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Comparative study of minutiae
selection methods for digital
fingerprints

Benoit Vibert, Jean-Marie Le Bars, Christophe Charrier and

Christophe Rosenberger*

Normandie Univ, UNICAEN, ENSICAEN, CNRS, GREYC, Caen, France

Biometric systems aremore andmore used for many applications (physical access

control, e-payment, etc.). Digital fingerprint is an interesting biometric modality

as it can easily be used for embedded systems (smartcard, smartphone, and

smartwatch). A fingerprint template is composed of a set of minutiae used for their

comparison. In embedded systems, a secure element is in general used to store

and compare fingerprint templates to meet security and privacy requirements.

Nevertheless, it is necessary to select a subset of minutiae from a template due

to storage and computation constraints. In this study, we present, a comparative

study of the main minutiae selection methods from the literature. The considered

methods require no further information like the raw image. Experimental results

show their relative performance when using di�erent matching algorithms and

datasets. We identified that some methods can be used within di�erent contexts

(enrollment or verification) with minimal degradation of performance.
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1. Introduction

In our daily lives, we increasingly use smart objects such as smartphones, smartwatches,

smart cards, etc., as a physical gateway to our digital services. To meet security trends,

biometric is often applied for user authentication (Liu et al., 2022; Singh and Kant, 2022)

to replace passwords. Digital fingerprint is a well-known morphological biometric modality

(Maltoni et al., 2009) with many advantages for such embedded devices. A fingerprint

capture is fast and convenient for the user. A fingerprint sensor can also be embedded

in smart objects such as a smartwatch. In terms of processing, a fingerprint template is

represented by a low-size feature vector (set of minutiae), and the comparison is very fast

(< 500ms). A biometric system includes two steps, such as 1) enrollment and 2) verification.

A matching algorithm computes a comparison score between a probe biometric template

and the reference one. A fingerprint template is, in general, composed of a set of specific

points called minutiae mi, 1 ≤ i ≤ N (N is the number of minutiae in the template). A

minutia is usually described by four values mi = (xi, yi,Ti, and θi), where (xi, yi) is the

location of the minutiae in the image, Ti is its type (bifurcation, ridge ending, etc.), and

θi is its orientation (related to the ridge).
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Modern biometric systems consider security and privacy by

design. As a common practice, a fingerprint template is stored in

a secure element (SE), following the ISO Compact Card standard

(ISO, b) to ensure the interoperability between biometric sensors

and systems (Grother and Salamon, 2007). An SE has hardware

and software constraints such as the size of memory and the

number of data we can send with an APDU (Application Protocol

Data Unit) command (ISO, 1987). These limitations have an

impact on the embedded system and the size of the fingerprint

template. The ISO/IEC 19794 − 2 standard recommends that the

maximal number of minutiae for biometric reference and probe

ISO-CC templates is 60 (ISO, 2011). However, in an operational

biometric system, a fingerprint template is usually limited to a

specific number of minutiae which is lower or equal to 50 to

satisfy the memory space, the APDU specifications, and also

the verification time. In this case, it is necessary to reduce the

template size when the extractor has detected more minutiae. The

aim of this study is to study and determine the best algorithmic

solutions to select these minutiae without any a priori information

(no access to the fingerprint image or minutiae quality scores

which prevents to delete the more suspicious minutiae). An

optimal template reduction method should be able to limit the

decrease in performance when using less minutiae. Testing all

combinations (selection of a subset of minutiae) is not possible

for computation limitations. Few algorithms for minutiae selection

have been proposed in the literature (ISO, 2007; Vibert et al., 2015,

2018), and the scope of the proposed study is to compare the

main methods.

The contributions of this study are as follows:

• Identification of main methods in the literature for the

minutiae selection from digital fingerprint templates.

• Study of the performance (degradation of recognition) and

efficiency (computation time) when selecting a subset of

minutiae from the initial template.

