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Networks (or graphs) are used to model the dyadic relations between entities

in complex systems. Analyzing the properties of the networks reveal important

characteristics of the underlying system. However, in many disciplines, including

social sciences, bioinformatics, and technological systems, multiple relations exist

between entities. In such cases, a simple graph is not su�cient to model these

multiple relations, and a multilayer network is a more appropriate model. In

this paper, we explore community detection in multilayer networks. Specifically,

we propose a novel network decoupling strategy for e�ciently combining the

communities in the di�erent layers using the Boolean primitives AND, OR,

and NOT. Our proposed method, network decoupling, is based on analyzing

the communities in each network layer individually and then aggregating the

analysis results. We (i) describe our network decoupling algorithms for finding

communities, (ii) present how network decoupling can be used to express

di�erent types of communities in multilayer networks, and (iii) demonstrate

the e�ectiveness of using network decoupling for detecting communities in

real-world and synthetic data sets. Compared to other algorithms for detecting

communities in multilayer networks, our proposed network decoupling method

requires significantly lower computation time while producing results of high

accuracy. Based on these results, we anticipate that our proposed network

decoupling technique will enable a more detailed analysis of multilayer networks

in an e�cient manner.

KEYWORDS

multilayer network, community detection, network decoupling, homogeneous networks,

boolean combination

1. Introduction

The relations among entities in social and technological systems can be represented as

networks (or graphs), where each relation is an edge and each entity is a vertex. However,

in reality, most systems are defined, not by a single, but by multiple types of relations.

For example, a group of friends may be connected through multiple social networking

platforms such as Facebook, Twitter as well as by email. Technological networks such as

transportation networks can consist of airline, train, or bus routes. To accommodatemultiple

types of relations, the systems are modeled as a set of networks. This set of networks, each

representing a different relation, forms amultilayer network. Here, we focus on homogeneous

multilayer networks (also known as multiplexes), where each network is composed of the

same set of nodes, but the structure of the network changes, based on the respective relations.
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The typical approach to analyzing multilayer networks is to

combine all, or a subset, of the layers to form a single network

(here termed as a composed network), and then apply the existing

analysis algorithms for single networks. Given an undirected

and unweighted network, the layers can be combined using the

primitive Boolean operations AND, OR and NOT.

1.1. Motivation

Most current multilayer analysis approaches implicitly assume

that the multilayer network is mapped to only one composed

network. In real life scenarios, however, queries on multilayer

networks can require testing over multiple composed networks

formed from different combinations of the layers. As an example,

consider a company deciding which routes (airplane, train, road,

etc.) to use for transporting material, under limited resources. They

may want to select combination of which two routes would give the

most connectivity. If the relations with respect to each condition is

represented as a layer, then
(n
2

)

≈ n2 composed networks have to be

analyzed, where n is the number of layers. Another example would

be a city trying to do a risk-benefit analysis of which businesses and

public places to re-open after lockdown. In this case, they would

want to identify the subset of places that maximizes the benefits but

lowers the risks. Assuming that each layer represents the possible

social interactions at each place, all possible combinations of the

layers have to be analyzed. Here the number of tests would be 2n.

These examples demonstrate that the number of composed

networks increases exponentially with the layers of the multiplex,

and analyzing the entire set is computationally expensive. To date,

as discussed in Section 2.2, most multilayer analysis is based on

creating only one composed network, formed by combining all or a

subset of the layers using anOR operation.The problem of efficiently

creating different composed networks through varying combinations

of layers and operations has been rarely addressed.

1.2. Our contribution

Analysis of the different composed networks will incur some

redundant computations, since different composed networks can

have some of the layers in common. We propose to reduce

the number of redundant computations through a novel method

of network decoupling. In network decoupling, each individual

network layer is analyzed independently once and only once, and

then the results are combined as required. Network decoupling

(analyze and then combine) has several advantages as follows;

• Computational efficiency. Network decoupling reduces the

time for analysis. Analyzing each layer separately helps in

identifying the relevant edges per layer, and reduces the

number of edges to combine.

• Flexibility of combination. Network decoupling facilitates

incorporating changes to the multilayer network, such as

addition of a new layer or change in the structure of an old

layer. Using decoupling, only the added or changed layer has

to be analyzed, and combined as required.

• Reduced information loss. When analyzing a composed

network, it is challenging to understand how the individual

layers contributed to the analysis. Using network decoupling,

since each layer is analyzed individually, their respective

contributions can also be identified.

1.3. Identifying communities in multilayer
networks

Here, we focus on computing communities in multilayer

networks using decoupling. Communities are groups of tightly

connected nodes. Using network decoupling, we first find the

communities in each individual network and then develop

aggregation functions, such that the communities from each layer

can be combined to produce the communities in the composed

network (Figure 1). The primary challenge is to design appropriate

aggregation functions, such that the communities obtained using

network decoupling are similar to those obtained by applying

community detection on the composed network1. Formally, our

problem can be stated as follows;

1.4. Problem statement

Given a set of layers G1,G2, . . . ,Gx, that are combined using

a Boolean operation
⊕

to form the composed network, and

a community detection algorithm COMM, that is used to find

communities, develop an aggregation algorithm 5, such that

COMM(

x
⊕

i=1

(Gi)) ≈ 5x
i=1(COMM(Gi))

In other words, we aim to find an aggregation algorithm 5,

such that the results of finding the communities in the individual

layers and then aggregating them via 5, should be similar to

the communities obtained from the composed network where the

layers are combined using the Boolean operator
⊕

. Developing

the aggregation algorithm is challenging, since the structure of

the composed network can change after combination, and the

aggregation process has to account for that change when combining

the communities.

2. Overview of communities in
multilayer networks

We provide an overview of multilayer network, creation, type

of communities in MLN and how boolean operations can be used

to combine the layers.

1 We state that the communities should be similar rather than identical,

because community detection is non-deterministic, and even slight changes

in the algorithm or order in which the vertices are processed can slightly alter

the results.
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FIGURE 1

Network decoupling. Each layer is analyzed separately and then the results are aggregated.

2.1. Creating multilayer networks

A multi-relational data set, can be represented as a

homogeneous multilayer network. Each feature is represented as

a separate layer. The set of entities remain the same in each layer.

The edges, based on relations between the entities, change across

the layers with respect to the corresponding feature.

We use the Internet Movie Database (IMDb) to illustrate how

a multiplex is constructed. The IMDb is an online database that

contains information on television programs and movies including

actors, directors, genre, and year of release (IMDB-2018, 2018).

We create a multiplex where the entities represent actors and two

actors are connected to each other if they have acted in the same

movie. Each layer in the multiplex represents a movie genre, such

as comedy, drama, action, etc.

An example of the multilayer network is given in Figure 2.

We show two genres, comedy (f 1) and drama (f 2) to form the

two layers, G1 and G2, respectively, and modeled the co-actor

relationship among 18 actors (denoted by nodes numbered from

1 to 18). Two actors are connected if they acted in movies of the

same genre. Note that although the same 18 actors are present in

both layers, the structure varies due to the difference in relations.

By taking the information from the two networks together we can

gain interesting insights to the data. For example, actors I3 and I8
have never worked together in a drama, but have worked together

in a comedy. Also, observe that the actors I4 and I14 have the most

connections in the drama genre, whereas actors I9, I10, and I11 are

the nodes with the most connections in comedy.

