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The Coronavirus (COVID-19) outbreak swept the world, infected millions of

people, and caused many deaths. Multiple COVID-19 variations have been

discovered since the initial case in December 2019, indicating that COVID-19

is highly mutable. COVID-19 variation “XE” is the most current of all COVID-

19 variants found in January 2022. It is vital to detect the virus transmission

rate and forecast instances of infection to be prepared for all scenarios, prepare

healthcare services, and avoid deaths. Time-series forecasting helps predict future

infected cases and determine the virus transmission rate to make timely decisions.

A forecasting model for nonstationary time series has been created in this paper.

The model comprises an optimized EigenValue Decomposition of Hankel Matrix

(EVDHM) and an optimized AutoRegressive Integrated Moving Average (ARIMA).

The Phillips Perron Test (PPT) has been used to determine whether a time

series is nonstationary. A time series has been decomposed into components

using EVDHM, and each component has been forecasted using ARIMA. The

final forecasts have been formed by combining the predicted values of each

component. A Genetic Algorithm (GA) to select ARIMA parameters resulting in the

lowest Akaike Information Criterion (AIC) values has been used to discover the

best ARIMA parameters. Another genetic algorithm has been used to optimize the

decomposition results of EVDHM that ensures the minimum nonstationarity and

maximal utilization of eigenvalues for each decomposed component.

KEYWORDS

time-series, forecasting, COVID-19, optimized-ARIMA, optimized-EVDHM, PPT

1. Introduction

Time series forecasting is a crucial area in machine learning, as it involves predicting

future values of a variable or characteristic that is dependent on time and recorded at

regular intervals. The ability to accurately forecast time series is essential in many fields,

such as economics, finance, healthcare, transportation, and energy, to name a few. Time

series forecasting helps organizations in projecting product demand, allocating resources

efficiently, predicting maintenance schedules, and many other applications. Over the years,

several approaches to time series forecasting have been proposed in the literature.
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For instance, time series forecasting has been employed in

various sectors, such as electricity prices (Contreras et al., 2003),

wind power generation (Wan et al., 2014), electricity demand

(Taylor and McSharry, 2007), traffic flow (Lippi et al., 2013), and

taxi-passenger demand (Moreira-Matias et al., 2013). Moreover,

time series forecasting has also been useful in predicting the spread

of epidemic diseases such as Dengue (Appice et al., 2020) and

Influenza (Saberian et al., 2014). These studies have demonstrated

the effectiveness of time series forecasting in diverse fields and have

inspired further research in this area.

Coronavirus Disease (COVID-19) is caused by the SARS-

CoV-2 virus [Coronavirus disease (COVID-19) pandemic, 2021a].

COVID-19 was proclaimed a global pandemic on March 11th,

2020, after discovering the first known case in Wuhan, China

[Coronavirus disease (COVID-19) pandemic, 2021b]. The illness

has since spread around the globe, culminating in a pandemic.

Various researchers have expressed interest in developing Artificial

Intelligence based solutions to assist governments and enterprises

inmaking decisions. The past COVID-19 forecasting investigations

are summarized in Table 1.

ARIMA is a time-series forecasting model that is one of

the most often utilized approaches. ARIMA-based models are

commonly employed in stationary time-series analysis (Wilson,

2016), although the standard ARIMA-based approach is inefficient

in real-world settings for time series with nonstationary properties

(Li and Chiang, 2013; Yang and Lin, 2016). EVDHM is a modern

approach for nonstationary time series forecasting that may be

combined with ARIMA (Sharma et al., 2021).

The COVID-19 pandemic has brought about an urgent need

for accurate forecasting of the spread of the disease, to inform

decision-making and public health interventions. As shown in

Table 1, multiple studies have explored the use of machine learning

(ML) and time series forecasting models in predicting the spread

of COVID-19. These studies have highlighted the potential of

ML and time series forecasting models in guiding decision-

making and administrations. For instance, Rustam et al. (2020)

employed a supervised ML model to predict the number of

COVID-19 cases, deaths, and recoveries and discovered that

exponential smoothing outperformed other models. Similarly,

Kumar and Susan (2020) used ARIMA and Prophet time series

forecasting models and found that the ARIMA model was more

effective in forecasting COVID-19 prevalence. Andreas et al.

