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Recent large datasets measuring the gene expression of millions of possible

gene promoter sequences provide a resource to design and train optimized

deep neural network architectures to predict expression from sequences. High

predictive performance due to themodeling of dependencies within and between

regulatory sequences is an enabler for biological discoveries in gene regulation

through model interpretation techniques. To understand the regulatory code

that delineates gene expression, we have designed a novel deep-learning

model (CRMnet) to predict gene expression in Saccharomyces cerevisiae. Our

model outperforms the current benchmark models and achieves a Pearson

correlation coe�cient of 0.971 and a mean squared error of 3.200. Interpretation

of informative genomic regions determined from model saliency maps, and

overlapping the saliency maps with known yeast motifs, supports that our model

can successfully locate the binding sites of transcription factors that actively

modulate gene expression. We compare our model’s training times on a large

compute cluster with GPUs and Google TPUs to indicate practical training times

on similar datasets.
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1. Introduction

Cis-regulatory sequences, also referred to as cis-regulatory modules (CRMs), are
composed of promoters, enhancers, silencers, and insulators (Davidson and Erwin, 2006).
These sequences are recognized and bound by DNA-binding regulatory proteins, called
transcription factors (TFs), to control gene expression (Ni and Su, 2021). Alterations to
the cis-regulatory sequences can affect their interaction with transcription factors, thereby
influencing cell phenotype and cell-state transitions (de Boer et al., 2020). Increasing
evidence demonstrates the significance of cis-regulatory element modification in relation
to numerous diseases (Mathelier et al., 2015). Thus, understanding how cis-regulatory
elements regulate gene expression has become crucial for understanding transcriptional gene
regulation.

However, it has been extremely difficult to directly predict expression from DNA
sequences due to a lack of training data that covers the entire potential sequence space.
Recently, more than 100 million random promoter sequences and their corresponding
expression levels have been identified in a high-throughput manner by measuring the
expression output of the sequences regulating yeast gene constructs using Gigantic Parallel
Reporter Assay (GPRA) (de Boer et al., 2020). This dataset provides the large training sets
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necessary for developing models to help decode the cis-regulatory
logic. These random sequences, by chance, included multiple
functional transcription factor binding sites (TFBS). By fitting an
interpretable predictive (linear) model, the determinants of TF
binding that predict gene expression could be studied. The use
of random promoter sequences allowed an unbiased study of
these determinants as they uniformly covered the entire potential
sequence space, as opposed to real (native) promoter sequences
that have evolved to favor a subset of sequences. In a follow-
up study, Vaishnav et al. (2022) used this same dataset, using
both random and native sequences, to study global hypotheses
on patterns of TFBS evolution. For this study they used a more
predictive transformer deep neural network (DNN)model to detect
more complex gene regulatory patterns.

Several other deep neural network models have been developed
to analyze the functional effects of DNA sequences. One suchmodel
is DeepSEA, which uses a convolutional neural network and was
trained on genomic sequences and large-scale chromatin-profiling
data. It has the ability to learn the regulatory sequence code related
to chromatin effects (Zhou and Troyanskaya, 2015). Another
model, DanQ, is a hybrid deep learning model that combines a
convolutional neural network and a bidirectional long short-term
memory recurrent neural network to identify the functional effects
of DNA sequences (Quang and Xie, 2016). DeepATT builds on
the DanQ model by incorporating a category-attention layer that
focuses on feature representation for various DNA functions (Li
et al., 2021). Basenji, which uses a dilated convolutional layer to
identify long-range relationships, can predict sequential regulatory
activity using genomic sequences over 100 kb as input (Kelley,
2020). SATORI is a deep learning model primarily utilizing self-
attention layers to detect interactions between regulatory elements,
such as transcription factor binding motifs, within genomic
sequences (Ullah and Ben-Hur, 2021). Finally, Enformer, which
uses a convolutional neural network to capture sequence motifs
and a transformer network to model long-range interactions, can
effectively predict gene expression based on genomic sequences
(Avsec et al., 2021).

Concurrently with the research and development of
increasingly deep and complex DNN architectures, the
development of parallel acceleration hardware such as graphical
processing units (GPUs) and tensor processing units (TPUs), and
high performance clusters/cloud computing, enables the training
of these more complex models by reducing the overall training
time (Wang et al., 2020). As neural networks are becoming more
sophisticated and the volume of scientific data keeps growing,
the model training time on these different high performance
computing (HPC) architectures is an important issue.