• Use of three fingerprint datasets from different

sensors/resolutions and three matching algorithms to

draw general conclusions.

• Identification of the context of the use of each tested method

(enrollment/verification) for an operational application.

This study is organized as follows: Section 2 recalls the

existing methods of the literature for template reduction;

Section 3 defines all the components of the experimental

protocol we followed; Experimental results are exposed

in section 4; Section 5 concludes this study and gives

some perspectives.

2. State-of-the-art methods

This section is devoted to an optimization problem. Given a

fingerprint template containing N minutiae, we wish to determine

the optimally reduced template composed of Nmax < N minutiae.

For this purpose, we suppose that we have a matching algorithm

returning a score, and we assume that the best-reduced template

is the one that maximizes the score with the initial template

(with all extracted minutiae). Under this assumption, to determine

this optimal template, we should test
(Nmax

n

)

possibilities (number

of combinations of Nmax among N). However, it is not feasible

to test all the possibilities, for instance, with N = 50 and

Nmax = 30, there are 4.7 ∗ 1013 possible reduced templates. This

is why we need an optimization method that is significantly less

costly. Many methods such as simulated annealing or tabu method

are available.

Previous studies suggest that the most relevant minutiae are

close to the core point (point on ridges with the maximal curvature

value), and therefore, most proposed solutions in the literature are

based on this assumption (Julasayvake and Choomchuay, 2007;

Khodadoust and Khodadoust, 2017; Sharma and Dey, 2019; Win

et al., 2019). Our results contradict this hypothesis. First of all,

in this study, we propose, a ground truth solution to enlighten

the performance we can hope to reach. In addition, this solution

aims to provide a good idea of the spatial distribution of the

selected minutiae. It exploits the score of a matching algorithm

by building a template reduction that maximizes the matching

score between the original template (with all the minutiae )

and the reduced one. This approach may not be applied in an

SE (mainly for computation time reason). Indeed, the matching

algorithm used in the SE does not return a score but just a

Boolean decision value for evident security reasons. It seems

unlikely to derive an algorithm with a non-prohibitory cost

due to the combinatorial explosion of the number of possible

reduced templates. Second, we studymethods without any auxiliary

knowledge forcing us to exploit only the spatial distribution of

the minutiae.

We present, in this section, the main methods for template

reduction of digital fingerprints in the literature.

2.1. Truncation

This simple method, defined by the ISO 19795-2 (ISO, 2007),

is based on a simple truncation, only the first Nmax minutiae

of the initial template are kept. The reason why this simple

approach could be efficient is related to the generation of the initial

fingerprint template. For some commercial biometric systems,

a fingerprint template is generated with the ascending order

of the minutiae on the Y axes. In the case of some captures

have been made, minutiae with high quality (always present

on the different captures, for example) could be placed at the

beginning of the minutiae template. Then, the selection of the

Nmax first minutiae could be very simple and efficient. Algorithm 1

shows the different steps to obtain the reduced template with

this method.

2.2. Random truncation

This method, named RandTrunc, is based on the random

permutation of the initial template where the Nmax first minutiae

are kept. Nmax represents the number of desired minutiae for

the final reduced template. We assume each minutia has the

same probability to be selected and follows a standard normal

distribution. This method allows to test whether all the minutiae
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Result: reducedminutiaeTemplate

Input : minutiaeTemplate

Input : nbrminutiaeExpected

n← nbrminutiaeExpected

m← size(minutiaeTemplate)

if m > n then

reducedminutiaeTemplate← minutiaeTemplate(1 to

nbrminutiaeExpected)

else

reducedminutiaeTemplate← minutiaeTemplate

end

Algorithm 1. Truncation method.

may be useful in the matching algorithm too. The randPerm(m)

function performs this permutation, and the proposed scheme is

presented in Algorithm 2.