(2020) proposed an improved mathematical forecasting framework

based on ML and cloud computing that uses real-time data to

accurately predict the progress of the curve. Satu et al. (2021)

developed a web portal that provides real-time information on

COVID-19 cases in Bangladesh and worldwide, including an

ML-based short-term forecasting tool. Other researchers, such

as Darapaneni et al. (2020) and Kurniawan and Kurniawan

(2021), have also presented models for forecasting COVID-19

prevalence in Indonesia and India, respectively. Finally, Sharma

et al. (2021) proposed a new method for time-series forecasting

of nonstationary data using a combination of EVDHM and

ARIMA models.

Although these studies have shown promising results, the

models used by the researchers are not completely automated and

require manual analysis of the data to provide inputs to the models.

This makes it difficult for non-technical individuals to use these

models, and analysis of the data can be time-consuming and prone

to human error. To address this limitation, this paper proposes an

optimized EVDHM approach combined with the ARIMA model

for automated nonstationary time series forecasting.

The proposed model is fully automated and requires no

manual input, which makes it easy, efficient, and time-saving

for forecasting COVID-19 cases. This model can be used by

non-technical individuals and is less prone to human error. The

optimized EVDHM approach is used to capture the nonstationarity

of the COVID-19 time series data, while the ARIMA model is

used to capture the autocorrelation in the data. The proposed

model is optimized using a grid search algorithm to select the

best hyperparameters. The performance of the proposed model is

evaluated using RMSE and compared with the performance of the

traditional ARIMA model.

In conclusion, the proposed automated nonstationary time

series forecasting model has the potential to provide accurate and

timely predictions of the spread of COVID-19. The model is easy

to use, efficient, and less prone to human error, and can be used by

non-technical individuals.

The remainder of this article is structured as follows. Section 2

covers the datasets used in this study. Section 3 introduces EVDHM

and ARIMA, Section 4 provides the proposed model and the stage

outcomes, Section 5 compares EVDHM and Optimized EVDHM,

and Section 6 summarizes the findings. Finally, section 7 brings the

article to an end.

2. Dataset used

The data set for COVID-19 new cases in India has been utilized

in this research. Data from January 22nd to May 10th, 2020, has

been used for training, and data from the 11th to the 30th of May

2020 has been used for testing to analyze the proposed model. The

data set has been given by Johns Hopkins University’s Center for

Systems Science and Engineering (CSSE) and is accessible online

(CSSE, 2021).

3. Methods used

3.1. EVDHM

In linear algebra, the Hankel matrix is a square matrix with

skew-diagonals that are constants. A Hankel matrix is represented

as follows (Sharma and Pachori, 2017):

A =























A1 A2 A3 . . . AN

A2 A3 .

A3 .

. .

. A2N−3

. A2N−3 A2N−2

AN . . . A2N−3 A2N−2 A2N−1























(1)

Eigenvalue Decomposition may be used to decompose a square

matrix into its eigenvalues and eigenvectors. In terms of eigenvalues
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TABLE 1 A summary of predicting models for Covid-19 forecasts.

S.no Year Author Investigated
region(s)

Method(s) used Accuracy measures

1 2020 Rustam et al. (2020) Australia, Canada, Algeria,

and Afghanistan

Support Vector Regression (SVR),

Linear regression (LR), Exponential

Smoothing (ES), Least Absolute

Shrinkage, Selection operator (LASSO),

and Linear regression (LR)

Mean Square Error (MSE), Root Mean

Square Error (RMSE), Mean Absolute

error (MAE), R-square, Adjusted

R-square

2 2020 Kumar and Susan

(2020)

Global cases, Spain, Italy,

India, France, Russia, Iran,

UK, US, Turkey, Germany

ARIMA, PROPHET MAE, RMSE, Root Relative Squared

Error (RRSE), Mean Absolute

Percentage Error (MAPE)

3 2020 Andreas et al.

(2020)

Global cases Curve fitting R-square

4 2021 Dash et al. (2021) Brazil, France, India, Russia,

United Kingdom, US

ARIMA RMSE, MAE, MAPE

5 2021 Satu et al. (2021) Bangladesh and Global cases PROPHET, LR, Polynomial-regression

(PR), SVR, Multilayer Perceptron

(MLP), and Polynomial-MLP

(poly-MLP)

RMSE, R-squared

6 2021 Kurniawan and

Kurniawan (2021)

Indonesia Curve fitting MSE

7 2020 Darapaneni et al.