In this study, we propose a novel DNN model (CRMnet) for
predicting the expression levels of yeast promoter DNA sequences,
which achieves a Pearson correlation coefficient of 0.971 in the
test dataset, improving upon the benchmark models proposed in
Vaishnav et al. (2022). By accurately predicting the expression from
promoter sequences, suchmodels can be used predictively to design
new regulatory sequences in synthetic biology, study the predicted
effects of mutations (Vaishnav et al., 2022), and, by interpreting the
model, help in understanding the determinants of gene regulation.
Here, we interpret the model by visualizing saliency maps, showing
we are able to identify key regions in the promoter sequences

which most affect the corresponding expression. We demonstrate
that our model can learn biologically meaningful information by
quantifying the saliency information over known yeast sequence
motifs. We compare the performance of our model on large
datasets on parallel hardware of graphical processing units (GPUs)
and tensor processing units (TPUs) on a HPC cluster.

2. CRMnet: Sequence-to-expression
deep learning model

In a recent study (Vaishnav et al., 2022), the gene expression
driven by millions of synthetic, randomly generated promoter
sequences was experimentally determined. The synthetic promoter
sequences, which were 80 base pairs in length and comprised
of randomly sampled A, C, G, and T bases, were embedded in
a promoter construct and their resulting expression was assayed
in yeast (Saccharomyces cerevisiae) through high-throughput
sequencing. The use of synthetic promoters greatly expanded the
range of possible regulatory sequences, providing a diverse and
representative dataset of transcriptional regulation for analysis.

In this study, we present a new deep learning model called
CRMnet, which is designed to predict the expression level of
yeast promoter DNA sequences with improved accuracy compared
to previous models (Vaishnav et al., 2022), using the dataset of
millions of synthetic promoter sequences. The model is based on
a transformer-encoded U-Net architecture. The U-Net architecture
consists of an initial encoding stage which extracts feature maps
at progressively lower dimensions, optimized for the detection
of transcription factor binding sites (TFBS) within the promoter
sequence. A matching decoder stage upscales these feature maps
back to the original sequence dimension, whilst concatenating
with the higher resolution feature maps of the encoder at each
level to retain prior information despite the sparse upscaling. This
approach decodes a feature map at base-level precision.

The CRMnet model additionally includes a transformer
encoder stage after the convolutional encoder that employs the
self-attention mechanism to extract more global dependency
information (Dosovitskiy et al., 2020) than convolutional layers,
which is a key advantage over U-Net. The U-Net model
(Ronneberger et al., 2015) is a fully convolutional neural network
that primarily uses the convolution operation to learn the
information embedded in genomic sequences, but has a limited
receptive field and is less effective for learning global information
and long-range dependencies such as interactions between TFBS.

The CRMnetmodel consists of four key components (Figure 1):
1D convolutional neural network-based encoders to extract
neighboring features in the input DNA sequences, a transformer
encoder to extract longer range dependencies in the input
sequence, 1D convolutional neural network-based decoders, with
skip connections, to project the extracted features to the original
sequence input dimension, and a multi-layer perceptron to predict
the expression levels from the extracted features. In total, ourmodel
contains 34,170,289 parameters, of which 34,165,681 parameters
are trainable and 4,608 parameters are not trainable (batch
normalization layers, which only update the mean and variance,
were not changed during backpropagation), and no parameters
were frozen during transfer learning.
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FIGURE 1

CRMnet model’s architecture. Our CRMnet consists of Squeeze and Excitation (SE) Encoder Blocks, Transformer Encoder Blocks, SE Decoder Blocks,

SE Block and Multi-Layer Perceptron (MLP). Similar to the U-Net architecture, the encoder and corresponding decoder at the same level have a skip

connection (SC) so the decoder utilizes the concatenation of the upsampled feature map with the corresponding higher resolution encoder feature

map at that level.

