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Arrival times by Recurrent Neural
Network for induced seismic
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We have developed a Recurrent Neural Network (RNN)-based phase picker for

data obtained from a local seismic monitoring array specifically designated for

induced seismicity analysis. The proposed algorithm was rigorously tested using

real-world data from a network encompassing nine three-component stations.

The algorithm is designed for multiple monitoring of repeated injection within the

permanent array. For such an array, the RNN is initially trained on a foundational

dataset, enabling the trained algorithm to accurately identify other induced events

even if they occur in di�erent regions of the array. Our RNN-based phase picker

achieved an accuracy exceeding 80% for arrival time picking when compared to

precise manual picking techniques. However, the event locations (based on the

arrival picking) had to be further constrained to avoid false arrival picks. By utilizing

these refined arrival times, we were able to locate seismic events and assess

their magnitudes. The magnitudes of events processed automatically exhibited

a discrepancy of up to 0.3 when juxtaposed with those derived from manual

processing. Importantly, the e�cacy of our results remains consistent irrespective

of the specific training dataset employed, provided that the dataset originates from

within the network.

KEYWORDS

Recurrent Neural Network, automatic arrival time detection, location, magnitude,
hydraulic fracturing, induced seismicity, tra�c light system

Introduction

Seismicity induced by underground injections has been known for more than five

decades (Raleigh et al., 1976), although recent development of unconventional resources

has raised the issue of induced seismicity to a very high level of interest (Ellsworth, 2013).

The most common mitigation strategy for adverse effects of induced seismicity is to apply

the so called Traffic Light Systems—TLS (Häring et al., 2008; Verdon and Bommer, 2021).

TLS requires rapid detection, location, and magnitude determination of induced seismic

events in the vicinity of the hydraulic injection operations. Given that these injections

typically operate on a continuous basis, seismic data processing must also be conducted

continuously, typically using specialized surface monitoring arrays (Duncan Peter and

Eisner, 2010). Figure 1 shows possible placement of an automated picker in the traffic light

system illustrating the need for automation and processing in the real-time.

Large surface arrays detect and locate induced seismicity through the stacking of seismic

signals. In contrast, smaller and more cost-effective arrays, comprised of up to tens of

receivers, employ conventional short-term average/long-term average (STA/LTA) detection

and phase picking techniques for localization. To facilitate automated processing from such

smaller arrays, neural network-based location algorithms are often incorporated, allowing
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for continuous and rapid data processing. Such arrays continuously

generate vast amounts of data, which are impractical to process

manually. As a result, automated processing is typically employed.

Several approaches exist for detecting seismicity, with the most

prevalent method being the STA/LTA technique. This approach

involves the detection of signals arriving at multiple stations,

as measured by the ratio of short-term average to long-term

average seismic energy (Allen, 1982). The STA/LTA method offers

detection capabilities only, and it is susceptible to false detections

depending on the chosen thresholds, and thus often necessitates

manual intervention.

A novel methodology that integrates both detection and

location capabilities leverages the Deep Neural Network (DNN)

approach, originally developed for image classification tasks. One of

the first efficient implementations of DNN was the Convolutional

Neural Network (CNN) known as AlexNet (Krizhevsky et al.,

2012), which rapidly gained popularity and was applied across

various fields, including seismology (Mousavi and Beroza, 2022).

The CNN approach has been applied to diverse datasets,

encompassing global earthquakes (e.g., Mousavi et al., 2020),

FIGURE 1

Illustration of use of RNN picker in the real-time processing of the tra�c light system designed to mitigate large induced seismicity.

local networks (e.g., Woollam et al., 2019), acoustic emission

laboratory data (e.g., Ciaburro and Iannace, 2022), as well as real-

time earthquake early warnings (e.g., Li et al., 2018), and source

mechanism parameter estimation (e.g., Kuyuk and Susumu, 2018;

van den Ende and Ampuero, 2020).