(2020)

India ARIMA R-square, Bayesian Information Criteria

(BIC), Akaike’s Information Criteria

(AIC), and MSE

8 2021 Sharma et al. (2021) India, USA, Brazil ARIMA RMSE

9 2020 Mustafa and Fareed

(2020)

Iraq ARIMA MSE and MAE

10 2021 Kumar and Kaur

(2021)

Delhi (India) ARIMA, Gaussian Process Regression

(GPR), LR, M5 Rule MLP, Support

Vector Regression, Multi-Criteria

Decision Making (MCDM), and

Self-organized maps and fuzzy time

series (SOMFTS)

Normalized-RMSE, Mean Magnitude of

Forecasting Error (MMFE) Square root

of the variance of the magnitude of

residual errors (SdARE), The

proportion of anticipated instances with

a relative error magnitude of <0.20

11 2021 Iqbal et al. (2021) Pakistan Long short-term memory (LSTM) MAPE

12 2021 Zhan et al. (2021) 24 North American countries,

11 South American countries,

45 Asian countries, 46

European countries, 54

African countries, and 4

Oceanian countries

Gated Recurrent Unit (GRU), LSTM,

Artificial Neural Network (ANN),

Particle swarm optimization broad

learning system (PSO- BLS)

R-square, MAE, RMSE

and eigenvectors, matrix A may be written as follows (Sharma and

Pachori, 2017):

A = VλV−1 (2)

V, λ, and V−1 are the eigenvector matrix, eigenvalue matrix,

and inverse eigenvalue matrix, respectively. A stationary time

series with statistical features such as mean and variance is

either time-invariant or has a reasonable variation. Because of

the significant variance, forecasting a nonstationary time series

is often more difficult or complex than forecasting a stationary

time series. Therefore, it is usually processed to reduce the time

series’ nonstationarity when working with nonstationary time

series. EVDHM is an algorithm that can be utilized for analyzing

nonstationary time series. It decomposes a time series into

components with changing trends, noise, and oscillating patterns

(Sharma and Pachori, 2017). Other applications of EVDHM

include cardiovascular signal analysis (Sharma and Pachori, 2018b;

Sharma et al., 2019), muscle signal analysis (Sharma et al., 2019),

and complex data processing (Sharma and Pachori, 2018a).

A time-series St = t1, t2, t3,... t2N−1 can be written as a Hankel

matrix H of size N × N as follows (Sharma and Pachori, 2017):

H =























t1 t2 t3 . . . tN
t2 t3 .

t3 .

. .

. t2N−3

. t2N−3 t2N−2

tN . . . t2N−3 t2N−2 t2N−1























(3)

Then H can be expressed as follows (Sharma and Pachori,

2017):
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FIGURE 1

Model’s block diagram based on O-EVDHM and O-ARIMA.

H = VsλV
−1
s (4)

where eigenvalue matrix λ can be expressed as follows (Sharma

and Pachori, 2017).

λ =























λ1 0 0 . . . 0

0 λ2 .

0 .

. .

. 0

. λN−1 0

0 . . . 0 0 λN























(5)

All of the values in the eigenvalue matrix are zero, except for

the diagonal elements, which have eigenvalues ranging from λ1

to λN. The decomposition of the time series relies heavily on this

eigenvalue matrix. It may be written as a sum of matrices with one

or more distinct eigenvalues.

λ = λ1 + λ2 + . . . + λM (6)

(6)

Now, H becomes

H = Vsλ1V
−1
s + Vsλ2V

−1
s + ...+ VsλMV−1

s (7)

Let,

H = H1 +H2 + . . . +HM (8)

The first decomposed component S1t is computed using the

mean of the skew-diagonal elements of the matrix H1. The

remaining components are computed in the same way, using the

Hi matrices i ǫ {2,3, ...,M}.