Result: reducedminutiaeTemplate

Input : minutiaeTemplate

Input : nbrminutiaeExpected

n← nbrminutiaeExpected

m← size(minutiaeTemplate)

if m > n then

random← randPerm(m)

reducedTemplate← minutiaeTemplate(random(1 to

nbrminutiaeExpected))

reducedminutiaeTemplate← ascendingOrderX(reducedTemplate)

else

reducedminutiaeTemplate← minutiaeTemplate

end

Algorithm 2. Random truncation method.

2.3. Barycenter

This method is based on the peeling mechanism, and it

is fast and simple (a computation of a few milliseconds).

The NIST has observed that minutiae nearest the core point

of the fingerprint are the most involved in the comparison

process (Grother and Salamon, 2007). In our context, we cannot

compute precisely the CORE point (the fingerprint image is

not known); nevertheless, the centroid of the minutiae template

is often a good estimate. With this approach, we only keep

the closest minutiae to the centroid. Algorithm 3 contains the

required instructions.

The ascendingOrder function orders the minutiae in the

function of the distance di, i = 1 :N with an ascending order.

The last method ascendingOrderX orders the minutiae of the

template in the function of the X element, and this step is necessary

since an ISO Compact Card II is composed of this format. Notably,

Result: reducedminutiaeTemplate

Input : minutiaeTemplate

Input : nbrminutiaeExpected

n← nbrminutiaeExpected

m← size(minutiaeTemplate)

if m > n then

centroid← computeCentroid(minutiaeTemplate)

dist← euclideanDist(minutiaeTemplate, centroid)

AscendingTemplate← ascendingOrder(minutiaeTemplate, dist)

reducedminutiaeTemplate← AscendingTemplate(1 to

nbrminutiaeExpected)

reducedminutiaeTemplate← ascendingOrderX(TemplateReduit)

else

reducedminutiaeTemplate← minutiaeTemplate

end

Algorithm 3. Barycenter method.

this method will be also useful for the other methods developed and

presented further.

2.4. Median Y

This method, named Median Y, has the same workflow

as the barycenter one, but we only exploit the Y elements,

information of the minutiae template. Algorithm 4 presents

the developed technique. The computeMedian function

refers to the median value Median(Ym) of the template on the

Y feature of the initial template. The euclideanDistY

function computes the euclidean distance di(Yi,Ym)

between minutiae Yi of the template and the median

value Ym.

Result: reducedminutiaeTemplate

Input : minutiaeTemplate

Input : nbrminutiaeExpected

n← nbrminutiaeExpected

m← size(minutiaeTemplate)

if m > n then

Mediane(Ym)← computeMedian(minutiaeTemplate)

dist← euclideanDistY(minutiaeTemplate,Ym)

AscendingTemplateY ← ascendingOrder(minutiaeTemplate, dist)

reducedminutiaeTemplate← AscendingTemplateY(1 to

nbrminutiaeExpected)

reducedminutiaeTemplate←

ascendingOrderX(reducedminutiaeTemplate)

else

reducedminutiaeTemplate← minutiaeTemplate

end

Algorithm 4. Median Y method.

Frontiers in BigData 03 frontiersin.org

https://doi.org/10.3389/fdata.2023.1146034
https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org


Vibert et al. 10.3389/fdata.2023.1146034

2.5. K-means-based scheme

When assuming the minutiae follow a standard uniform

distribution, this does not mean that the same number of selected

minutiae are present in each part of the template, that is, there

is not a spatial standard uniform distribution of minutiae. Thus,

decomposing the template into several areas does not provide a

guarantee that the selected minutiae are equally spatially separated.

If we want to address the spatial distribution of minutiae, we

have to consider a classification-based method. The designed

method is based on the Fuzzy C-Means (FCM) (Pal and Bezdek,

1995) algorithm, a well-known unsupervised data classifier. In our

study, this method takes as input parameters both the template

of minutiae and the number of classes that we expect (i.e., the

final number of minutiae to reach). As output, we have the focal

point of each class from which we seek the closest minutiae of

this point. Algorithm 5 presents the three steps of the proposed

k-mean-based technique.