When applying the DNN approach to seismograms, there

are generally two methodologies: (i) treating seismograms as

images, utilizing a CNN (Convolutional Neural Network),

or (ii) considering them as time series, an RNN (Recurrent

Neural Network). The first approach, which is widely used

in contemporary seismological analyses, simulates human

interpretation of seismograms and is akin to the analysis of

analog seismograms. In contrast, the latter approach treats digital

seismograms as time series. Under the CNN methodology, the

processed seismogram is classified as an image containing pixel

values, and the conversion of the CNN output to onset position(s)

is indirect. Conversely, with the RNN approach, probabilities (e.g.,

of onsets) are calculated for the entire investigated record, and their

maxima can be easily identified. In this context, Kirschner et al.

(2019) employed a Long Short-TermMemory (LSTM) network—a
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FIGURE 2

Map displaying station locations and epicenters of induced seismic events. Induced seismicity (datasets D1–D4) is detected at four wells (represented

by color-coded dots), with nine network stations shown as triangles. The average depth of events is 3.4 km. It is important to note that while the

induced seismic events are primarily clustered near stimulated wells, distant events (e.g., east of −15 km) are also observed, resulting from

stimulations unrelated to the fracturing within the array. Station ST08 is not depicted, as it was an accelerometer with higher noise levels compared

to geophones and was not utilized in this study.

FIGURE 3

An example of a recorded induced seismic event. The plots depict three normalized components of particle velocity: vertical and two horizontal

components (blue, red, and yellow) from 50m deep borehole seismic stations. Manual arrival time detections are indicated by vertical dashed lines

(red for P, cyan for S). Station ST10 was not recording during this event. The vertical lines signify automatic (RNN) picked arrival times.

specialized type of RNN—for phase picking on a local earthquake

dataset. Additionally, Mousavi et al. (2019) developed a CNN-RNN

earthquake detector (CRED) that combines convolutional layers

and bidirectional LSTM units within a residual structure for robust

detection of microearthquakes. In this study, we utilize an RNN by

treating seismograms as time series and implement the algorithm
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FIGURE 4

RNN Architecture. Each cell displays the RNN layer name (upper row: layer names are referenced in Table 1) and the CNN/RNN standard function

used (lower row). A description of the individual layers used within the CNN/RNN formalism can be found in Witten and Frank (2016).

proposed by Kolár and Petružálek (2022). In this approach, the

RNNs are directly trained to produce a time course of onset

probabilities. By adopting this methodology, we aim to enhance the

efficiency and accuracy of seismic event detection and location in

comparison to traditional techniques. This RNN-based approach

offers a promising alternative for seismological applications,

particularly when handling large volumes of data and the need for

rapid, automated processing.

The DNN applications in seismology has been

recently reviewed and compared with other methods (e.g.,
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Mousavi and Beroza, 2022; Anikiev et al., 2023). It can be

generally stated that as the DNN/CNN/RNN methodology is

new (about a decade), therefore its use in seismology is not

fully developed resulting in no general consensus on the most

appropriate methodology for seismic processing. We chose the

RNN architecture because we wish to have a general method

which can be applied in areas where training datasets might

be limited (Kolár and Petružálek, 2022). The CNN or DNN

method may perform better but are designed for networks

picks with good training dataset. The mentioned size limitation

of the processed data does not enable application of such

sophisticated DNN architectures as, e.g., U-Net (Ronneberger

et al., 2015), CubeNet (Chen and Li, 2022), Tailoring Net

(Anikiev et al., 2023), or W-Net (Lee and Lee, 2022) in

our case.