3.2. ARIMA

ARIMA comprises Autoregressive (AR), Moving Average

(MA), and Integration (I) models combined. The Autoregressive

(AR) model is a regression-based model whose current value

is determined by previous values. The lagged forecast errors

create the moving average (MA) model. It makes the next

forecast based on prior errors. To model a nonstationary

series, ARIMA employs differencing, which is represented

by the letter I in ARIMA. An ARIMA model having

parameters p, d, and q, if applied on time series St = {s1,

s2, s3, . . . } then, it will be expressed as follows (Wilson,

2016):

(

1−

p
∑

n=1

φnβ
n

)

(1− β)dst = θ0 +

(

1+

q
∑

n=1

θnβn

)

et (9)

where p is the AR component’s order and q is the

MA component’s order, p and q are positive integers. The

backshift operator β is interpreted as βn st = st−n, where d

is the needed degree of differencing to keep the time series

stationary. The deterministic trend term is denoted by the

number θ
0. et is the white Gaussian noise with zero mean and

σ 2
e variance.

4. Optimized EVDHM and ARIMA
based model

ARIMA does not work well with nonstationary time

series. It has a parameter d that takes the lagged series

to cope with nonstationarity in the time series. However,

it cannot be estimated successfully for nonlinear time

series (Sharma et al., 2021). Compared to the original

series, the EVDHM decomposes the actual time series

into numerous components with high stationarity. Because

the components are stationary, this breakdown strategy

helps decrease predicting errors since the components

are stationary.

The EVDHM-ARIMA-based model has been used for time

series forecasting (Sharma et al., 2021). In this work, an

optimized EVDHM and ARIMA-based hybrid model has been

used to create a time series forecasting model that is both

efficient and automated. The Phillips Perron Test (PPT) test

has been initially used to test for the stationarity of the time

series. Then, EVDHM is applied to the time series in case
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FIGURE 2

Trend (Component 1) and Variability (Component 2) of the actual series.

FIGURE 3

Final forecast from May 11, 2020 to May 30, 2020.

of failure of PPT that results in the decomposed components.

EVDHM employs a genetic algorithm to select the eigenvalues

to decompose the series. The genetic algorithm aims to increase

the number of eigenvalues selected while minimizing the

series’ nonstationarity.

The decomposition of a time series into components using

EVDHM are completely reliant on the matrix λ and how its N

eigenvalues are split among the matrices λ1, λ2, ... λM Eq. (7).

The simplest approach is to divide N eigenvalues for N matrices

to get N components, but in this case, all of the components will

not be stationary, and the number of components will be large,

causing the proposed model to take a long time to forecast because

each component will be fitted to ARIMA for individual component

forecasting. To deal with this, a genetic algorithm has been used.

The goal of this GA is to distribute N eigenvalues among M

matrices in such a way that the majority of the components are

stationary and the number of components is as low as possible

Eq. (6). The following parameters and their values have been used

by this genetic algorithm number of iterations = 50, number of

bits (n_bits) =M (number of Eigenvalues), population size = 100,

crossover rate= 0.9, mutation rate= 1.0/(n_bits).

An M-digit binary number is used to represent individuals in

this evolutionary method. For each binary digit, 1 and 0 denote

the relevant eigenvalue selection or rejection. The goal of the

genetic algorithm is to find the best possible combination of

eigenvalues, including the maximum possible eigenvalues both at

the same time that give a nonstationary component. The best

possible combination of eigenvalues is picked after all iterations.

With the remaining eigenvalues, this process is continued until no

more stationary components are feasible. Because of the genetic

algorithm, the generated components have a low count and are

also stationary. Finally, the components are subjected to ARIMA,

and ARIMA parameters are tuned using another genetic algorithm.

Figure 1 depicts the proposed model’s block diagram and also the

stages of the optimized EVDHM and ARIMA-based model. The

performance of the proposed model has been compared with the

EVDHM-ARIMA-based model (Sharma et al., 2021). As indicated

in Section 2, the data set from January 22nd to May 10th, 2020,

is used for training, and the data set from May 11th to May

30th, 2020 is used for testing. The proposed model mainly consists

of 4 stages PPT, Optimized EVDHM, Optimized ARIMA, and

Aggregate forecast. A detailed explanation of each stage is given in

the upcoming subsections.