2.2. Pillar and semi-pillar communities in
multilayer networks

In recent literature, Hanteer (2020) and Braun et al. (2021)

have differentiated between the id of the entities and how they

FIGURE 2

IMDb multiplex for co-actors with 18 actors and two genres:

comedy and drama.

appear in each layer. Specifically, inMagnani et al. (2021) an actor is

defined as an entity that can represent a particular person, animal,

organization, city, country etc. In Figures 3A, B, there are five actors

A1, A2, A3, A4 and A5 representing five different individuals.

We also differentiate between the actor and their existence in a

layer. A node is the existence of a given actor in a given layer. The

same actor present in different layers represents different nodes. In

Figures 3A, B, for each of the five actors A1, A2, A3, A4 and A5,

there is one node present in each layer. For example: for actor A1

we have nodes A1L1, A1L2, A1L3, A1L4 present in layers L1, L2,

L3 and L4, respectively. The node in layer k representing actor i, is

denoted as ui
k
. Using these definitions communities in multilayer

networks are defined in Magnani et al. (2021) as follows;
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FIGURE 3

Pillar (A) and semi-pillar community structure (B).

2.2.1. Pillar community
The pillar community extends across all the layers. For each

actor that belongs to a community, all the nodes belonging to the

actor must belong to the same community. An example of pillar

community is presented in Figure 3A.

2.2.2. Semi-pillar community
The semi-pillar community extends across k layers where 2 ≤

k < NL. Here, NL is the total number of layers. As before, for each

actor that belongs to a community, all the nodes belonging to the

actor must belong to the same community for k layers. We see a

structure of semi-pillar community in Figure 3B.

2.3. Community detection in composed
networks

We now demonstrate how the different layers of the multiplex

can be combined, and how communities are detected in them.

Figure 4 shows the communities for the composed layers, G1AND2

(AND composition) and G1OR2 (OR composition) for multiplex in

Figure 2.

Communities in AND-Composed Layers. AND composition

allows users to find communities that are related across all the

features. Algorithm 1 (termed C-SG-AND) shows the steps of

finding communities in the composed network, using a standard

community detection algorithm such as Infomap (Bohlin et al.,

2014). In an AND composition, the composed network is formed

of the edges that are common to all the networks, and then the

communities are found in the composed network. Some questions

that can be addressed by the AND composition are (based on data

sets in Section 4).

• Groups of actors who have expertise in working together in

both comedies and dramas (IMDb multiplex).

• Authors who have co-authored a paper published in all of these

conferences: ICDM, SIGMOD and VLDB (DBLP multiplex).

• Accidents that have similar conditions for all of these features:

light conditions, weather conditions, road conditions, and

speed limit (Accident Multiplex).

Communities in OR-composed layers. OR-composition forms a

composed network that includes an edge if it appears in at least one

of the layers. Algorithm 2 shows the steps of this single network

based community detection using the OR operation, termed as C-

SG-OR. In an OR composition, the composed network is formed

of the union of the edges from all the networks, and then the

communities are found in the composed network. Examples of

queries that can be addressed by the OR composition are;

• Actors who have acted together in either a comedy or drama

(IMDb multiplex).

• Authors who have co-authored a paper published in at least

one conference (DBLP multiplex).

• Accidents that have at least one condition in common

(Accident Multiplex).

2.3.1. Bridge edges
We term the external edges that connect two communities as

bridge edges. Formally, if there exists an edge, (ui
k
, u

j

k
) such that ui

k

∈ Cm
k
(communitym in layer k) and u

j

k
∈ Cn

k
, (community n in layer

k) wherem 6= n, then this edge is a bridge edge. In the AND andOR

composed-layer of Figure 4, the actors I1 and I5 belong to different

communities, but are connected by a bridge edge. The actors I9 and

I15 have a bridge edge in the OR composed network, but not in the

AND-composed network.

The AND composed networks have smaller, but more

communities, than the OR composed networks. In general, the

communities in the AND composed layer form subsets of the

communities in the OR composed layer. We will leverage this

property to develop our aggregation algorithms.
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3. Materials and methods

The traditional method of first forming the composed network

and then analyzing can be computationally expensive when

multiple composed networks have to be considered. This approach

can lead to redundant operations. Consider a multiplex with

four layers G1, G2, G3, and G4. Also consider two composed

networks formed from the multiplex, namely, G1AND2AND3 and

G1AND2AND4. In this case, the composed layer related to G1AND2

remains unchanged, but has to be recomputed, leading to

extra computations.

We propose network decoupling for efficient community

detection on multiplex networks. The communities in each layer

are identified separately and the results are then aggregated to

obtain the results with respect to the composed network. Figure 4

shows the communities in each layer of the IMDb network.

The challenge is to develop aggregation algorithms, that can

correctly aggregate the communities from each of the layers to

obtain the communities over the composed network. We now

present the aggregation methods for AND and OR composition.

For ease of understanding we will discuss the algorithms with

respect to two layers. Note, however, that our algorithms can be

easily extended to multiple layers.

3.1. Community detection in composed
networks formed using the AND operation

We presented a vertex-based method for finding communities

in composed networks formed using AND operations (termed as

AND_composed network) in Santra et al. (2017). We first discuss

this work for completeness. Our algorithm relies on finding self

preserving communities.

3.1.1. Self preserving communities
A community is self preserving if the vertices in it are so

tightly connected such that any connected subset of the vertices

will form a smaller community rather than joining an existing

larger community. Formally, consider a graph G, containing a

community whose vertices are given by the set C. Consider a

subset of vertices Cs ⊂ C, such that the subgraph induced by

Cs is connected, and |Cs| ≥ 3. Remove the subgraph induced

by the set of vertices C \ Cs from the original graph, and then

compute the communities again on the new graph Ḡ. If for all

subsets Cs ⊂ C, Cs forms separate community(ies) rather than

being fully or partially merged with other communities, then C is a

self-preserving community. Algorithm 4 outlines the steps to detect

all self-preserving communities of a given graph.

A self-preserving community indicates that the community is

loosely connected with the remainder of the network. Removing

parts of the community will not change the structure or

composition of the other communities in the graph. Thus, the

subgraph forming a self-preserving community is not affected by

changes to the remainder of the network. The communities in Layer

2 in Figure 4, are all self-preserving, as tested by Louvain (Blondel

et al., 2008) and Infomap (Bohlin et al., 2014). That is, every

community is tightly connected and for none of the communities,

there does not exist any subset of vertices, which when removed

from the original graph cause the original community to lose its

tightness and merge fully or partially with other communities 2.

When two layers are combined using an AND operation, then

certain edges are deleted from each layer, and thus from certain

communities. If the communities are self preserving, then this

deletion will only affect that community and not the others. This

is the main result of Santra et al. (2017), which is if the communities

from the layers are self preserving, then the communities of the AND-

composed graph can be obtained by taking the intersection of the

vertices of the communities from the individual layers.

3.1.2. Vertex based intersection (CV-AND)
In our paper (Santra et al., 2017), we proposed intersecting the

communities based on their vertices.We term this algorithm asCV-

AND (see Algorithm 3). Here we consider pairs of communities,

one from the first layer and the other from the second layer,

and obtain the new community by taking the common vertices

among the pair. The primary drawback of this method is that

if the communities are not self preserving, the results may not

be accurate.