We develop an algorithm tailored for long-term monitoring

of induced seismicity, where a monitoring array is installed

over a field in which operations are conducted across multiple

wells (e.g., hydraulic fracturing of numerous wells) or during

long-term injection processes (e.g., saltwater disposal, CO2

sequestration injection, and geothermal exploration). Monitoring

arrays of this nature are typically deployed in shallow boreholes

at depths of up to 200m (Duncan Peter and Eisner, 2010) and

are referred to as shallow buried arrays. Figure 2 illustrates

the locations of induced seismic events stemming from four

hydraulically stimulated wells, as well as the monitoring

station geometry. Figure 3 presents the waveforms of a

representative induced seismic event. The RNN methodology

requires a learning dataset for training the neural network,

which poses a challenge in induced seismicity monitoring,

as there is typically no learning dataset available before the

injection process begins. We propose an algorithm suited for

a permanent network (e.g., Figure 2). In such a network, the

first acquired dataset can serve as the learning dataset, enabling

the trained RNN model to process the remaining datasets

within the network in real-time. The numerical experiments

in this study investigate the sufficiency of such learning and

determine the expected accuracy. The initial dataset must be

processed in real-time, either manually or through an alternative

automated algorithm, and ideally post-processed with precise

picking. A crucial consideration from the Traffic Light System

(TLS) perspective is whether this approach yields reliable

magnitudes for the induced seismic events. By developing an

algorithm that addresses this challenge, we aim to enhance the

efficiency and accuracy of induced seismicity monitoring in

permanent networks.

Our proposed methodology offers a promising solution

for long-term monitoring of induced seismicity, particularly in

situations where multiple wells or ongoing injection processes are

involved. By leveraging the RNN approach and incorporating an

initial learning dataset, we strive to improve the real-time detection

and analysis of induced seismic events, ultimately contributing to

more effective mitigation strategies and risk assessment.

The next section describes the methodology including RNN

architecture, followed by a section demonstrating the application

on real data set (including RNN output post-processing). We

conclude this study with a discussion of the methodology and the

application before making final conclusions.

TABLE 1 RNN parameters: the layers’ names correspond to those used in

Figure 4 [Drop_out layer value is identical in every application, the “|”

symbol represents a connection, the individual layers are as described in

Witten and Frank (2016)].

Sequence input:
number of features: 3

(Splitting)

| Lstm_1

Num. of units: 21

| Drop_out:

Value: 0.15

| (Splitting)

Lstm_3

Num. of units: 21

| Lstm_2

Num. of units: 14

Drop_out

Value: 0.15

| Drop_out

Value: 0.15

Bi-lstm_3

Num. of units: 7

Bi_lstm_1 Num. of units: 7 Bi_lstm_2

Num. of units: 7

Drop_out

Value: 0.15

Drop_out Value: 0.15 Drop_out

Value: 0.15

Addition

Fully_connected Num. of

classes: 3

Regression (output)

Methodology

We process data from a nine three-component station network

(Figures 2, 3) using a Recurrent Neural Network (RNN)1 to

automatically detect the P and S wave onsets in the investigated

seismograms. Our analysis assumes repeated monitoring of

induced seismicity within the permanent network. The dataset

comprises induced seismicity detected during the stimulation of

four different wells. Our methodology assumes that the first set of

induced events is processed independently, serving as a learning

dataset for the RNN algorithm. Chen and Li (2022) and Zhu et al.

(2022) employed an RNN comprising three parallel branches for

earthquake arrival picking.We adopt a similar RNN architecture, as

illustrated in Figure 4, with architecture details provided in Table 1.

A standard loss function is employed in the following form:

L =
1

2S

∑S

i=1

∑R

j=1

(

tij − yij
)2

, (1)

Where t is the target, y is the prediction time series, S is the

time series length and R is the number of responses used. The

learning efficiency is measured in terms of prediction accuracy

percentage. The learning dataset is conventionally divided into

three subsets: training, validation, and testing, with a standard ratio

of 0.6/0.1/0.3 employed for the learning process. In this study, we

1 CNN/RNN are general algorithms available in libraries of various

programming languages; in our case, the computation was realized using

MATLAB.
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FIGURE 5

(Top) Target probabilities computed for an event from a training subset. Inputs include three components of particle velocity, shown as yellow,

brown, and light blue traces corresponding to east, north, and vertical directions, respectively. Computed target probabilities are displayed as

follows: pP, solid red line; pS, solid blue line; pC, dashed black; pPall, dashed-dotted magenta; and pSall, dashed-dotted green lines above. Positions

of manual onset interpretations are indicated by vertical dashed lines: magenta for P and cyan for S. (Bottom) Example of successful prediction for an

event from a testing subset. The lines’ description is the same as in the top plot. Additionally, the automatically identified onsets’ positions

(corresponding to the maxima of predicted probabilities pP/pSall) are marked by full vertical lines: red for P and blue for S.

examine alternative learning datasets (D1 and D4) to assess the

robustness of the algorithm.