2.1. 1D CNN-based encoder

Our CNN-based encoder is built to extract TFBS motifs from
genomic data inputs. The input is one-dimensional length 112
bp DNA sequences (80 bp promoter sequence plus padding,
see Section 4) which is one-hot encoded (A,C,G,T + N for
padding). 1D convolutional layers then learn filter parameters to
extract predictive features from combinations of adjacent bases,
with a filter size set to 11 in order to cover the average length
of TFBS motifs (Stewart et al., 2012). Additionally, we add a
squeeze excitation layer after each 1D convolutional layer because
the squeeze and excitation operation has been demonstrated
to improve the overall performance of CNN-based models by
assigning importance scores to the different feature maps (Hu et al.,
2018). Moreover, the original U-Net encoder block (Ronneberger
et al., 2015) is modified by performing the down-sampling with
a stride two convolution operation instead of max pooling, as the
additional model parameterization has been shown to improve
performance (Springenberg et al., 2014).

2.2. Transformer encoder

The transformer encoder accepts the CNN-based encoder’s
down-scaled feature maps as input. Each individual transformer

encoder block follows the vanilla transformer architecture which
is made up of a position-wise feed-forward network and a multi-
head self-attention feed-forward network (FFN) module (Vaswani
et al., 2017). Within each module, residual/skip connections and
layer normalization are utilized in order to train a deeper neural
network.

Unlike convolutional neural network stages which implicitly
extract dependency information in local neighborhoods through
the use of fixed-size kernels, transformer encoders use self-attention
to extract global dependency information across the inputs, while
explicitly encoding the positional information embedded into the
input. Similar to other transformer-encoded models, we embed the
positional information of the down-scaled input vectors (length 14)
to our transformer encoder (Chen et al., 2021). We represent the
positional information using sinusoidal position encodings and add
it to the input token before feeding it to the transformer encoder.

2.3. 1D CNN-based decoder

The CNN-based decoder blocks are very similar to the
original U-Net decoders, which use up-sampling to learn the
representation (Ronneberger et al., 2015). Using a 1D transpose
convolution operation to up-sample the resolution and attaching
a squeeze excitation layer after each convolutional layer to
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up-weight the critical feature maps are the main differences in our
implementation. The outputs are then concatenated with the skip
connections from corresponding encoder levels to compensate for
the potential loss of spatial information during downsampling.

2.4. SE block

It has been demonstrated that using Squeeze-and-Excitation
(SE) blocks can significantly improve the generalization power
of CNN-based models and achieve significant performance
enhancements in several state-of-the-art CNN models with
negligible increase in computational cost (Hu et al., 2018). The
SE Block will initially compress the input feature map generated
by learned convolutional filters using global average pooling. The
channel-specific statistics will then be forwarded to the excitation
operation, which will utilize two non-linear, fully connected layers
to highlight the key channels. In other words, the SE Block
can be regarded as a channel-specific self-attention function that
compensates for the inability of the convolution operator to model
the relationship among channels. As a result, we decided to adopt
the SE operation after each convolutional layer and added a SE
block in order to empower our model to focus on channel-specific
feature responses of the convolution layers.

2.5. MLP

Our model will learn the expression levels from the extracted
features utilizing a multi-layer perceptron (MLP). The fully
connected dense layer will learn the non-linear combination of the
extracted features from preceding layers. In the hidden layer of
MLP, we use ReLU as the activation function (where alpha equals
0.1). Then, a linear activation is used to make the prediction of the
expression levels in the final output neurons. To avoid overfitting,
each dense layer is followed by a dropout layer. The first two
dropout layers’ dropout values are equal to 0.2 and the rest have
dropout values equal to 0.1.

2.6. Pre-training and fine-tuning of models

We utilized a transfer learning approach to improve the
performance of CRMnet. Specifically, to utilize the largest possible
training set we pre-trained a more general model on a large dataset
of randomly sampled data combining datasets from yeast grown in
two different media types (“complex” and “defined” from Vaishnav
et al., 2022). The pre-trained dataset contains over 50 million
promoter sequences and their corresponding expressions. We then
conducted a fine-tuning training stage in which the pre-trained
model is retrained on the complex medium samples only, as used in
the test sets of our study. During this stage, the pre-trained model’s
parameters were all unfrozen and trainable. The pre-trained model
weights serve as good initializations for the fine-tuning on specific
datasets, which can improve the model’s performance on the target
task (You et al., 2021). This method of transfer learning, though

requiring an extra step and taking longer to train, can further
improve the model’s performance as demonstrated in Figure 4.

3. Results and discussion

We first evaluate the predictive performance of our model and
compare the performance to that of existing deep learning models.
We then use ablation studies to understand the roles of the subparts
of our model. To demonstrate the biological significance of our
model, we further apply saliency maps for model interpretation
and compare with enriched transcription factor binding site motifs
discovered by probabilistic motif discovery. Finally, we compare
the training time between TPUs and GPUs.