As an example, consider the community C5
1 in the comedy layer

of the network (Figure 4), which is made of the nodes {I6, I11,

I15, I16, I17, I18}. This community is not self preserving, as when

the subgraph induced by the subset of nodes {I6, I16} is removed

the layer G1, then its intra-community edge connectivity becomes

less tight as compared to its connectivity with other communities

and C5
1 gets merged with C3

1 to form one single community, thus

violating the condition of self-preservation. In this case, applying

CV-ANDon communityC5
1 from the comedy layer and community

C4
2 from the drama layer, which have the same vertices, gives one

large community, { I6, I11, I15,I16,I17,I18}. In reality, as seen in

Figure 4, two separate communities are formed, { I6,I17,I18} and {

I11, I15,I16}. This is a subtle but important difference because the

community id determines whether two entities are similar. If two

disconnected groups of vertices are placed in the same community

(as is possible when using CV-AND), then, two dissimilar groups

are marked to be similar, which is incorrect.

3.1.3. Edge based intersection (CE-AND)
We address these limitations by developing a community

detection method, CE-AND (see Algorithm 5), that is based on

the intersection of edges rather than vertices as follows. Here we

consider pairs of communities, one from the first layer and the

other from the second layer, and obtain the new community

by taking the common edges among the pair. For every pair of

communities, Cm
i (V

m
i ,Emi ) from layer Gi and Cn

j (V
n
j ,E

n
j ) from

layer Gj, the edge-based community intersection, Emi ∩ Enj , will

produce k disconnected edge-sets, E1iANDj, E2iANDj, ..., EkiANDj.

2 The notion of tightness can be quantified by density, modularity (Blondel

et al., 2008), average flow (Bohlin et al., 2014), and so on. Additionally,

self-preservation of communities can be verified using any well-established

community detection algorithms like Infomap and Louvain.
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FIGURE 4

Composed Layer Communities of the Multiplex shown in Figure 2. Top Left: Communities in AND composed layer. Bottom Left: Communities in OR

composed Layer. Top Right: Communities in Comedy layer of the IMDb Multiplex. Bottom Right: Communities in Drama layer of the IMDb Multiplex.

Require: Layers G1,G2, . . .Gx

Ensure: return LAND1,2,...,x - a list of communities

1: G1AND2...ANDx ← {G1 AND G2 ...AND Gx}

{ G1AND2...ANDx contains edges that exist in all the

networks G1, G2, ..., Gj.}

2: LAND1,2,...,x = COMM(G1AND2...ANDx)

{Find communities in G1AND2...ANDx.}

Algorithm 1. Algorithm for C-SG-AND.

Require: Layers G1,G2, . . .Gx

Ensure: return LOR1,2,...,x - a list of communities

1: G1OR2...ORx ← {G1 OR G2 ...OR Gx}

{ G1OR2...ORx contains edges that are in at least one

of the networks G1, G2, ..., Gx.}

2: LOR1,2,...,x = COMM(G1OR2...ORx)

{Find communities in G1OR2...ORx.}

Algorithm 2. Algorithm for C-SG-OR.

These edge sets will form the AND-composed communities,

C1
iANDj,C

2
iANDj, ...,C

k
iANDj. Figure 5 shows how the communities are

obtained for the example network using CE-AND. Comparing this

result to that in Figure 4, we see that most of the communities are

obtained with the exception of the singleton node 8. The common

bride edge (4, 5) is also missing.

3.1.4. Proof of correctness
Algorithms 3, 5 produce a set of disjoint clusters. Algorithm 1

produces a set of communities in the AND-composed network. We

consider these communities as the ground truth. We label an edge

as internal (if both end points are in the same community) and

external or bridge otherwise.

Require: Communities from layers Gi and Gj:

COMM(Gi) = {C1
i (V

1
i ,E

1
i ), C2

i (V
2
i ,E

2
i ), ..., Cx

i (V
x
i ,E

x
i )},

COMM(Gj) = {C1
j (V

1
j ,E

1
j ), C2

j (V
2
j ,E

2
j ),..., C

y
j (V

y
j ,E

y
j )}

Ensure: return LCV−ANDi,j - a list of communities

1: LCV−ANDi,j = ∅

{Initialize the set of communities to empty set.}

2: for each community pair say, C
p
i and C

q
j do

3: C
p,q
i,j =(V

p
i ∩ V

q
j )

{Create new combined community by taking the

common vertices of every pair of communities.}

4: LCV−ANDi,j = LCV−ANDi,j ∪ C
p,q
i,j

{Add new community to the set of communities.}

5: end for

Algorithm 3. Algorithm for CV-AND.

We assume that the communities in the individual layers and

the composed network have high clustering coefficients. That is,

we do not consider accidental communities such as an edge or a

line graph, that are formed due to an algorithmic artifact rather

than the structure of the network. If such trivial communities are

formed, we consider each vertex in them as a singleton community.

The clusters formed by the intersection algorithms do not have

this restriction, since they are not obtained using community

detection algorithms.

We now present a proof of how well the clusters obtain by

Algorithm 5, correspond to the ground truth communities. Let the

set of communities obtained from the composed network be Ŵ. Let

the set of clusters obtained using the CE-AND algorithm be 9 .

Lemma 3.1. For any given cluster X ∈ 9 , there will exist a set of

communities {CX
1 , . . .C

X
m}, where C

X
i ∈ Ŵ, 1 ≤ i ≤ m, that form a

partition of the vertices in X, if and only if, the set of edges common

to all layers have the same label in all the layers.
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Require: Graph, G(V , E)

Ensure: return SPC - a set of self-preserving

communities

1: SPC = ∅

{Initialize the set of self-preserving communities

to an empty set.}

2: C = COMM(G)

3: for each community Cp(Vp,Ep) ∈ C do

4: sp_check = true

5: for each Vs ⊂ Vp, where |Vs| ≥ 3 do

6: Es = ∅

7: for each edge (u, v) ∈ Ep do

8: if u ∈ Vs and v ∈ Vs then

9: Es = Es ∪ {(u, v)}

10: end if

11: end for

12: if G(Vs,Es) is a connected graph then

13: V ′ = V \ (Vp \ Vs)

14: E′ = ∅

15: for each edge (u, v) ∈ E do

16: if u ∈ V ′ and v ∈ V ′ then

17: E′ = E′ ∪ {(u, v)}

18: end if

19: end for

20: C′ = COMM(G′(V ′,E′))

{for each connected subset of at least 3

vertices from a given community, remove the

subgraph induced by the vertices not present

in the chosen subset from the original graph,

and then find the communities.}

21: for each Cr(Vr ,Er) ∈ C′ do

22: if (Vr ∩ Vp 6= ∅ and Er ∩ Ep 6= ∅) and (Vr \ Vp 6=

∅ and Er \ Ep 6= ∅) then

23: sp_check = false

24: break

25: end if

26: end for

{check if there exists a new community that

has partial overlap with the given community

(Cp). If yes, then this will mean that there

exists a subgraph of the given community

denoted by G(Vs,Es) that merges fully or

partially with other communities, and hence

Cp is not self-preserving.}

27: end if

28: end for

29: if sp_check = true then

30: SPC = SPC ∪ {Cp}

31: end if

32: end for

Algorithm 4. Algorithm for detecting self-preserving communities.