The RNN is employed in a sequence-to-sequence mode—

see Chapter 2 in Jung (2022), with the three-component time

interval of recorded unfiltered particle motion waveforms serving

as input (the time interval length was set to 1,500 points

in our case). These seismograms are randomly divided into

training, validation, and testing subsets. The target function (the

output) consists of three time series which represent probabilities:

(i) the probability of occurrence P onset (pP)—a Gaussian

curve centered on the most probable value, (ii) the S onset

occurrence probability (pS) with a Gaussian curve, and (iii) a

complementary value pC, constructed such that the total sum of

these three functions
(

pP (t) , pS t
)

, pC (t) is one at every time

sample. An example of target functions is depicted in Figure 5

(top), while Figure 5 (bottom) illustrates a successful prediction

example. Similar target sequence functions were proposed by

Woollam et al. (2019) and utilized in Kolár and Petružálek

(2022).

It is important to note that although the sum of all three

target sequences is defined as one at every time sample, these RNN

outputs are independent functions. For the real data, their summay

not be exactly one. We employ a similar approach as used in Kolár

and Petružálek (2022) to enhance detection capability, constructing

P-wave and S-wave detection probabilities pPall (t) and pSall (t)

as follows:
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FIGURE 6

Loss function progression for training data set D1. The Loss function is represented by the solid orange line, while the corresponding validation value

is the dashed black line. Note that the vertical ax is using logarithmic scale.

FIGURE 7

Histogram of di�erences between predicted and manually picked

onsets for D4 dataset.

pPall (t) = 1+ pP (t) − pS (t) − pC (t) , (2)

pSall (t) = 1+ pS (t) − pP (t) − pC (t) . (3)

These values are evaluated from the three component RNN

sequences output.

The maxima of pPall/pSall are considered as arrival time

detections if they reach a threshold of 0.05 for P waves or 0.1

for S waves, respectively. These threshold values were set through

quick initial testing. An example of the automatic detection is

shown in Figure 5 (bottom). In this case, the P-wave arrival times

are practically identical (with a difference of 1 sample), while the

automatic S-wave arrival times are slightly earlier (by 3 samples).

An example of successful detection of arrival times for an event is

then depicted in Figure 3.

A crucial question during any CNN/RNN learning process

is determining the proper (sufficient) number of iterations while

avoiding potential overfitting. Figure 6 illustrates the CNN/RNN

learning for dataset D1. We display the Loss function [defined in

Equation (1)] obtained during the learning process; the function

achieves stable values after the third epoch. This is generally

considered an indication of a sufficiently learned network (i.e.,

enough iterations)—see Chapter 6.6 in Jung (2022). Note, that

RMSE value (i.e., the standard RMS difference between prediction

and target) which can also be used for such test, has in our case the

same value (but for a multiplicative constant) as Loss function. The

values of obtained Loss for the independent validation dataset also

correspond fairly well to the values obtained from the training set.

We view this as an indication that the network is not overtrained.

Note that the loss function is plotted on semi logarithmic scale to

visualize the values close to 0 of the function.

The main training on all datasets have used following

controlling parameters: initial learning_rate = 0.022,

gradient_threshold = 0.7 and batch_size = 20. These parameters

were set empirically to provide reliable results in reasonable time.

At the beginning of our study, we started with default values of

these parameters, then we tried to optimize them by Bayesien

hyperparameters optimization approach (Snoek et al., 2012).

However, we did not observe strong dependency of results on

these values.

Application to real dataset

We have applied the described methodology to four datasets

(referred to as D1–D4) acquired on a permanent monitoring

network shown in Figure 2. The induced seismicity resulted

from hydraulic fracturing at the depths between 2 and 3 km

within the network. The events were located in a 1D layered

velocity model derived from the well-log data and active seismic

processing. The real-time monitoring of induced seismicity

was supervised manually and required manual processing and

verification of the preliminary automated processing which

often failed. The recordings were later re-processed to achieved

maximum consistency.