4.1. Phillips Perron Test

The study employs the Phillips Perron test, which is a unit

root test utilized to determine the stationarity of a time series. This

test is distinct from other unit root tests such as the Dickey-Fuller

test (DFT) and Augmented Dickey-Fuller test (ADFT) since it

addresses serial correlation and heteroskedasticity in the errors. The

automated features of PPT make it a better option than DFT and

ADFT for this study (Patterson, 2011). In this study, the Boolean

decision vector for the PPT is denoted by h, and the p-score is a left-

tailed probability ranging from 0 to 1. The null hypothesis (h = 0)

assumes that the underlying time series is non-stationary, while the

alternative hypothesis (h= 1) asserts that it is stationary. A p-score

<0.05 leads to the rejection of the null hypothesis, indicating that

the time series is nonstationary. Conversely, a p-score >0.05 leads

to the acceptance of the null hypothesis and the rejection of the

alternative hypothesis, indicating that the time series is stationary.

The results of applying PPT to the training dataset in this study

reveal that the dataset is nonstationary since the h and p scores are

0 and 1, respectively.
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4.2. Optimized-EVDHM

EVDHM transforms a data series into a Hankel matrix H

and then decomposes the Hankel matrix into its eigenvalues

and eigenvectors, as shown in Eq. (4). The eigenvalue matrix λ

is decomposed into M matrices such that each matrix has one

or more distinct eigenvalues of the matrix H. For an effective

and efficient decomposition of a data series, the decomposed

components should be less in count, and all the components should

be stationary. The number of components should be less because

ARIMA is applied to each component. Therefore, a high number of

components will increase the running time of ARIMA. Moreover,

the stationarity of the component will help the ARIMA for better

predictions. A genetic algorithm has been used in the proposed

model to decompose the eigenvalue matrix λ into λ1, λ2, . . .,

λM matrices. The objective of this genetic algorithm is to select

the eigenvalues of λ for λ1 such that it will try to maximize

the eigenvalues utilization and minimize the nonstationarity of

the component formed with λ1. Similarly, subsequent λ’s are

calculated. The resultant two components and the actual data series

are shown in Figure 2.

4.3. Optimized ARIMA

ARIMA needs three parameters: p, q, and d for each

decomposed component to fit the model. A genetic algorithm has

been used in this research to automate parameter selection. The

genetic algorithm (GA) selects the model’s variables p, q, and d,

having the lowest Akaike information criteria (AIC) value. The AIC

is a mathematical tool for determining if a model sufficiently fits

the data. Generally, the best fitting models are considered good.

Therefore, the GA has been set to use 0–5 for all three parameters to

find out the best set of parameters with the lowest AIC value. The

derived parameters for each component have been fitted into the

ARIMA model, and the fitted model was used to anticipate future

values fromMay 10th through May 30th, 2020.

4.4. Aggregate forecast

The ARIMA’s separate component predictions have been

combined to get the final projection. Figure 3 depicts the

final forecast.

4.5. Performance of O-EVDHM

In this study, the performance of the Optimized EVDHM

approach has been evaluated by calculating the sum of squared

(SS) scores for all the decomposed components. The SS score is an

important metric that measures the strength of the decomposition

of the time series. The formula for calculating the SS score has been

given in Eq. (10).

SS =

n
∑

i=1

(ti)
2 (10)
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where ti is an n-sample data series with i being a positive integer

less than or equal to n.

The SS scores for the decomposed components have been

presented in Table 2. From the table, it can be observed that the

SS score for the main signal is 1.47× 108, while the SS values for C1

and C2 are 2.40 × 107 and 5.91 × 107, respectively. The stationary

component C1 captures the variability of the actual series, whereas

the trend component C2 is nonstationary. Therefore, no further

decomposition is required beyond C2.

The performance of the proposed approach has been further

assessed by comparing it with the EVDHM-based approach. As

mentioned earlier, the EVDHM-based approach decomposes the

time series into 10 components. The SS score of the trend

component C1 calculated using the EVDHM technique is 1.46

× 108, which is much higher than the trend component C2

calculated using the Optimized EVDHMmethod, 5.91 × 107. This

indicates that the Optimized EVDHM approach is more successful

in decomposing the actual nonstationary series.