3.1. Performance evaluation

We here first present the predictive performance of our fine-
tuned deep learning model on independent experimental test sets
of both random and native (i.e., wild-type sequences found in
yeast) promoter sequences, in both complex and defined mediums
datasets (see Section 4). To evaluate the performance of the deep
learning models on the test datasets, we measured the Pearson
Correlation Coefficient (r), Coefficient of Determination (R2),
Mean Squared Error (MSE), and Mean Absolute Error (MAE). The
results show that our fine-tuned CRMnet model achieved excellent
prediction performance on both native and random sequences (r =
0.971, and r = 0.987; MSE = 3.2; and MSE = 1.01, respectively)
in complex medium (Figure 2 and Supplementary Tables 1, 2) and
in defined medium (r = 0.955 and r = 0.973, respectively,
Supplementary Figure 1).

We next compared our model’s performance with the
benchmark models on the same test datasets. Our CRMnet
model outperforms the benchmark transformer model proposed
by Vaishnav et al. (2022) in both native and random promoter
test datasets in both mediums (Figure 3), and also outperforms
other existing deep learning models referred to in Vaishnav et al.
(2022). The models DeepSEA (Zhou and Troyanskaya, 2015),
DanQ (Quang and Xie, 2016), and DeepATT (Li et al., 2021) were
utilized for performance comparison in the study by Vaishnav
et al. (2022). As these three models were originally designed to
solve the classification problem of predicting transcription factor
binding sites, modifications were made to the input and output
layers to adapt them to the regression problem of predicting
gene expression from sequences, while maintaining the core
architecture intact (Vaishnav et al., 2022). Specifically, our model
achieved a Pearson correlation coefficient of 0.971 on native
sequences, which is higher than the coefficient of 0.963 achieved
by Vaishnav et al.’s transformer model and the coefficient of 0.960
achieved by Vaishnav et al.’s convolutional model. Additionally,
our model achieved a Pearson correlation coefficient of 0.987
on random promoter sequences, which is again higher than the
coefficient of 0.979 achieved by Vaishnav et al.’s transformer
model and the coefficient of 0.980 achieved by Vaishnav et al.’s
convolutional model. A detailed performance summary can be
found in Supplementary Tables 2, 3.
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FIGURE 2

Prediction of expression from yeast native sequences from CRMnet. CRMnet tested on (A) native promoter sequences; and (B) random promoter

sequences. The y-axes represent measured expression levels, while the x-axes represent predicted expression levels. As a benchmark, the model

performance metrics of the Pearson r-value, associated two-tailed p-values, R-square, and MSE for the transformer model from Vaishnav et al.

(2022) showed: (A): r = 0.963, P < 5× 10−324, R2 = 0.927, MSE = 3.965; (B): r = 0.978, P < 5× 10−324, R2 = 0.95, MSE = 1.425.

FIGURE 3

Benchmarking the CRMnet’s performance against existing neural

network architectures. The prediction performance of CRMnet on

yeast native promoters and random promoters was compared with

the transformer and CNN models from Vaishnav et al. (2022) and

other existing DNNs [DeepAtt (Li et al., 2021), DanQ (Quang and Xie,

2016), and DeepSEA (Zhou and Troyanskaya, 2015)]. The

performance of DeepAtt, DanQ, and DeepSEA on random

promoters was not published in Vaishnav et al. (2022).

3.2. Ablation study

To determine the contribution to the performance of the
various components of our model, we performed an ablation study.
Specifically, for each ablation experiment, we constructed a new
model with the ablated block removed from the original CRMnet
architecture and trained the new model using the same training
dataset as the original CRMnet.We then evaluated the performance
of our models using the native and random test datasets (complex
medium only) (Figure 4).

Pre-training followed by fine-tuning on the complex medium
training dataset (Figure 4, red bar) demonstrates substantial
improvement compared with a model directly trained on the
complex medium training set (Figure 4, purple bar), due to the
larger training data set size and improved starting point for fine-
tuning model training by transfer learning. Overall performance
decreased when the transformer (Figure 4, blue bar) and squeeze
excitation blocks (Figure 4, green bar) were removed from the
model without transfer learning, particularly for the random
dataset, indicating that both blocks contribute to the model’s
predictive performance.