The real-time processed datasets were manually re-processed

to obtain high-precision picks, locations, and magnitudes. The

arrival times were manually picked at peaks or troughs of P- and

S-wave arrivals to achieve maximum consistency between picked

events and to minimize the impact of noise on weaker events.
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FIGURE 8

Example of a problematic auto picking. Plots utilize the same visualization of recorded waveforms and picks as in Figure 3.

FIGURE 9

Event locations using manual (red dots) and automatic (blue dots) arrival times. Corresponding locations of the same event are connected by dotted

lines. Events with normalized residuals ResN > 0.05 s are colored violet, while those with lower normalized residuals are colored black. The vertical

axis is exaggerated.

Frontiers in BigData 08 frontiersin.org

https://doi.org/10.3389/fdata.2023.1174478
https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org


Kolar et al. 10.3389/fdata.2023.1174478

FIGURE 10

Magnitudes determined using manual and automatic picks,

corresponding to the test in Figure 9. The dotted line represents a

1:1 relation, while the solid red line represents a linear interpolation

through the observed values.

Furthermore, recorded waveforms were correlated with a template

library and picks were refined based on the correlations to achieve

greater consistency.

The number of samples in the Gaussian uncertainty for steps (i)

and (ii) regarding P- and S-waves was chosen to be 5 and 6 samples,

respectively. These values were determined based on the width of

the observed signal. Table 2 summarizes the results of the automatic

picking. We assess the arrival time accuracy (in %) of the RNN;

the automated arrival time detection is considered successful if

the difference between the automated arrival time (prediction) and

manual time arrival (target) is <20 samples, i.e., 0.08 s, with either

learning dataset, over 80% of the automated picks were within 20

samples of the manual picks. This is also illustrated in an example

of a histogram depicting the differences between automatic arrival

times and manual arrival times, as shown in Figure 7. The chosen

criterion for successful arrival time is relatively lenient, as the

majority of prediction differences fall within the interval of ±5

samples (i.e., 0.02 s) for both P and S arrival times. In other words,

our prediction would fulfill even stricter conditions for successful

detection in the majority of processed events.

However, arrival time-based locations can be sensitive to

outliers. Therefore, to locate the seismic events with automated

picks, we applied additional criteria for automatic arrival times: for

each event and each station where both P and S-wave arrival times

were detected, we check if (tS-tP) > 0.5 s. If either of these criteria

is met, both such picks are excluded from subsequent processing

(location). For stations where only one of the arrival times (either P-

or S-wave) is available, we use that arrival time. The criterion results

in a condition that assumes local events occurring at depths>1 km.

TABLE 2 Accuracy of automatic P and S onset detection for two bias

datasets.

Data set Number of
events/records

Trained on D1 Trained on D4

Accuracy Accuracy

P S P S

D1 568/4,076 94.0% 96.1% 92.3% 76.4%

D2 82/532 83.3% 82.9% 86.1% 84.4%

D3 1,101/10,157 94.3% 96.5% 96.2% 94.2%

D4 603/4,466 88.6% 86.1% 92.8% 92.0%

Training datasets used are either D1 or D4.

TABLE 3 Results of post-processing.

Data set Learned on
D1/Num. of
excluded

seismograms tP > tS
abs (tP-tS) < 0.5

Learned on
D4/Num. of
excluded

seismograms tP > tS
abs (tP-tS) < 0.5

D1 8,129/7,935 8,120/7,398

D2 1,033/951 1,055/935

D3 20,227/19,724 20,165/19,517

D4 8,890/8,636 8,866/8,647

The number of automatic picks obtained directly from the network and the number of picks

that meet post-processing criteria are given.

The number of excluded arrival times based on these criteria is

listed in Table 3.

The numerical experiment evaluated two types of training

datasets to estimate the robustness of the methodology. Initially, we

used D1 as the training dataset and investigated its application on

D2–D4 sets. We also applied this learning to the training dataset

itself (i.e., D1) to assess how the onset picking performs on the

entire training dataset. An example of detected arrival times on

seismograms for an event from dataset D2 is shown in Figure 3.

Furthermore, to test the robustness of the methodology, we also

used D4 as the training dataset and applied it to the same datasets.