Proof. We first prove the condition that if the common edges have

the same label in all the layers, then the set of the union of vertices

in {CX
1 , . . .C

X
m} will form a partition of the vertices in X ∈ 9 .

Require: Communities from layers Gi and Gj:

COMM(Gi) = {C1
i (V

1
i ,E

1
i ), C2

i (V
2
i ,E

2
i ),..., Cx

i (V
x
i ,E

x
i )},

COMM(Gj) = {C1
j (V

1
j ,E

1
j ), C2

j (V
2
j ,E

2
j ),..., C

y
j (V

y
j ,E

y
j )}

Ensure: return LCE−ANDi,j - a list of communities

1: LCE−ANDi,j = ∅

{Initialize the set of communities to an empty

set.}

2: for each community pair say, C
p
i and C

q
j do

3: {C
p,q
i,j } = (E

p
i ∩ E

q
j )

{Create list of k new communities by taking the

common edges of every pair of communities.}

4: LCE−ANDi,j = LCE−ANDi,j ∪{C
p,q
i,j }

{Add new communities to the set of communities.}

5: end for

Algorithm 5. Algorithm for CE-AND.

FIGURE 5

AND-composition communities of the multiplex in Figure 2, using

CE-AND method.

Let the set of vertices belonging to the cluster X be UX . Let the

set of vertices belonging to community CX
i beVX

i , and∪
i=m
i=1 (V

X
i ) =

VX , i.e., the union of these vertices inVX . Since the communities are

disjoint to prove that VX is a partition of UX , we have to prove that

VX = UX .

It is easy to show that there exists a set of communities such that

UX ⊆ VX . We simply select the communities such that all vertices

in UX are included.

We prove VX ⊆ UX by contradiction. Let v be a vertex that

is in set VX but not in UX . Since CE-AND retains all the common

internal edges, and v is not in UX , therefore v will be connected to

its neighbors inVX by one or more external (or bridge) edges. Since

we assume that all common edges have the same labels, therefore

in none of the layers v is tightly connected to any subset of VX .

Moreover, the communities in the composed network have high
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clustering co-efficient (or are singletons). Since v is not tightly

connected to vertices in VX it cannot be part of the community.

Thus our assumption was wrong, and VX ⊆ UX . Taken together,

VX ⊆ UX and UX ⊆ VX ; thus UX = VX , and VX is a partition

of UX .

For the only if part we show that if the common edges do not

have the same labels in all the layers, then theremay not exist a set of

communities that form a partition of the vertices in a given cluster.

We provide such an example in Figure 6. The left-hand panels

of Figure 6 shows two layers. The top right panel shows the

communities obtained by the standard single network approach

(C-SG-AND). The bottom right panel shows the communities

obtained by CE-AND.

The community C3
SG−AND produced by C-SG-AND contains

the edges (h, o) and (l, s) that act as bridges in Layer L1 and L2. CE-

AND is not able to detect this community and instead produces two

communities, C4
CE−AND and C5

CE−AND, which should be merged

into one by taking the bridge edges into account.

Also consider the community C2
SG−AND which consists of the

edges (a, i) and (e, m) that are bridges in Layer L1, but are part of

the community C2
2 in Layer L2. As only those edges that are within

community in all layers are considered, CE-AND produces two

communities, C2
CE−AND and C3

CE−AND.

3.2. Community detection in composed
networks formed using the OR operation

We now consider how to obtain communities in composed

networks formed using the OR operation (termed as OR composed

networks). The number of edges in the OR-composed network is

the union of the edges in each layer. For any two layers Gi and Gj,

the total number of edges is |Ei ∪ Ej|.

The computational complexity of community detection

algorithms are at least proportional to the size of the graph. The

denser the graph, the more time will be required to find the

communities. Thus for the OR-composed case, our goal is not only

to lower the time by reducing the need to recompute different

compositions of layers, but also to reduce the size of the graph to

be analyzed.

To obtain communities of OR Composed Layers, we propose

the CE-OR algorithm (Algorithm 6; Figure 7). Thismethod reduces

the size of the graph to be analyzed by processing the common

communities as a single node. The steps of the CE-OR algorithm

are as follows;

3.2.1. Overview of CE-OR
Find the common communities in all the network layers (Line

1) by using CE-AND. Then construct a metagraph (OR-MG), as

follows. Each metanode represents a set of vertices. Combine the

vertices of each common community into a metanode (Line 2–4).

Vertices that are not assigned into communities are each separately

assigned to a metanode (Line 5–9). Connect two metanodes, U

and V via a metaedge, if there exists an internal edge, in at least

one of the layers between an element (node) of U and an element

(node) of V (Line 10-14). Apply appropriate weights to these edges

(Line 15). Apply community detection on the metagraph (Line

Require: Communities from layers Gi(V , Ei) and Gj(V , Ej):

COMM(Gi) = {C1
i (V

1
i ,E

1
i ), C2

i (V
2
i ,E

2
i ),..., Cx

i (V
x
i ,E

x
i )},

COMM(Gj) = {C1
j (V

1
j ,E

1
j ), C2

j (V
2
j ,E

2
j ),..., C

y
j (V

y
j ,E

y
j )}

Ensure: return LCE−ORi,j - a list of communities

{ Find common communities using CE-AND}

1: Apply CE-AND on COMM(Gi) and COMM(Gj) to get

LCE−ANDi,j

Construct OR-MG(VOR−MG ,EOR−MG)

{Assign nodes of each common community as a meta

node}

2: for each community Ck(Uk,Ek) ∈ LCE−ANDi,j do

3: VOR−MG = VOR−MG ∪ Uk

4: end for

{ Assign the vertices not in any common community

as a meta node}

5: for each vertex u /∈ Ck ,∀Ck ∈ LCE−ANDi,j do

6: Uk = φ {Create null set}

7: Uk = Uk ∪ u {Add u to the set}

8: VOR−MG = VOR−MG ∪ Uk

9: end for

{Add Edges in the metagraph. Two metanodes, (U,V)

are connected if there is an intra-community edge

from one constituent node of U to a constituent

node of V in any one of the layers.}

10: for all all metanode pairs (U,V) ∈ VOR−MG do

11: if ∃ u, v, r: (u, v) ∈ Eri or (u, v) ∈ Erj, u ∈ U and v ∈ V

then

12: EOR−MG = EOR−MG ∪ (U,V)

13: end if

14: end for

15: Insert weights on the edges of OR-MG

16: L = COMM(OR-MG)

17: Expand the community representative nodes in each

community from L to get LCE−ORi,j

Algorithm 6. Algorithm for CE-OR.

16). The communities in the OR-composed network are obtained

by expanding the metanodes in the communities obtained by the

CE-OR algorithm.

3.2.2. Assigning weights to metaedges
The metanodes represent vertex sets of varying sizes, and the

number of edges between them represent the degree of similarity.

Although the original graph is unweighted, the edges in the

metagraph are weighted to quantify the extent of this similarity. A

critical component of the CE-OR algorithm is based on correctly

assigning these weights. We connect two meta nodes only if at

least one pair of vertices from each meta node are connected by

an internal edge, in at least one of the layers.

For any meta edge (A,B), let VA and VB be the set of nodes in

the meta communities A and B, respectively. Further, let the set of

all edges (internal with respect to at least one layer) between VA

and VB be EA,B. We use the following two strategies to compute the

weight of the metaedge;
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FIGURE 6

E�ect of bridge edges on AND composition.