3.3. Model interpretation

To explore the biological insights from our trained model, we
used saliency maps to interpret the model by visualizing predictive
motifs. Saliency maps based on gradient backpropagation have
been commonly applied to highlight model-derived features in
input data (Adebayo et al., 2018), and have been used to interpret
the relationship between the input and prediction of the trained
model, where a segment of the input with a higher saliency value
indicates an influential region for the model’s prediction (Eraslan
et al., 2019). By combining the gradient values with the input
sequences, also known as input-masked gradients, we can visualize
the segments that significantly impact the model’s prediction
(Eraslan et al., 2019).

For comparison, we first searched for significant TF motifs
using probabilistic motif discovery based on expression levels (see
Section 4). We discovered the known yeast motifs associated with
higher expression levels: NHP10 (High-mobility group (HMG)
domain factors), REB1 (Myb/SANT domain factors), ABF1 (Basic
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FIGURE 4

Prediction performance for ablation study. Comparisons of

prediction performance of models tested on native promoters and

random promoters are shown: the full model with transfer learning

(fine-tuned CRMnet, red), the model without transfer learning

(CRMnet without pre-training, purple), the model without

transformer block (CRMnet without transformer, blue), and the

model without squeeze excitation (SE) block (CRMnet without SE

block, green).

helix-loop-helix factors (bHLH), AZF1 (C2H2 zinc finger factors),
and RAP1 (Myb/SANT domain factors) were the top 5 motifs.

We then visualized the input-masked gradients by plotting
the saliency map logos generated from our fine-tuned model over
yeast native sequences compared to these significant motifs from
probabilistic motif discovery. To enhance the visualization, we
applied a filter to eliminate gradients that were lower than the
average gradient for each sequence and removed gradients with
a low weight (less than 0.1). We also set the gradient values for
adapter sequences to zero to eliminate the effect of the adapter
sequences, which are the same across all input sequences, and to
focus on potential motifs in the middle 80 nucleotide region. The
results show that the saliency map matches the known yeast motif
logos (Figures 5A–E and Supplementary Figure 2). To quantify
this, we further calculated mean saliency map gradients over the
positions in the sequences matched by these top 5 motifs and
showed that these motifs are associated with substantially higher
saliency gradients than the mean over all sequences as a control
(Figure 5F).

Furthermore, we calculated the mean expression levels of yeast
native sequences containing these top 5 TF motifs compared
to all sequences as a control. The result shows that these
motifs are associated with higher expression levels as expected
(Figure 5G). Notably, the saliency gradients showed that the TF
motifs associated with the highest expression levels contribute the
most to the prediction of gene expression, supporting that our
model extracts biologically meaningful features.

3.4. Training time comparisons

We next compared the training time between eight TPU
V3 cores and eight GPU A100s under different batch sizes and
precision settings (shown in Table 1). Training on the V100 GPU
with batch size equal to 1,024 and default precision setting was used

as the benchmark. The time-per-step is the average processing time
to process one batch of data. The average epoch time represents
how long it takes to run over all the data. The training time was
estimated for the model to run 20 epochs without considering
model convergence and the initialization time. For instance, if
the local batch size is set to 4,096 and distributed training is
conducted using 8 GPUs, the global batch size would be 4,096 ×

8 = 32,768. In this scenario, the total required graphics memory
without the mixed precision policy is 270.14 GB. However, if the
mixed precision policy is implemented, the total required graphics
memory is reduced to 142.17 GB. The blank value indicates
the batch size is too big and over the accelerating hardware’s
memory limit.

The study showed that using distributed training on multiple
hardware accelerators can greatly reduce training time to
manageable levels, cutting it down from 70 h to just 4 h.
Additionally, using mixed precision in the training process can
enhance GPU performance, particularly when utilizing large batch
sizes, and can also decrease the amount of memory required.
Furthermore, the study found that the most recent GPU, the A100,
with 80 GB of graphics memory can handle larger batch sizes than
TPU v3-8, which has 32 GB of memory per core.

4. Materials and methods

4.1. Data collection

In the study of Vaishnav et al. (2022), the yeast cells were
grown under different mediums to exercise different metabolic
pathways. Here, we used data from cells grown in the complex
(yeast extract, peptone, and dextrose) and defined (lacking uracil)
medium as specified in Vaishnav et al. (2022). The training
data was downloaded from https://zenodo.org/record/4436477,
containing 30,722,376 and 20,616,659 random sequences from
complex and defined medium, respectively, with their expression
values evaluated by Gigantic Parallel Reporter Assay experiment
(Supplementary Table 1).