Result: reducedminutiaeTemplate

Input : minutiaeTemplate

Input : nbrminutiaeExpected

n← nbrminutiaeExpected

m← size(minutiaeTemplate)

if m > n then

CentroidCluster← FCM(minutiaeTemplate, n)

reducedminutiaeTemplate← ascendingOrderX(reducedTemplate)

reducedTemplate←

minutiaeNearCluster(minutiaeTemplate,CentroidCluster))

else

reducedminutiaeTemplate← minutiaeTemplate

end

Algorithm 5. k-means-based method.

In Algorithm 5, the FCM function is divided into two parts: 1)

the initialization and 2) the processing phases. They are described

as follows:

1. Initialization phase

(a) Select a random minutia to serve as the centroid C1 of the

first class C1.

(b) Find the minutiae having the greatest distance from the

centroid C1 to serve as the centroid C2 of the second class C2.

2. Processing phase

(a) Compute distances between each minutia and each class

centroid (Ci)2<i<N , where N is the number of computed

centroid at this step.

(b) Assign into each class (Ci)2<i<N the nearest minutiae to

(Ci)2<i<N in order to generate a Voronoi diagram, where all

minutiae of class Ci are closer to the centroid Ci than to any

other. Compute the new value of each centroid (Ci)2<i<N as

the barycenter of each associated class (Ci)2<i<N .

(c) Select a new point as a new Cj centroid of the new class (Cj)

with a large distance from the other centroidsCi. The number

of classes is N + 1.

(d) Repeat the previous three steps until getting the desired

number of classes Nmax.

The minutiaeNearCluster function returns the closest

minutiae to the centroids of the returned classes by the

FCMmethod.

2.6. Incremental barycenter

This method is based on the Barycenter method (Section 2.3).

The NIST scheme is modified by introducing an incremental

method with barycenter. The main idea is to recalculate the

barycenter after removing a minutia. Algorithm 6 describes the

different steps of the proposed method. The main difference with

Algorithm 3 is the deletion of the furthest minutiae from the

barycenter. We also repeat the different stages until obtaining the

desired number of minutiae.

Result: reducedminutiaeTemplate

Input : minutiaeTemplate

Input : nbrminutiaeExpected

n← nbrminutiaeExpected

m← size(minutiaeTemplate)

temp← minutiaeTemplate

if m > n then

while size(temp) > n do

centroid← computeCentroid(temp)

dist← euclideanDistance(temp, centroid)

ascendingTemplate← ascendingOrder(temp, dist)

temp← ascendingTemplate(1 to size(temp)− 1)

end

reducedminutiaeTemplate← ascendingOrderX(temp)

else

reducedminutiaeTemplate← minutiaeTemplate

end

Algorithm 6. Incremental barycenter.

2.7. Minutiae reduction based on a genetic
algorithm

In this section, we detail the MRGA method (Minutiae

Reduction based on a Genetic Algorithm) to estimate the best

possible reduction for a minutiae template (Vibert et al., 2018). A

genetic algorithm is used to solve the optimization problem for

minutiae selection. Genetic algorithms are adaptive heuristic search

algorithms introduced in the 1970s by Holland (1975) and Rudolph

(2000). They allow to approximate the optimal value of a criterion

by simulating the evolution of a population up to the survival of
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the best individuals (Wall, 1996). The survivors are obtained by

selection, mutation, or crossing of the previous generation. In our

context, it is natural to design the evaluation function according to

the score of the matching algorithm. A genetic algorithm is defined

by five essential elements as follows:

1. Genotype: This is a set of characteristics representing each

individual in a population. In our case, the initial population

consists of 500 individuals composed of N elements, N is

the number of expected minutiae in the reduced biometric

template. Since we want to get a template with minutiae

present in the initial template, the population will be constituted

by random draws of N minutiae in the initial template

containingM minutiae.