• Aggregation is the number of edges between the two

communities; wa(A,B) = |EA,B|

• Fractional is the fraction of connected nodes between the two

communities; wf (A,B) =
|EA,B|
|VA|∗|VB|

.

Figure 7 illustrates how the CE-OR algorithm is applied to

the OR-composed layers of the IMDb graph. First the CE-AND

communities obtained in Figure 5 and the vertex I8 are used to form

the metanodes (Figure 7A). These nodes are connected based on

the internal edges. The edges are weighted using wf (Figure 7B).

A community detection algorithm on the metagraph produces the

communities of the OR-composed layers (Figure 7C). Comparing

with the communities obtained by the C-SG-OR method in

Figure 4, to those obtained by expanding the communities in the

metanodes (Figure 7D), we see that all the communities have been

obtained. However, the bridge edges between the communities

are missing.

3.2.3. Proof of correctness
We prove the correctness of our proposed CE-OR algorithm,

by comparing the communities obtained by CE-OR to those

obtained by executing community detection on the composed

network. We define a metanode cluster, Y , as all the metanodes

in a connected component of the metagraph. Let the communities

obtained through the C-SG-OR algorithm be 3.

Lemma 3.2. For a given metanode cluster Y , there will exist a set

of communities {CY
1 , . . .C

Y
m}, where C

Y
i ∈ 3, 1 ≤ i ≤ m, such that

{CY
1 , . . .C

Y
m} forms a partition of the vertices in Y , if and only if, all

the internal edges of the communities in 3 were internal edges in

at least one of the layers.

Proof. Let UK be the set of vertices belonging to the metanode

clusterY , and letVK be the union of the vertices in the communities

{CY
1 , . . .C

Y
m}. For the if direction it is sufficient to prove that VK =

UK .

UK ⊆ VK , can be easily obtained by selecting the communities

to form VK such that all vertices of UK are included. To prove

VK ⊆ UK by contradiction, we assume that there exists a

vertex u ∈ VK , that is not in UK . This means that u is

connected to at least one vertex in VK by bridge edges (or not

connected at all). Thus at least one of the communities has an

internal edge that was bridge edge in all the layers. This goes

against our criteria that all internal edges for communities in

the composed network, should be internal in at least one of the

layers. Thus our assumption is wrong and VK ⊆ UK . Since

the communities are disjoint and UK = VK , thus the statement

is proven.

To prove the only if direction, we show that if the communities

in the OR-composed layers have internal edges that were bridge

edges in all the layers, then there may not exist a set of

communities that form a partition for the vertices in a given

metanode clusters.
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FIGURE 7

Illustrative flow (A–D) of CE-OR algorithm on the example graph.

FIGURE 8

E�ect of bridge edges on OR composition.

An example of this is given in Figure 8. The left-hand

of panels show two layers of the network. The top right

panel shows the communities obtained by the standard

single network approach (C-SG-OR). The bottom right

panel shows the communities obtained by our proposed

CE-OR method.
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Consider the community C2
SG−OR generated by C-SG-

OR approach that has edges (i, l), (h, m), (j, o) and (l,

t) which are not internal edges in any of the layers, and

are present as bridge edges in only one of the layers.

These edges will not be part of the metagraph and thus

CE-OR does not know that they exist. CE-OR, thus,

generates three communities C2
CE−OR, C3

CE−OR and C4
CE−OR,

instead of merging them into one community, as per the

C-SG-OR method.

However in the community C1
SG−OR generated by C-SG-

OR, the edges (a, b) and (d, f) are bridge edges in one

layer but are intra-community edges in another layer. Therefore

these edges will be part of the metagraph. Thus CE-OR

can use these edges and correctly generate the community

C1
CE−OR.

3.2.4. Implications and limitations
The implication of Lemma 3.1 and Lemma 3.2 is that the

CE-AND or CE-OR operations are successful if they create

clusters that contain one or more communities in the composed

networks in their entirety. Thus the communities can be

divided into groups, such that each group can be mapped

to exactly one cluster formed by the CE-AND or CE-OR

operation. Therefore, the vertices in the composed network can

be partitioned into subgraphs, with each subgraph relating to a

cluster. Hence CE-AND and CE-OR operations are successful

when each layer is formed of several loosely connected subgraphs,

and bridges connecting the subgraphs do not change across

the layers.

The primary limitations of our CE-AND andCE-OR algorithms

is due to the non-inclusion of bridge edges. In the AND-

composed network, we rationalize this non-inclusion by positing

that communities formed solely of bridge edges cannot be dense,

and hence are not strong communities. In the OR-composed

network, we only exclude an edge if it is a bridge edge in all

the layers.

3.3. CE-OR as a building block for pillar and
semi-pillar communities

We demonstrate how CE-AND and CE-OR can be used

as building blocks for the pillar and semi-pillar communities

described in Section 2.2. Note that pillar and non-pillar

communities are not dependent on how the networks/layers are

combined, but on which communities are common across a given

set of layers.

3.3.1. Creating pillar communities
Since in pillar communities the same set of vertices form

communities in every layer, therefore as per Lemma 3.1, the

communities formed by CE-AND will be pillar communities.

However, due to the strict restrictions of the CE-AND criteria, i.e.

the edge has to be present in every layer, some vertices from pillar

communities may be missed. To obtain these missing vertices, we

then extend the communities found in CE-AND as per Algorithm 6

to form CE-OR communities. As per our experimental results

in Section 4.2.2, we observe that CE-OR provides more accurate

pillar communities.

3.3.2. Creating semi-pillar communities
To find the semi-pillar communities, we take combination of

all possible p layers from k layers, where 2 ≤ p < k. For each

combination of layers we compute the communities using CE-

AND. Note that since we use the decoupling method, therefore

we need to compute the communities in each layer exactly once,

and then combine the results. We identify the communities with

the highest number of nodes, and extend them when possible

using CE-OR. These communities across the layers form the

semi-pillar communities.

4. Empirical results

We present the performance and accuracy of our CE-AND and

CE-ORmethods. First, we compare with the communities obtained

from composed network created using AND/OR operations to

merge the layers. Second, we compare with the ground truth

pillar and semi-pillar communities given in Magnani and Rossi

(2013). We use the popular community detection algorithm

Infomap (Bohlin et al., 2014), both to find the communities in

the single network approach (C-SG-AND, C-SG-OR) and the

network decoupling approach(CE-AND, CE-OR). Our algorithms

are implemented in C++ and were executed on a Linux machine

with 8 GB RAM and installed with UBUNTU 16.10.

4.1. Comparison with communities on
composed networks

Data sets used. We performed our experiments on multiplexes

created from three real-world and one synthetic data set. To test on

larger networks with more vertices, we created the synthetic data

using the RMAT Chakrabarti et al. (2004) graph generator. The

details of the data sets are as follows;

• IMDb: From the IMDb data set (IMDB-2018, 2018), the nodes

in the multiplex represented the actors. In the first layer, (L1,

co-acting) two nodes are connected if they co-acted in at least

one movie. In the second layer, (L2, rating) two nodes are

connected if the average ratings of their movies were similar.