For model testing data, we used independent test sets drawn
from experimental replicate datasets, which were generated in
Vaishnav et al. (2022), consisting of native and random promoter
sequences (N = 61,150 and N = 2,954, respectively) from complex
medium and (N = 3,782 and N = 5,284, respectively) from defined
medium (Supplementary Table 1). The test data was downloaded
from GitHub repository at https://github.com/1edv/evolution.

4.2. Model training setup

We first trained individual models using data from complex
medium and defined medium separately. Specifically, 30,722,376
random sequences from the complex medium and 20,616,659
random sequences from the defined medium were used to train
the individual models. For the pre-trained model, we evenly
sampled data from both media. In total, 51,339,035 sequences
and their experimentally measured expression levels were used
for pre-training the model. We then further trained the pre-
trained model on complex and defined medium separately in the
fine-tuning process.
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FIGURE 5

Model interpretation by saliency maps. (A–E) The top 5 yeast TFBS motifs detected by motif discovery: NHP10, REB1, ABF1, AZF1, and RAP1. Shown

is an example sequence with its saliency map gradients over 80-nt for each motif, aligned with the known TF motif logo and E-values. (F) Mean

saliency map gradients over these top 5 motif matches in yeast native sequences, and mean saliency map gradients over all sequences as the

controls. (G) Mean expression levels of yeast native sequences containing these top 5 TF motifs, and all native sequences as the control.

The model’s performance was assessed using independent test
datasets as described above, and none of the sequences in the test
datasets were used during model training. It is important to note
that the test data library was measured in separate experiments
from the training data and that the test data library contains fewer
sequences than the experiments used to generate the training data.
As a result, the expression value associated with each sequence was
precisely measured in the test data (by averaging 100 yeast cells
per sequence).

4.3. Data pre-processing

The initial input sequences have a length of approximately
110 nucleotides. To standardize the length of the
sequences, we employed the TensorFlow 2 function
“tf.keras.preprocessing.pad_sequence” to adjust the sequences
to a fixed length of 112 nucleotides. This length was chosen as
it has multiple factors of two, which makes it more convenient
for implementation. It allows for easy reduction or expansion

of the input size by half or two times at different levels in
the model. Specifically, sequences longer than 112 nucleotides
were truncated from the end, while sequences shorter than 112

nucleotides were padded with the nucleotide “N” at the end.
Truncating longer sequences may result in information loss,
however, in our case, we have millions of sequences with over

96% of them having a similar length of 110 nucleotides, with
a deviation of 2 nucleotides. The detailed distribution of the
input sequence lengths can be found in Supplementary Figure 3.

This indicates that the risk of information loss is minimal in
our case. Pre-processing the sequences to have the same length
is necessary for the input to the convolutional neural networks.

We then used one-hot encoding to encode the nucleotides
based on the order of “A”, “C”, “G”, and “T”. Specifically, we
used tf.keras.layer.StringLookup function to encode the input
sequences and define the vocabulary as [“A”, “C”, “G”, “T”]
while characters not in the vocabulary (i.e., “N”) are encoded
in the fifth dimension. Therefore, “A”, “C”, “G”, “T”, and “N”
are encoded to [1,0,0,0,0], [0,1,0,0,0], [0,0,1,0,0], [0,0,0,1,0], and
[0,0,0,0,1], respectively.
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TABLE 1 Summary of training speed for di�erent batch sizes and accelerator hardware configurations.

Local batch size Hardware Number of
processor

Mixed precision Time per step (s) Average epoch
(min)

Training time
(h)

1,024 V100 32G 1 float32 0.434 210.37 70.12

1,024 A100 80G 8 float32 0.187 11.81 3.94

A100 80G 8 mixed float16 0.187 11.81 3.94

TPU-V3 8 float32 0.172 10.86 3.62

TPU-V3 8 mixed bfloat16 0.165 10.42 3.47

4,096 A100 80G 8 float32 0.675 10.65 3.55

A100 80G 8 mixed float16 0.477 7.51 2.51

TPU-V3 8 float32 0.726 11.46 3.82

TPU-V3 8 mixed bfloat16 0.611 9.64 3.21

8,192 A100 80G 8 float32 1.337 10.54 3.51

A100 80G 8 mixed float16 0.889 7.01 2.34

TPU-V3 8 float32 - - -

TPU-V3 8 mixed bfloat16 1.353 10.67 3.56

16,384 A100 80G 8 float32 - - -

A100 80G 8 mixed_float16 1.718 6.76 2.25

TPU-V3 8 float32 - - -

TPU-V3 8 mixed bfloat16 - - -

The benchmark training time was calculated by training the model on complex medium data with a single V100 GPU, with a local batch size of 1,024 and no mixed precision policy. The final