Figure 8 shows an example of the problematic automatic arrival

time detection. This is one of themost problematic cases that had to

be corrected by additional criteria on Tp and Ts arrival times. The

criterion is not passed on stations ST01, ST02, ST03, and ST06. In

contrast, an example of successful arrival time detection is given in

Figure 3.

The automatically picked arrival times were used for events

location to test whether they are good enough to provide real-time

location and (mainly) magnitude information. These locations are

compared with locations obtained from manual picks. For each

location the normalized residuum ResN is given as:

ResN =

√

∑n
i=1

(

TA
i − TTi − T0

)2

(n−m)
, (4)

Where TA
i is ith arrival time and TTi is traveltime

corresponding to the ith arrival time and T0 is origin time

divided by number of degrees of freedom (n-m),where n is number
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TABLE 4 Maximum di�erences between moment magnitude Mw using automatic and manual picks.

Data-learned on D1–D1 D2–D1 D3–D1 D4–D1 D2–D4

Maximum of Mw (automatic picks)-Mw (manual picks) for ResN < 0.05 s +0.11 +0.17 +0.41 +0.19 +0.26

Minimum of Mw (automatic picks)-Mw (manual picks) for ResN < 0.05 s −0.46 −0.27 −0.36 −0.47 −0.27

Max observed deviation −0.46 −0.67 +0.41 −0.47 −0.31

of arrival times and m is number of degrees of freedom, i.e., four

for three coordinates of the hypocenter and one origin time.

A general overview of the whole data processing described

above is briefly summarized below in algorithm in points form

(including inputs and outputs):

1. Primary input: triggered time interval of raw data−3

components particle velocity at each station of the network.

2. time interval of 3 component seismograms (length 1,500

samples) around the expected onsets from individual stations

(input for RNN).

3. RNN prediction of 3 component sequences of probabilities

(length 1,500 samples) of P/S and complementary signal

occurrence—output of RNN.

4. Determination of the time of P- and S-wave arrival time defined

as time of the maximum values of predicted probabilities.

5. Arrival conditioning: excluding P- and S-wave arrival times if

(tS-tP) < 0.5s.

6. Output: times of P/S onsets.

7. Post-processing: location evaluation (to make the location more

robust, the onsets with high residua are possibly excluded).

8. Post-processing (optional): magnitude Mw evaluation.

Results

Figure 9 shows comparison of event locations using manual

and automatic onset detection with learning dataset D1, applied

to dataset D3. Locations using automatic onset detection are

more scattered. The locations determined by automatic picks

are systematically shallower, with an average vertical difference

of 240m. The largest differences in locations correspond to the

largest normalized residuals, as illustrated by the colors of the lines

connecting the respective locations.

Figure 10 compares moment magnitudes (Mw) determined

frommanual and automatic onset detection and resulting locations

for the same dataset, as shown in Figure 9. The moment

magnitudes determined using automated arrival times are, on

average, underestimated by −0.1, which is consistent with the

shallower locations (locations closer to the receivers result in lower

magnitudes).

The magnitude difference is small on average. However,

TLS are dependent on a single observation of an event with

magnitude exceeding certain threshold. Such events are with

higher magnitude, Figure 10 shows that the differences for

the events with Mw> 1.5 are <0.3 for majority of them

and all <0.5. Table 4 lists the maximum differences between

magnitudes determined from manual and automatic processing

for tested datasets using two different learning datasets; Table 5

gives the particular number of events within various moment

TABLE 5 Number of events with moment magnitude di�erence between

automated and manual processing.

1 Mw
value

<0.2 <0.3 <0.4 <0.5 <0.6 <0.7 <0.8

Dataset/learning dataset

D1/D1 475 546 555 559

D2/D1 75 80 80 80 80 81

D3/D1 956 1,031 1,039 1,040

D4/D1 574 588 591 592

D2/D4 77 81 82

The bold numbers represent all events detected in each dataset.

magnitude differences level. Events with normalized location

residuum smaller than 0.05 s do not underestimate the moment

magnitude from the manual picks by more than 0.5. Events with

magnitudes higher than Mw1.5 and smaller normalized residuum

than 0.05 s do not underestimate the manually determined

magnitude by more than 0.3 for 98% of investigated events.