2. Initial population: This is a set of individuals randomly drawn

from the original template. Each individual consists of N

elements. Each element corresponds to a unique position of a

minutia present in the original template.

3. Evaluation function: This element measures the quality of

an individual I1 (possible reduced template). We consider the

matching score between this individual and its associated initial

template (with all minutiae). In this study, we used the MCC

comparison algorithm, as it is fast to compare two biometric

templates and it has good performance. In conclusion, the

higher the similarity score, the better the tested individual.

4. Operations on genotypes: The genes of the individual are

modified through three functionalities:

(a) Selection: Individuals that do not match the environment

(whose score is not sufficient) are not selected. To do this,

we select the elite individuals (the five individuals with the

highest scores).

(b) Crossing: The genes resulting from the crossing of two

individuals are a combination of the genes of their parents.

To obtain the individual results from individuals I1 and I2,

we look at the elements present in the two individuals without

the duplicates and randomly select the first N elements. We,

thus, obtain an individual (son) mixing the genes of the two

individuals (parents).

(c) Mutation: Some of the genes are modified in order to better

adapt to the environment. We randomly draw an individual,

and then, we cross this individual with an elite individual. The

resulting individual Ir =mutation and (I1) = cross(I1, Ia) with

the random individual. This enables to obtain an individual

having genes from an elite individual and a random one.

5. Termination: This is the end-of-evolution criterion depending

on the score of individuals or the number of generations. If

an individual keeps the same score for 10 generations or 500

generations have been made, the algorithm ends.

We summarize here the work-flow of the execution of a genetic

algorithm as follows:

1. Definition of the initial population.

2. Evaluation of individuals.

3. Generation of the following population as follows:

(a) Selection of five elite individuals;

(b) 30% of the population (here, 150 individuals) is obtained by

mutating elite individuals with random ones.

(c) 30% of the population (here, 150 individuals) is obtained by

crossing elite individuals.

(d) Selection of random individuals to complete the population

of 500 individuals.

4. Return to step 2 if the stop criterion is not satisfied.

2.8. Discussion

The presented methods from the literature are very different.

Some methods are very simple, such as truncation. Figure 1

shows an illustration of the result of the trial reduction methods

on a digital fingerprint by selecting the “best" 30 minutiae

(represented in red). It is difficult to quantify their relative

efficiency in terms of performance and computation time.

Selected minutiae are very different when using all presented

methods. The main contribution of this study is to propose a

comparative study of these methods in order to answer this

question.

3. Experimental setup

We define the experimental setup in the following sections.

3.1. Databases

In this study, we used three datasets of digital fingerprints

composed of 800 images from 100 individuals with eight samples

per user. These datasets were used during previous Fingerprint

Verification Competitions (FVC):

1. FVC2002 DB2 dataset (Maio et al., 2002): The image

resolution is 296 × 560 pixels with an optical sensor “FX2000"

by Biometrika.

2. FVC2004 DB1 dataset (Maio et al., 2004): The image resolution

is 640× 480 pixels with a “V300" optical sensor by CrossMatch.

3. FVC2004 DB2 dataset (Maio et al., 2004): The image resolution

is 328 × 364 pixels with an optical pickup “U.are.U 4000" by

Digital Persona.

Figure 2 shows a fingerprint sample from each database.

This also shows the diversity of fingerprint quality in the

considered databases.

Figure 3 shows the distribution of the number of minutiae

for each sample in the biometric datasets. Notably, the number

of minutiae is not similar for each dataset, even if they

are close on average. The average number of minutiae is

54 for the FVC2002DB2 database, 48 for FVC2004DB1, and

43 for FVC2004DB2. Moreover, the number of minutiae can

be greater than 80 or even 100, which is greater than the

maximum size accepted by secured elements. This is the reason

why we need to reduce the number of minutiae in digital

fingerprint templates.
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FIGURE 1

Minutiae selection of the initial template (A) with di�erent methods: (B) truncation, (C) barycenter, (D) Median Y, (E) truncation random permutation,

(F) K-means, (G) incremental barycenter, and (H) MRGA. Minutiae in red are kept on the reduced template with nbrminutiaeExpected = 30.