training time is based on training the model for 20 epochs without considering the model’s convergence. The training time was left empty if the local batch was too large and exceeded the

hardware’s graphic memory limit. For distributed training on multiple hardware, we compared the training time between TPU v3-8 and DGX box with eight A100s, where each configuration

contains eight accelerator hardware.

4.4. Model execution

Since we mainly used TPU v3-8 VM to train our model,
which contains eight tensor processing cores, we set the global
batch size to 8192, where each TPU core is assigned 1024
samples. To accelerate the efficiency of feeding data into the
model, we prefetch the training data into the memory using the
tf.data.Dataset.prefetch() function. This operation reduced
the latency and improved the data pipeline throughput.
We set the buffer size for prefetching the data equal to
tf.data.AUTOTUNE, which will optimize the number of data
prefetched automatically.

We applied the training process of our model to two different
hardware: TPUs and GPUs. For Tensor Processing Units (TPU),
provided by Google TPU Research Cloud, we trained the model
with the TPU v3-8 virtual machine. The TPU v3-8 virtual machine
comes with 8 processing cores. So, we set the global batch size equal
to 8,192, in which each core is allocated a local minibatch size equal
to 1,024. For the GPUs, we trained the model using eight Nvidia
DGX A100 GPUs provided by Australian National Computational
Infrastructure. Thus, following the same setup as TPUs, we set the
global batch size equal to 8,192 to ensure each A100 GPU processed
a minibatch with 1,024 samples in parallel.

We used Huber loss to calculate the difference between
predictions and true values for the loss function. The formulation
of Huber loss can be expressed as follows:

Lδ =

{

1
2 (y− ŷ)2 if

∣

∣(y− ŷ)
∣

∣ < δ

δ(|y− ŷ| − 1
2 δ) otherwise

(1)

The Huber loss function is a combination of the mean absolute
error (MAE) and mean squared error (MSE) loss functions, with
a control factor, delta (by default, delta is set to 1). When the
difference between the predicted label and the true label is less
than delta, the Huber loss function behaves like the MSE, which
is more sensitive to smaller loss values due to the quadratic
function. However, when the difference between the predicted
label and the true label is greater than delta, the Huber loss
function uses the MAE, which is less sensitive to large loss
values as it reduces the impact of outliers (Huber, 1992). We
use Adam optimizer to optimize the Huber loss function. For
the learning rate scheduler, we set a learning rate warm-up in
the first 10 epochs, which gradually increase the learning rate of
the optimizer from 0.0001 × NUM of HARDWARE (i.e., 0.0008)
to 0.001 × NUM of HARDWARE (i.e., 0.008). A cosine decay
learning rate scheduler was then used to gradually reduce the
learning rate to 0.0001 × NUM of HARDWARE (i.e., 0.0008).
To avoid overfitting, an early stop call-back function was used.
This call-back function monitors the model’s performance over
the validation dataset. If the model’s validation R-square value was
not improved in the most recent ten epochs, it stopped training
and restored the model weight with the best performance over
validation data.
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We used the Tensorflow 2’s tf.distribute.MirroredStrategy for
distributed training on a DGX A100 box, which contains eight
A100 GPUs. Additionally, we used the tf.distribute.TPUStrategy

for training on a TPU v3-8 virtual machine, which has eight
tensor cores. Both strategies are synchronous training processes
intended to distribute training across multiple processing units
on a single machine. The synchronous strategy first copies all
of the model’s variables to each processor. During training,
each processor is assigned a portion of the training data, which
is used to update the trainable parameters on that processor.
This distributed training method, a form of data parallelism,
allows each device to handle a different part of the data.
The gradients from each processor were then fused using all-
reduce and The resulting values are synchronized to all instances
stored in each processor. Since our model training does not
require high precision and training on TPUs automatically
uses float16, we used the mix precision policy by setting up
precision equal to mixed_float16 for training on GPUs. This
policy improves our model training speed on GPUs without
losing accuracy.