Events with higher normalized residual may indicate some

kind of failed automated processing and should be manually

reviewed. the higher residual is usually observed for near-in-

time or overlapping events (events with origin time difference

<4s had overlapping waveforms in this case study) where the

automated arrivals usually fail. The automated arrival detection

failure was indicated by high normalized residual value—

therefore these events are not included in the presented results

as they show only magnitude differences for events with low

normalized residuals.

Our application of RNN methodology is simple. Allowing

to use the trained algorithm on one network transfer the

training to another similar network where no prior seismicity

was previously observed. This application is going to be

tested and may provide important advantage for induced

seismicity for monitoring in areas where no prior seismicity

occurred before.

Computation cost

The computations were performed on a personal computer

with 3.8 MHz Intel processor, 32 GB memory, two NVIDIA

GeForce GTX 1070 external cards, Windows 10 system, on

MATLAB 2022b platform. The learning process range from several

tens of minutes to first hours (in dependency of number of

considered records). The prediction for an individual event takes

<0.1 s, i.e., it could be considered as effectively on-line.
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Discussion

The input for the proposed DNN are individual seismograms

(the seismograms are obtained on stations from a network), and

the outputs of the algorithm are independently determined P or

S arrival times of individual seismograms. We do not require or

assume that the arrival times are mutually consistent, instead we

assume the triggering algorithm which identified input for our

processing triggered a time interval with one or more seismic

events. This is both a drawback and an advantage. The advantage

is that our trained DNN has potential to be directly used (i.e.,

without re-training) on the data from other comparable seismic

networks. Testing of the assumption of direct transition of the

trained network on other network data would be the first choice for

future investigation in this field. The drawback of this methodology

is that additional conditioning is required for locations as discussed

in the above-described methodology.

Our tests indicate that the algorithm provides location and

resulting automatic magnitude estimates with maximum observed

error of 0.4 on the magnitude scale. Therefore, we believe that

this algorithm can be used for real-time monitoring of hydraulic

fracturing with the 0.4 magnitude margin. The algorithm can be

also used for salt-water disposal monitoring as well as gas storage

seismic monitoring.

In the numerical tests discussed in this study, we considered

all events used by an operator to assess seismic hazard during

hydraulic fracturing. Specifically, this dataset was complete down

to events with Mw1.0. We have not excluded events with weaker

signal-to-noise ratio. Should we need to apply this methodology

to weaker induced seismic events we may need to study limits of

this methodology for weaker microseismic events; however, this is

not the target of this application where we investigate suitability

for magnitude determination. Figure 10 does not show significant

increase of magnitude error for lower magnitude events, indicating

that we did not encounter significant effects of noise for events with

Mw1.0 in our dataset. Amore quantitative assessment of the signal-

to-noise effects would require precise definition of signal and noise

and set of much weaker events with manual picks for testing. Such

set is not available in this dataset and if it was the manual picks

would probably be unique and contain some level of error we would

need to account for when comparing. Testing the limits on weak

microseismic events is to be studied in the future tests.

Conclusions

We have developed an automated method for detecting arrival

times on triggered waveforms, suitable for repeated monitoring

within a stationary monitoring array. This methodology is

appropriate for real-time processing and provides arrival times

that are suitable for determining event location and magnitude.

The largest magnitude error in the tested datasets was <0.5;

however, 98% of the differences were <0.3. The methodology

is robust and does not appear to be dependent on a training

dataset as long as it is within the monitoring array. The method

either yields well-determined magnitudes or provides a warning

for anomalous events (high residual). The Deep Neural Network

(DNN) formalism has proven to be an efficient tool even for

relatively small datasets (in our case, several hundred events

from a moderate network) compared to larger sets used for EQ

Transformer learning (Mousavi et al., 2020). Moderate datasets

also imply a relatively simple architecture for the NN, as complex

networks cannot be reliably trained on limited datasets. Despite

this, our results are fairly acceptable, even for such data and

NN architecture.
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