In the third layer, (L3, genre) two nodes are connected if they

acted in movies of similar genres. For every actor, a vector was

generated with the number ofmovies for each genre he/she has

acted in. Two actors are connected if the Pearson’s Coefficient

between their corresponding genre vectors was at least 0.93.

Vertices:9,485; Edges in L1:45,581; Edges in L2: 13,945,912;

Edges in L3:996,527.

3 The choice of the threshold is based on how actors are weighted against

the genres.
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FIGURE 9

Comparison of accuracy of CE-AND and CV-AND based on NMI and m-NMI.

• DBLP: From the DBLP data set of academic publications (dat,

2013), we selected all papers published from 2000 to 2018

in three conferences VLDB (L1), SIGMOD (L2) and ICDM

(L3). Two authors (nodes) were connected if they had co-

authored a paper for the conference corresponding to the

layer. Vertices:17,204; Edges in L1:5,831; Edges in L2: 17,737;

Edges in L3:12,986.

• Accident: From the data set of road accidents that occurred

in the United Kingdom in 2014 (UKRoadData, 2014), two

nodes (representing accidents) are connected in a layer if

they occurred within 10 miles of each other and have similar

Light (L1), Weather (L2) or Road Surface Conditions (L3).

Vertices:5,000; Edges in L1:193,860; Edges in L2: 235,175;

Edges in L3:216,397.

• RMAT: The RMAT generator creates networks based on the

Kronecker product of a matrix. We set the number of vertices

to 215 and the edges to roughly eight times the number of

vertices. We set the probabilities in each quadrant of the

matrix as a=0.65, b=c=d=0.15 to create a scale-free graph.

The first layer (L1) was the graph obtained by the

generator. We applied cross perturbation to create layers (L2

and L3), as follows We selected two edges (a, b) and (c, d),

and replaced them with new edges (a, c) and (b, d). Thus

the number of edges and the degree distribution remain the

same but the structure changes. In layer L2 we applied this

perturbation to 1% of the edges and in layer L3 to 5% of

the edges. Vertices:32,768; Edges in L1:230,445; Edges in L2:

230,445; Edges in L3:230,445.

Ground Truth and Accuracy Metrics: We use the communities

obtained using C-SG-AND and C-SG-OR as the ground truth.

We disregard singleton communities. We use two metrics to

evaluate the accuracy of the communities - i) Normalized Mutual

Information (NMI) that measures the quality with respect to the

participating entity nodes only and ii) modified-NMI that also takes

into account the topology of the communities. For both metrics

higher is better, with maximum value of 1 and minimum of 0

[definitions in Labatut (2015)]. Each multiplex has 3 layers. Thus, a

total of 4 compositions are possible (3 for 2-layers and 1 3-layers).

We compare results for 8 (4 combinations X 2 Boolean operations)

composed networks.

4.1.1. Accuracy of the aggregation algorithms
For the AND-composed networks we show in Figure 9, the

average NMI and m-NMI of all the four multiplexes with respect

to the ground truth for the CV-AND and CE-AND methods. The

results show that the accuracy obtained with CE-AND is higher than

that from CV-AND.

For the OR-composed networks we show in Figure 10, the

average NMI and m-NMI of all the four multiplexes with respect to

the ground truth for the two weighting metrics; Aggregation (wa)
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FIGURE 10

Accuracy of CE-OR with di�erent weighting schemes based on NMI and m-NMI.

and Fractional (wf ). The results show that the accuracy obtained

using both the metrics are similar.

Table 1 shows the accuracy for the different multiplexes with

respect to CE-AND for the AND composition and CE-OR with

Fractional Weights. Nearly all the values are high, ≥ 70%. Some

low values occur for the CE-OR method. An egregious example

is IMDb (L1, L2) for which the accuracy results are less than 1%!

In this case the metagraph had 193 nodes, and on running the

community detection algorithm 56 communities were obtained.

However, the ground truth communities obtained by C-SG-OR had

only 2 communities. This happened because there existed many

bridge edges in the layers that were not included in the metagraph.

Moreover, because the communities represented in the metanodes

were small in size, the edge weights were also lower and thus the

communities could not combine.

4.1.2. Performance of the aggregation algorithms
We now compare the time taken to obtain the communities

using the aggregation methods (CV-AND, CE-AND and CE-OR)

with respect to C-SG-AND and C-SG-OR. Figure 11 shows that the

time to compute the communities over all the different composed

layers is significantly lower for both CV-AND and CE-AND

methods than C-SG-AND. When the layers are sparse, CE-AND

will be faster than CV-AND, as can be seen for DBLP multiplex.

However if the network layers are dense, then the edge-based

intersection approach of CE-AND has a higher cost as compared

to the CV-AND.

Figure 12 gives the time for executing CE-OR. For CE-OR, CE-

AND is used as a subroutine. One scan of community edges is

required to generate the meta graph (OR-MG) on which we apply

Infomap. If the layers are sparse and the multiplex contains many

bridge nodes, then cost of generating the meta graph and applying

Infomap will become an overhead as compared to simply applying

Infomap on OR graph (C-SG-OR approach). This can be seen

from the DBLP multiplex where sparse layers (density of densest

layer (SIGMOD) = 0.0001) make the CE-OR 67% less efficient as

compared to C-SG-OR. However, for multiplexes with fewer bridge

edges (IMDb, Accident), CE-OR is significantly faster.

4.2. Comparison with existing multilayer
community detection algorithms

We compare the performance of our proposed decoupling

based community detection algorithms against 16 community

detection algorithms for multiplexes presented in (Magnani et al.,

2021). We discuss how our multi-layer Boolean operation-based

community definition can be used as a building block finding pillar

and semi-pillar communities. We illustrate through experiments

that our CE-OR algorithm achieves a better accuracy as compared to

the baseline algorithms across a number of ground truth data sets.
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TABLE 1 Accuracy Values using CE-AND and CE-OR on the di�erent compositions of the data sets.

Multiplex L1, L2 L1, L3 L2, L3 L1, L2, L3

NMI m-NMI NMI m-NMI NMI m-NMI NMI m-NMI

Accuracy Values using CE-AND

IMDB 0.97 0.93 0.98 0.97 0.88 0.86 0.99 0.99

DBLP 0.92 0.84 0.99 0.96 0.98 0.96 0.98 0.95

Accident 0.96 0.98 0.94 0.98 0.91 0.96 0.88 0.95

RMAT 0.92 0.82 0.90 0.79 0.90 0.78 0.90 0.77

Accuracy Values using CE-OR using Fractional Weights

IMDB <0.01 <0.01 0.97 0.99 1 1 1 1

DBLP 0.83 0.79 0.87 0.80 0.75 0.60 0.71 0.56

Accident 0.88 0.93 0.94 0.98 0.98 0.99 0.86 0.93

RMAT 0.74 0.64 0.76 0.59 0.75 0.55 0.73 0.54

4.2.1. Ground truth data sets and metric
We use two real world data sets: AUCS and DKPOL and

four synthetic data sets: PEP, PNP, SEP and SNP for calculating

the accuracy of the proposed aggregation algorithms. Information

about the real world data sets along with their ground truth

community structure, as well as the code for generating the

synthetic data sets and their communities are available in: https://

bitbucket.org/uuinfolab/20csur/src/master/ (Magnani et al., 2021).