We further compared the training speed between A100 GPUs
and TPU V3-8 with different local batch sizes and mixed precision
policy. To reduce the impact of other factors, such as the
time used to build the computational graph, we exclude the
time reported in the first epoch and take the maximum value
from the time-per-step column. The time-per-step report is the
average time the hardware processes each batch in one epoch.
The training speed comparison is shown in Table 1. Note that
the final training time is an optimistic estimation for training
the model for 20 epochs, which doesn’t guarantee the model
convergence and doesn’t consider the overhead time used for
inter-core communication.

For the software and packages, we used Python 3.8.10 to write
the code for training and evaluation. For data pre-processing,
we used NumPy 1.22.1 and Pandas 1.5.0 packages. We used
TensorFlow 2.8.0 framework to implement and train the neural
network. Functions from TensorFlow Addons 0.16.1 and SciPy
1.9.3 were used to evaluate model performance. Matplotlib 3.6.1
and Seaborn 0.12.1 were used for visualization.

4.5. Motif discovery

We used the probabilistic motif discovery tool MEME (Bailey
et al., 2015) in “differential enrichment mode” to detect the motif
enrichment in the top 2,000 sequences with high gene expression
against the bottom 2,000 sequences with low gene expression. We
used FIMO in the MEME suite to search for motif hits in yeast
native promoter sequences.

We further used two ranking-based methods, Discovering
Ranked Imbalanced Motifs using Suffix Trees (DRIMust)
(Leibovich et al., 2013) and rGADEMm (Mercier et al.,
2011), to determine the de novo motifs in a ranked list of
sequences, which were ranked from high to low expression
values. DRIMust uses suffix trees to identify overrepresented
motifs in the top-ranked sequences and further evaluates the
obtained k-mers by minimum-hypergeometric (mHG) approach

(Leibovich et al., 2013). rGADEM combines spaced dyads
and an expectation-maximization (EM) algorithm. The spaced
dyads are identified by their overrepresentation in the input
sequences, and a genetic algorithm is further employed to
mark them significant and to declare them as motifs (Mercier
et al., 2011). We used Bioconductor packages “TFBStools”
(Tan and Lenhard, 2016), “JASPAR” (Castro-Mondragon et al.,
2022), to match the identified motifs with known JASPAR
Yeast motifs.

We selected the top 5 motifs ranked by E-value in MEME that
were reproduced by the rank-based methods.

5. Conclusion

In this study, we introduced CRMnet, a novel neural
network architecture that accurately predicts the gene expression
levels driven by yeast promoter sequences. The architecture
of the model is inspired by the prior biological knowledge
that promoter sequences contain multiple contiguous TFBS
motifs which together coordinately regulate gene expression.
Our model is an improvement over (Vaishnav et al., 2022)
transformer model because it utilizes a U-Net inspired architecture
to capture regulatory sequences in the encoder. This entails
using initial convolutional neural network layers as a feature
extractor to identify the contiguous regions denoting individual
TFBS motifs, followed by transformer encoders to weight the
influential motifs and, importantly, detect correlative patterns
between motifs predicting gene expression. The decoder stage
propagates the feature maps at base-level precision, potentially
improving model interpretation precision. Additionally, our
model uses transfer learning, i.e., it was pre-trained on a large
dataset and then fine-tuned, and a multi-layer perceptron and
skip connections in the decoder for improved prediction of
gene expression.

Our ablation studies of the CRMnet model demonstrated the
potential for improvements in predictive performance for a given
biological problem by the design of custom DNN architectures.
In particular, augmentation of a model with a combination of
CNN and additional transformer stages guided by training and
testing results on large high-throughput datasets can give useful
increments in performance.

Importantly, high performance DNN models extracting
dependency information via attention mechanisms allow for
biological insights through model interpretation. In this study,
we visualized regions of key importance for transcriptional
expression regulation by plotting the saliency map over
the input yeast DNA sequences. Notably, we found that
the logo plots constructed from saliency maps over the
input sequences are correlated with the sequence motifs
of known yeast transcription factors. The combination of
future improvements in DNN model architectures and model
interpretation methods, in concert with appropriately designed
high-throughput synthetic experimental data, will be key enablers
for future biological discoveries and elucidation of subtle
regulatory signals, from enhancer regions to post-transcriptional
regulatory signals.
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