “On finding socially tenuous groups for online social networks,” in Proceedings
of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining, 415–424.

Shen, C.-Y., Yang, D.-N., and Chen, M.-S. (2011). Collaborative and distributed
search system with mobile devices. IEEE Trans. Mobile Comput. 11, 1478–1493.
doi: 10.1109/TMC.2011.173

Shen, C.-Y., Yang, D.-N., Huang, L.-H., Lee, W.-C., and Chen, M.-
S. (2015). Socio-spatial group queries for impromptu activity planning.

IEEE Trans. Knowledge Data Eng. 28, 196–210. doi: 10.1109/TKDE.2015.
2468726

Simonyan, K., and Zisserman, A. (2014). Very deep convolutional
networks for large-scale image recognition. arXiv preprint arXiv:14c09.1556.
doi: 10.48550/arXiv.1409.1556

Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., et al. (2015).
“Going deeper with convolutions,” in Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, 1–9.

Tonin, M., and de Queiroz, R. L. (2022). “On quantization of image classification
neural networks for compression without retraining,” in 2022 IEEE International
Conference on Image Processing (ICIP), 916–920.

Tung, F., and Mori, G. (2018). “Clip-Q: deep network compression learning by
in-parallel pruning-quantization,” in Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, 7873–7882.

Umuroglu, Y., Fraser, N. J., Gambardella, G., Blott, M., Leong, P., Jahre, M., et al.
(2017). “FINN: a framework for fast, scalable binarized neural network inference,” in
Proceedings of the 2017 ACM/SIGDA International Symposium on Field-Programmable
Gate Arrays, 65–74.

Wen, W., Wu, C., Wang, Y., Chen, Y., and Li, H. (2016). “Learning structured
sparsity in deep neural networks,” in Advances in Neural Information Processing
Systems, Vol. 29, eds D. Lee, M. Sugiyama, U. Luxburg, I. Guyon, and R. Garnett
(Curran Associates, Inc.).

Xu, N., Chen, X., Cao, Y., and Zhang, W. (2023). Hybrid post-training quantization
for super-resolution neural network compression. IEEE Signal Process. Lett. 30, 379–
383. doi: 10.1109/LSP.2023.3264558

Yang, C.-H., and Shen, C.-Y. (2022). “Enhancing machine learning approaches for
graph optimization problems with diversifying graph augmentation,” in Proceedings
of the 28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining,
2191–2201.

Yang, C.-H., Shuai, H.-H., Shen, C.-Y., and Chen, M.-S. (2021). Learning to solve
task-optimized group search for social internet of things. IEEE Trans. Knowledge Data
Eng. 34, 5429–5445. doi: 10.1109/TKDE.2021.3057361

Yang, D.-N., Shen, C.-Y., Lee, W.-C., and Chen, M.-S. (2012). “On socio-
spatial group query for location-based social networks,” in Proceedings of the 18th
ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,
949–957.

Yim, J., Joo, D., Bae, J., and Kim, J. (2017). “A gift from knowledge
distillation: fast optimization, network minimization and transfer learning,” in
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
4133–4141.

Frontiers in BigData 09 frontiersin.org

https://doi.org/10.3389/fdata.2023.1200382
https://doi.org/10.48550/arXiv.1511.06530
https://doi.org/10.48550/arXiv.1412.6553
https://doi.org/10.48550/arXiv.1608.08710
https://doi.org/10.48550/arXiv.1412.6550
https://doi.org/10.1109/TMC.2011.173
https://doi.org/10.1109/TKDE.2015.2468726
https://doi.org/10.48550/arXiv.1409.1556
https://doi.org/10.1109/LSP.2023.3264558
https://doi.org/10.1109/TKDE.2021.3057361
https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org

	Kernel-wise difference minimization for convolutional neural network compression in metaverse
	1. Introduction
	2. Related work
	2.1. Compression in big neural network
	2.2. Application for social network in metaverse

	3. Problem description and observations
	3.1. Problem formulation
	3.2. Observations

	4. Proposed algorithm
	4.1. Filter-level pruning
	4.2. Filter-wise difference minimization and quantization
	4.3. Filter permutation with delta and Huffman coding

	5. Experimental results
	5.1. Experiment settings
	5.1.1. Models and datasets
	5.1.2. Baseline approaches

	5.2. Compression rate comparison with baselines
	5.3. Penalty evaluation

	6. Conclusion
	Data availability statement
	Author contributions
	Conflict of interest
	Publisher's note
	References