To evaluate the forecasting accuracy of the proposed approach,

the RMSE has been calculated for both the EVDHM-based ARIMA

model and the Optimized EVDHM-based ARIMA model. The

RMSE for the EVDHM-based ARIMA model is 702.6, whereas the

RMSE for the Optimized EVDHM-based ARIMA model is 538,

which is significantly lower.

5. Comparison of EVDHM and
optimized EVDHM

The Optimized EVDHM-based decomposition approach was

developed to address the limitations of the EVDHM method

used in (Sharma et al., 2021). For measuring the performance

of the Optimized EVDHM method, it was compared to the

EVDHM method in terms of h-score, p-value, and SS score for the

decomposed components of the actual series.

Table 2 shows the comparison of the results. After the first

iteration, the EVDHM decomposes the actual series into ten

components C1-C10, as shown in Table 2. Component C1 has a

trend, whereas the remaining components, C2-C10, have variability.

The SS score of the trend component C1 calculated using the

EVDHM technique is 1.46 × 108, which is much higher than

the trend component C2 calculated using the Optimized EVDHM

method, 5.91 × 107. This indicates that the Optimized EVDHM is

more successful in decomposing actual nonstationary series.

Moreover, after the first iteration, the EVDHMmethod resulted

in a total of 10 components, while the Optimized EVDHM

method yielded only two. This reduction in the number of

components implies that the Optimized EVDHM method can

effectively and efficiently decompose nonstationary time series. In

addition, the decomposition using the Optimized EVDHM does

not require several iterations, making it a more suitable approach

for nonstationary time series.

Overall, the results demonstrate that the Optimized EVDHM-

based decomposition approach outperforms the EVDHM method

in efficiency and effectiveness in decomposing nonstationary time

series. This improvement is attributed to the use of a genetic

algorithm in the process of selecting the eigenvalues best suited for

each decomposition, which optimizes the decomposition process

and yields better results. As such, the Optimized EVDHM method

holds great promise for future applications in various fields,

including finance, healthcare, and environmental studies, where

nonstationary time series are ubiquitous.

6. Results and discussions

This paper presents an Optimized EVDHM and ARIMA-based

time series forecasting model used to anticipate the COVID-19

Indian cases. As mentioned in section 2, 109 days of data were

utilized for training the proposed model from January 22nd to May

10th, 2020. Forecasting has been done for the following 20 days

till May 30th, as indicated in Figure 3. The blue line in Figure 3

depicts the actual data series, while the red line depicts predictions

from May 11th to May 30th, 2020. The gray region represents the

95% percent confidence interval. The root means squared error

(RMSE) for the anticipated values has been determined to assess

the suggested model’s performance.

RMSE =

√

√

√

√

1

n

n
∑

i=1

(Pi − Ai) (11)

P and A are the series’ predicted and observed values,

respectively. The RMSE of the suggested model is 538 for the 20

days of projected values, but the RMSE of the EVDHM-ARIMA-

based model is 702.6, which is much higher than the RMSE of the

proposed model.

7. Conclusions

In conclusion, the proposed Optimized EVDHM and ARIMA-

based approach for time series forecasting is demonstrated to be

effective in predicting new cases of COVID-19. The numerical

comparison shows that the Optimized EVDHM-based ARIMA

model outperforms the EVDHM-based ARIMA model with

an RMSE of 538, indicating the practical significance of this

study. The approach utilizes a genetic algorithm-based approach

for decomposing nonstationary time series into its constituent

components, followed by the application of ARIMA for forecasting.

The proposed technique can be applied to various signals in the

future, such as power load, sales forecasts, and inventory research,

among others, making it a versatile tool for time series forecasting.

The points of innovation in this study include the use of

genetic algorithms for optimizing the EVDHM decomposition

method, which leads to more efficient and effective decomposition

of nonstationary time series. The proposed approach also utilizes

ARIMA for forecasting, which is a widely used and reliable method

for time series forecasting.

However, there are some current shortcomings in this study.

The proposed approach has only been tested on COVID-

19 data, and its performance on other datasets needs to be

evaluated. Additionally, the proposed approach can only be

applied to univariate time series, and its extension to multivariate

time series remains an area for future research. Nonetheless,

the proposed Optimized EVDHM and ARIMA-based approach
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demonstrates promising results and can be considered a valuable

addition to the existing literature on time series analysis

and forecasting.
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