The real world data set AUCS is 90 percent pillar partitioning, real

world data set DKPOL and synthetic data sets PEP, PNP are 100

percent pillar partitioning. The synthetic data sets SEP and SNP

have percentage of pillars column set to 0 since the data set is

semi-pillar partitioning. More details are available in Magnani et al.

(2021).

We use the omega index for comparing the results of our

decoupling methods with respect to ground truth community

structure for a data set. We select this metric to be consistent with

themeasures inMagnani et al. (2021).We evaluate the performance

of our algorithm with respect to the existing algorithms in 4.2.2.

Omega index value is calculated by taking the mean of the

number of agreements on two community sets C1 and C2 and

normalizing by the expected number of agreements between the

two community sets. When two nodes are present together in the

same number of communities (j) in both community sets, it is

called an agreement. The value of omega index ranges between 0

and 1. Here, 1 means two sets of communities are identical to each

other. Formally, the omega index is computed as;

Omega(C1,C2) =
Observed(C1 ,C2)−Expected(C1 ,C2)

1−Expected(C1 ,C2)
where,

Observed(C1,C2) =
1
N

∑l
j=0(Aj)

Expected(C1,C2) =
1
N2

∑l
j=0 Nj,1Nj,2 and,

l = the maximum number of times a node pair appears

together in both C1 and C2 at the same time,

N = total number of possible node pairs,

Aj = number of node pairs that are grouped together j times in

both communities, and

Nj,1, Nj,2 = number of node pairs that have been grouped

together j times in C1, C2, respectively.

4.2.2. Accuracy results
We have the ground truth communities available for real world

and synthetic data sets. We apply our aggregation algorithms (CE-

OR) on the data set AUCS which is 90 percent pillar, DKPOL, PEP

and PNP which are 100 percent pillar, and SEP and SNP, which are

semi-pillar.

We compared the accuracy of 17 community detection

algorithms along with our proposed CE-OR aggregation algorithm

over real world and synthetic data sets which have ground truth

community structure available. The algorithms used are: flat_nw

and flat_ec (Berlingerio et al., 2011), abacus (Berlingerio et al.,

2013), cpm (Afsarmanesh and Magnani, 2016), glouvain (Mucha

et al., 2010), infomap (De Domenico et al., 2015), scml (Dong

et al., 2013), pmm (Tang et al., 2009) (Tang et al., 2012),

lart (Kuncheva and Montana, 2015), emcd (Tagarelli et al.,

2017), mlp (Boutemine and Bouguessa, 2017), and multiplex-

leiden (Gurov et al., 2022). The results show that on an average the

CE-OR (Metric-Aggregate) algorithm has 89% accuracy and CE-OR

(Metric-Fraction) algorithm has 82% accuracy, which is significantly

higher than the other methods.

In Figure 13, we present the accuracy (omega index values)

values for the 16 existing community detection algorithms along

with our proposed CE-OR aggregation algorithm for each data set.

However, for AUCS data set, CE-OR does not perform better than

many of the existing algorithms as AUCS does not have complete

pillar partitioning. Our CE-OR algorithm improves the accuracy

for data sets with 100% pillar partitioning community structure or

known semi-pillar community structure. All other data sets with

pillar partitioning the accuracy of CE-OR ranges from 85% (DKPOL)

to 100% (PEP).

5. Networks composed using
extended boolean expressions

We now define the NOT composition, and demonstrate our

proposed network decoupling methods can be used to efficiently
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FIGURE 11

E�ciency of CV-AND and CE-AND as compared to C-SG-AND.

FIGURE 12

E�ciency of CE-OR as compared to C-SG-OR.
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FIGURE 13

Accuracy (Omega index value) of di�erent algorithms (existing algorithms along with CE-OR) for ground truth data sets.

and accurately analyze networks composed of a combination of

Boolean expressions.

5.1. NOT composition

NOT of a layer will represent the complement of the edge set of

that layer, i.e. the new layer will have all those edges that are not part

of the original layer. Communities in a NOT layer will represent the

groups of nodes that are not strongly connected. Examples of queries

that can be answered using NOT are

• Groups of actors who have not acted together in a comedy

(IMDb multiplex)

• Groups of authors who have never co-authored a paper in

VLDB (DBLP multiplex)

• Groups of accidents that did not have same Light condition

(Accident multiplex)
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With respect to the single graph approach, these types of

analysis can be handled by first generating the NOT layer and

then applying community detection. AND, OR and NOT can

be applied in different combinations, expanding the spectrum

of analysis options. Although taking the complement of a layer

is expensive and increases the number of edges in that layer,

the cost depends on the graph density of the layer. Also,

rewriting the expressions using the De Morgan’s law can reduce

the costs.

5.2. General boolean expression: accuracy,
e�ciency and drill down analysis

We demonstrate how general Boolean expressions can be

computed using the decoupling approach. We use the DBLP

multiplex with authors who publish papers at different conferences

to address interesting analysis objectives. We consider all papers

that were published from 2003 to 2007 in two high ranked

conferences (VLDB and SIGMOD) and two medium ranked

conferences (DASFAA and DaWaK). Based on whether two

authors (nodes) have co-authored a paper in a particular

conference, four layers were generated - all with the same

5116 vertices. VLDB (L1; Edges 3912; Communities 327),

SIGMOD (L2 Edges 3303; Communities 254), DASFAA (L3

Edges 1519; Communities 229) and DaWaK (L4 Edges 679;

Communities 154).

Few interesting analysis objectives that can be computed

on the DBLP multiplex using Boolean expressions are

as follows:

• Which collaborating groups who have published in both the

highly ranked conferences, but have never published in either of

the medium ranked conferences?

• Which co-author groups have only been able to publish in the

low to medium rank conferences?

• Which author groups have published only in VLDB?

Based on the requirements of the analysis, it is important

to figure out (a) the multiplex layers required and (b) the

order in which the layers have to be composed using AND,

OR, NOT. For the first analysis, “Which are collaboration

groups who have published in both the highly ranked

conferences, but have never published in either of the

medium ranked conferences?”, we will compare the evaluation

process for the traditional single graph approach and the

proposed decoupling approach. Single graph approach

(SG): For the SG approach, the Boolean expression will

correspond to

SG: COMM[(VLDB AND SIGMOD) AND NOT (DASFAA OR

DaWaK)]

This corresponds to first generating the required

composed single graph and then applying the

community detection algorithm to find the final set of

communities. These communities acts as the ground

truth. We used Louvain Blondel et al. (2008) to find

the communities.

5.2.1. Network decoupling approach
Using network decoupling, this expression will correspond to

DEC1: COMM(VLDB) CE-AND COMM(SIGMOD) CE-AND

COMM (NOT (DASFAA OR DaWaK))

That is, the layer-wise communities are composed to obtain

the final set of communities. Alternatively, De Morgan’s Laws can

be applied to obtain another expression for the decoupling based

boolean composition -

DEC2: COMM(VLDB) CE-AND COMM(SIGMOD) CE-AND

COMM (NOT(DASFAA)) CE-AND COMM(NOT (DaWaK))

We compare the efficiency of DEC1 and DEC2 with the

single graph approach. We will evaluate the NOT (DASFAA OR

DaWaK) by using the traditional OR of two layers and then take its

complement. DEC2 uses the decoupling approach using operators

CE-AND, and NOT as discussed in this paper. The layers of DBLP

used above are very sparse, especially DASFAA and DaWaK. Hence,

DEC2 will not be as efficient as DEC1 since it has to compute the

complement of two layers (resulting in dense graphs) and then

apply the decoupling approach. DEC1, on the other hand, has only

one complement to compute.