FIGURE 2

Example of fingerprints from each used database: (A) database FVC2002 DB2 (B) database FVC2004 DB1, and (C) database FVC2004 DB2.

3.2. Minutiae extractor

In this study, the minutiae templates are extracted using the

NBIS tool, and more specifically MINDTCT (Watson et al., 2007)

from NIST. We choose this extractor since it is widely used for

academic research.

3.3. Matching algorithms

A total of three comparison algorithms are considered to be

sure that our conclusions are not dependent on the used matching

algorithm. The first two come from the academic world and the last

one from the industrial world as follows:
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FIGURE 3

Distribution of the number of minutiae contained in each template

per database by box whiskers.

1. Bozorth3 algorithm Watson et al. (2007): This matching

algorithm takes into account only the locations and orientation

of the minutiae to match the fingerprints.

2. Minutiae Cylinder-Code (MCC) algorithm Cappelli et al.

(2010): The representation of MCC associates a local structure

with each minutia. This structure contains the spatial

and directional relationships between minutiae and their

neighborhood (fixed radius). Each structure is invariant in

translation, rotation, distortions, and small errors of extraction

of characteristics. A double measure of similarity is calculated

and consolidated to provide an overall score for the comparison.

3. Commercial algorithm: We do not have any information on

how this algorithm works. This commercial matching algorithm

is considered a black box, its output is an answer such as

“Accepted" or “Declined", and not a score to avoid hill-climbing

attacks (Martinez-Diaz et al., 2006).

3.4. Evaluation metrics

To assess the performance of each template reduction method,

the first sample of each individual is chosen as a reference template

while the remaining seven samples are used for the verification

process. To assess the performance of a biometric system, we can

compute the Receiver Operating Characteristic (ROC) curve. This

curve plots the False Match Rate (FMR) (i.e., accepted impostor

attempts) on the x-axis against the corresponding False Non-

Match Rate (FNMR) (i.e., rejected genuine attempts) on the y-axis

plotted parametrically as a function of the decision threshold. An

illustration of the ROC curve is presented in Figure 4. The area

under the curve (hatched zone) should be as low as possible to

minimize recognition errors. The associated measure is called AUC

(Area Under the ROC Curve) and is often considered a global

performance criterion. The AUC values obtained for different sizes

of the reduced template are plotted to help the comparison of one

selection algorithm with the others. We consider this value in this

study to quantify the efficiency of a minutiae selection method.

FIGURE 4

Definition of the ROC curve: evolution of the False acceptance rate

vs. the false rejection rate.

TABLE 1 AUC values for the three datasets with Bozorth, MCC, and the

commercial matching algorithms.

Bozorth3 MCC Commercial

FVC2002DB2 14%± .14 10%± .28 0.04%± .06

FVC2004DB1 11.1%± .18 18.4%± .17 3.77%± .09

FVC2004DB2 11.1%± .09 18.9%± .12 3.68%± .07

3.5. Ground truth

Table 1 shows the AUC value for the three used datasets

considering the initial template as a reference (with all minutiae).

The performance of MCC is lower than expected. We believe that

the association between the MINDTCT extractor with MCC is sub-

optimal. We are not interested in maximizing the performance of

user verification with the matching algorithms but to estimate the

impact of template reduction methods on performance.

These AUC values are considered in this study as the ground

truth, i.e., the best performance when having all minutiae. The

application of a template reduction algorithm will decrease the

performance. A good reduction method should minimize this

decrease in performance, meaning having the lowest AUC value.

4. Experimental results

In this section, we present the experimental results we obtained

given the protocol described in the previous section. We first

analyze the computation time required for template reduction with

all tested methods.