5.2.2. Accuracy results
For accuracy, the NMI and m-NMI values for the communities

obtained by DEC1 and DEC2 have been compared against the

communities obtained by SG. Both method, DEC1 and DEC2,

provide more than 95% accuracy.

5.2.3. Performance results
Both DEC1 and DEC2 resulted in the same set of communities.

In DEC1, the number of CE-AND compositions are 2 whereas in

DEC2 there are 3. Moreover, as the layers of the DBLP multiplex

are sparse, their complement is dense. Thus, in DEC2 the Louvain

is applied to two dense NOT layers. Thus, DEC2 will have a higher

cost as compared to DEC1. Our results show that DEC1 is 2 times

faster than DEC2. Therefore, it is very important to understand

when to rewrite the expression (using De Morgans, Distribution,

etc.) especially when the NOT operator is used on a composition

of layers. Finally, it is interesting to note that even with 2 dense

graphs, DEC2 comes out better than the single graph approach. This

further validates our decoupling approach even in the presence of

NOT operator.

5.2.4. Drill-down analysis
One hundred and two communities are obtained from DEC1

and DEC2 that satisfy the requirement. Figure 14 shows few

well-known groups most of whose members had collaborated

on a paper that was published in both VLDB and SIGMOD,

but never in DASFAA or DaWaK in the period from 2003

to 2007.

• Figure 14A community has researchers like Surajit

Chaudhari who won the VLDB 10-Year Best Paper

Award (2007) with Vivek Narasayya and VLDB Best Paper

Award (2008) with Nicolas Bruno, apart from winning ACM

SIGMOD Contributions Award (2004).
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FIGURE 14

Drill-down analysis: prominent author groups. (A–C) represent author groups where most of them are published in VLDB and SIGMOD but never in

DASFAA or DaWaK (time: 2003 to 2007).

• Figure 14B has researchers like Divyakant Agrawal who has

24000+ citations (Google scholar).

• Peter A. Boncz and Stefan Manegold from Figure 14

(c) published a highly cited paper (350+ citations for

MonetDB/XQuery) in SIGMOD 2006, and also won the

VLDB 10-year award.

6. Related work

Recently, many analytical tasks have used multilayer networks

to handle varying interactions among the same or different sets

of entities such as co-authorship network in different conferences

(Boden et al., 2012), citation network across different topics

(Ng et al., 2011), interaction network based on calls/bluetooth

scans (Dong et al., 2012) and friendship network across different

social media platforms Magnani and Rossi (2013). Review of

current work on multilayer networks are given in Boccaletti et al.

(2014), Kivel et al. (2014), Kim and Lee (2015). Related software

include Muxviz (De Domenico et al., 2014; Domenico, 2014),

MAMMULT (Battiston et al., 2014; Nicosia and Battiston, 2015)

and Pymnet (Kivel, 2018).

Community detection on a simple graph involves identifying

groups of vertices that are more connected to each other than to

other vertices in the network. Most of the work in the literature

considers single networks where the objective is to optimize

parameters such as modularity (Clauset et al., 2004) or conductance

(Leskovec et al., 2008). As the combinatorial optimization of

community detection is NP-complete (Brandes et al., 2003), a

large number of competitive approximation algorithms have been

developed (see reviews in Fortunato and Lancichinetti, 2009; Xie

et al., 2013.)

Recently, community detection algorithms have been

extended to Homogeneous MLNs (see reviews Fortunato and

Castellano, 2009; Kim and Lee, 2015.) Algorithms based on

matrix factorization Dong et al. (2012), cluster expansion

philosophy (Li et al., 2008), Bayesian probabilistic models (Xu

et al., 2012), regression (Cai et al., 2005) and spectral optimization

of the modularity function based on the supra-adjacency

representation (Zhang et al., 2017) and a significance based score

that quantifies the connectivity of an observed vertex-layer set

through comparison with a fixed degree random graph model

(Wilson et al., 2017) have been developed. However, all these

approaches analyze a MLN either by aggregating all (or a subset

of) layers of a HoMLN using Boolean and other operators or by

considering the entire MLN as a whole, leading to issues with

respect to loss of information and computational inefficiency.

Recent works include Jin et al. (2019) using a Bayesian

probabilistic model based on multiplex semantics to find

communities in multiplex networks, DeFord et al. (2019) using

spectral clustering approach and Li et al. (2023) using motifs

for identifying higher-order interaction in each layer, and then

agglomerateing the layers. A new algorithm named semidefinite

programming (SDP) was proposed in Tang et al. (2023) that

uses the node attributes and network structure information

to identify communities on node-attributed networks and the

multiplex network. The authors in Lyu et al. (2022) proposed

a technique named evolutionary multiplex optimization to

identify communities in a multiplex network that solves the

problem of community detection in each layer as a multitask

optimization problem.

To identify the communities in the temporal multiplex graph,

the authors in Rebhi et al. (2021) proposed a two-step method to
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detect communities in a temporal multiplex network where the

first step uses a new hybrid community detection algorithm to

identify partition and the second graph identifies the final stable

communities. Ideas like semi-aggregation have also been used in

Kis and Gaskó (2020) where each layer is altered based on the

structure of the layers on other layers. A new stochastic block

model-based community detection algorithm is proposed in Liu

et al. (2020) that uses a two-stage procedure avoiding the concept

of same node membership. The authors in paper (Huang et al.,

2019) propose a model based on the concepts of generic localized

community label constraints, the Stochastic Block Model, and

the Belief Propagation algorithm. The bayesian model has been

found to effectively identify community structure from a multiplex

network in Amini et al. (2022). A supervised algorithm based

on layer convex flattening and modularity optimization of the

network, as shown in Gurov et al. (2022), has been developed for

community detection in multiplex networks.

Bio-inspired optimization has successfully solved the problem

of community detection in network that we observe from the

work Osaba et al. (2020) where the authors present in detail

the problem of community detection from view of bio-inspired

computation. Works like Al-sharoa and Rahahleh (2023) show

a deep robust auto-encoder nonnegative matrix factorization

(DRANMF) approach consisting of a deep structured decoder

and encoder components to detect the community structure

in networks.

7. Discussion and future work

We presented algorithms for efficiently finding communities in

Boolean composed layers of multiplex networks. The results show

that for most cases our algorithms are significantly faster than the

standard methods and produce results of similar quality. The only

cases that our algorithm fails is when the layers have significantly

more bridge edges. We further demonstrated that our network

decoupling methods can be used as building blocks for different

types of multilayer communities in literature, such as pillar and

semi-pillar communities. In these cases too, network decoupling

produces results with higher accuracy compared to other baseline

methods. The only case our method produces lower accuracy is

when a network designated to have pillar communities does not

have the complete pillar information. Given these results we can

posit that network decoupling is an effcient and effective method

for finding communities in homogeneous multilayer networks.

In future, we will investigate how to include some percentage

of bridge edges without increasing the computation time. We also

plan to explore adaptive techniques that can select between the

network decoupling and standard methods as suitable. Finally,

we also aim to develop methods to include meaningful NON-

BOOLEAN combinations for weighted networks.
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