4.1. Computation time for minutiae
selection

The processing time to generate a reduced template for each

method is analyzed. All computations have been realized under
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TABLE 2 Average computation time for all the minutiae sizes for each

reduction method.

Nmax 30 34 38 42 46 50

Truncation 7.9 ms 7.6 ms 7.4 ms 7.2 ms 7 ms 6.8 ms

Random

truncation

20.7 ms 19.9 ms 18.9 ms 17.4 ms 16.5 ms 14.6 ms

Barycenter 476 ms 409 ms 376 ms 364 ms 301 ms 244 ms

Incremental

Barycenter

5387 ms 4747 ms 3988 ms 3435 ms 2789 ms 2206 ms

K-means 24.3 s 24 s 22.8 s 20.5 s 18.3 s 15.5 s

Median Y 171 ms 164 ms 193 ms 186 ms 189 ms 196 ms

MRGA 38 min 35 min 28 min 20 min 18min 13 min

Matlab running on a PC with an Intel Core I7 4-core processor

with a frequency of 2.8GHz and 16 GB of RAM. Table 2 shows the

average reduction times for each method considering all datasets.

This time criterion is of importance to draw a trade-off between

the performance and the computation time in order to formulate

recommendations to select a biometric template reduction method

for both commercial systems and uses in research. The most simple

methods (Truncation, Random truncation, and Media Y) are very

fast with a low impact of the maximal number of minutia to keep.

Others are much more slower, especially the K-means and MRGA.

These two last methods (without considering their performance)

cannot be used in a verification context.

4.2. Performance analysis

We analyze the performance of template reduction methods

for the three datasets and three matching algorithms. We expect to

minimize the degradation of performance compared with the initial

template (without any reduction).

4.2.1. Impact of template reduction
In this section, we analyze how template reduction methods

perform and their impacts on performance. Figures 5–7 present the

evolution of the performance for each reduction template method

with the three matching algorithms on the FVC 2004 DB1 dataset

as illustration. As a reference, we considered the performance when

using the initial template (no reduction). From these curves, We

can draw the following conclusions.

First, we can see that the reduction of minutiae has the

consequence of a decrease in performance. This is not a surprise to

have this result, it was expected. For example, for the most efficient

matching algorithm (commercial one), with Nmax = 30 (where we

keep only 30 minutiae from the template), we have an AUC value

between 5.5% and 13.5% with template reduction methods, while

using the initial template, we have an AUC value of 3.77% (see

Table 1). The decrease in performance for each template reduction

method is very different, we analyze it later.

Second, the relative template reduction methods have a

very similar behavior for the MCC and commercial matching

algorithms. This was expected, as these two algorithms are much

more efficient even if Table 1 shows a better performance for

Bozorth3. We focus more on our analysis onMCC and commercial

matching algorithms.

We can observe that the reduction methods based on

truncation are less efficient. The deterministic one is a bit more

efficient than the random one, which suggests that the minutiae

extractor adopts a sorting of minutiae with quality measures.

The Median Y method has very different behaviors for the three

matching algorithms, and this approach seems to be not very

useful. Methods based on the computation of the barycenter (static

or incremental computation) have similar behaviors and provide

globally good results. The static version is much more efficient

considering its computation time (see Table 2), this solution is a

better choice.

Now, we consider the two slowest methods. The K-means

method provides good results. The degradation of performance

(estimated by the AUC value) for Nmax = 30, as for

example, is 7.2% instead of 3.7%, without any reduction for the

commercial matching algorithm. Finally, the MRGA reduction

method provides the best results for all the matching algorithms.

As an illustration, the degradation of performance for Nmax = 30

is 5.5% instead of 3.7%, without any reduction for the commercial

matching algorithm. Of course, this method is not acceptable in

a verification context, as its computation is too important (see

Table 2).

4.2.2. Reduction vs. performance
We showed in the previous section that applying a reduction

method usually decreases performance. In our experiments, we

found a counter-example with the Bozorth3 matching algorithm

on the FVC 2002 DB2 dataset (see Figure 8). We can see that all

reduction methods improved greatly the performance. To better

understand these results, we analyzed images from which minutiae

templates are extracted. We observed that the images show capture

artifacts (minutiae from a latent fingerprint), which mislead the

minutiae extraction algorithm. It shows that the minutiae extractor

detects false minutiae.

Figure 9 illustrates this remark. We note that many minutiae

are falsely detected due to capture artifacts. To validate our

assumption, we took a sample of the FVC 2002 DB2 database,

and we removed the minutiae from artifacts in the initial

template (suppression of detected minutiae in the background of

the fingerprint image). Then, we applied the different selection

methods to these “cleaned" templates. We evaluated these new

templates with the same methodology as before. We observed so-

called “normal" performances (with a better performance than the

initial template), that is, the reduction methods deteriorate the

performance of the system compared with the initial template, as

expected. This surprising result shows the benefit to suppress all

minutiae in the background of the fingerprint as pre-processing of

template reduction methods.

4.3. Discussion

Considering all results, we can draw many interesting

conclusions. Of course, using a template reduction method permits

to limit the data storage and the computation time for the matching
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FIGURE 5

Comparison of template reduction methods on the FVC 2004 DB1 with the commercial matching algorithm.

FIGURE 6

Comparison of template reduction methods on the FVC 2004 DB1 with the Bozorth3 matching algorithm.

process. This could be very important in embedded systems like

smart cards having such constraints.

We also showed that suppressing spurious minutiae with

a background detection is an interesting pre-processing before

template reduction.

The different tested reductionmethods have different behaviors

in terms of performance and computation time. MRGA is the

most efficient one, but it is very slow. The Barycenter method is

a good compromise between performance and computation time.

In an operational context, We propose to use the MRGA method

during enrollment in order to have the best performance even

if it is long as it is only conducted once. For user verification,

the barycenter solution could be used, as it is fast and provides

good results.
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FIGURE 7

Comparison of template reduction methods on the FVC 2004 DB1 with the MCC matching algorithm.

FIGURE 8

Comparison of template reduction methods on the FVC 2002 DB2 with the Bozorth3 matching algorithm.

5. Conclusion and perspectives

This study has first presented the context of template reduction

of digital fingerprints. We realized a literature review of reduction

methods. All methods have been tested on three well-known

biometric datasets often used in biometric competitions and on

two academic comparison algorithms –Bozorth3 and MCC– and

a commercial one. We have to mention that no code optimization

was carried out in our study, and the proposed methods have

been developed under Matlab; hence, we may hope to consequently

reduce the computation time. We have shown that the best

methods for reducing fingerprint templates are mostly those

offering a good spatial distribution of the minutiae in the reduced

template. We proposed to use the MRGA method for enrollment

and the barycenter one for user verification for a real and

efficient implementation.

From perspective, we believe that there is room for

improvement of template reduction methods. We list in the

following some possible strategies to define new methods.

The visual representation of the selection on the same template

should give crucial lightening to find the best minutiae. However,

there are too many differences between the selected minutiae of
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FIGURE 9

Example of fingerprint with minutiae artifacts.

two different methods like K-means and MRGA to derive easily

a new strategy of selection, an in-depth investigation remains to

be conducted.

It may be noted that the performance of a reduction template

method can be dependent on the matching algorithm even if

MCC and the commercial one provided similar results. Hence, a

method may be efficient for one and not the others, while another

should be rather efficient for any matching algorithm. Defining

a template reduction method using the matching algorithm as a

core component could be proposed. We could, for example, select

minutiae that have a high impact on the matching score between a

reduced template and the initial one.

It might also be possible to consider works on minutiae quality

to select the most interesting ones for reduction. We plan to work

on this approach in future.
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