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Collaborations between scientists from the global north and global south (N-S

collaborations) are a key driver of the “fourth paradigm of science” and have

proven crucial to addressing global crises like COVID-19 and climate change.

However, despite their critical role, N-S collaborations on datasets are not well

understood. Science of science studies tend to rely on publications and patents

to examine N-S collaboration patterns. To this end, the rise of global crises

requiring N-S collaborations to produce and share data presents an urgent need to

understand the prevalence, dynamics, and political economyofN-S collaborations

on research datasets. In this paper, we employ a mixed methods case study

research approach to analyze the frequency of and division of labor in N-S

collaborations on datasets submitted to GenBank over 29 years (1992–2021). We

find: (1) there is a low representation of N-S collaborations over the 29-year period.

When they do occur, N-S collaborations display “burstiness” patterns, suggesting

that N-S collaborations on datasets are formed and maintained reactively in the

wake of global health crises such as infectious disease outbreaks; (2) The division

of labor between datasets and publications is disproportionate to the global south

in the early years, but becomes more overlapping after 2003. An exception in the

case of countries with lower S&T capacity but high income, where these countries

have a higher prevalence on datasets (e.g., United Arab Emirates). We qualitatively

inspect a sample of N-S dataset collaborations to identify leadership patterns in

dataset and publication authorship. The findings lead us to argue there is a need to

include N-S dataset collaborations in measures of research outputs to nuance the

current models and assessment tools of equity in N-S collaborations. The paper

contributes to the SGDs objectives to develop data-driven metrics that can inform

scientific collaborations on research datasets.

KEYWORDS

scientific collaboration, genomics, GenBank, research data, Sustainable Development

Goal (SDGs)

1. Introduction

Scientific collaborations between the global north and south (N-S collaborations) on

research datasets are a critical component of addressing global crises and advancing public

health research. Genomics research is one scientific area where N-S collaborations have

proven crucial for advancing global, interdisciplinary research. For example, the SARS-CoV2

pandemic (COVID-19) and climate change relied on—and continue to depend upon—

collaborations between scientists residing in the global north and south. N-S collaborations

on genomics research data serve to facilitate the pooling of data, expertise, and resources
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to accelerate scientific breakthroughs (Crane, 1972; Bratt, 2022;

Hemsley et al., 2022). In addition, N-S collaborations on datasets

prevent the global spread of disease by collecting regionally-specific

samples of disease variants and support vaccine development

(Herzig Van Wees et al., 2019; Omotoso et al., 2022). The overall

landscape of N-S collaboration on data in genetics and genomics

research is increasingly globalized, and relies on international

cooperation for dataset production and sharing (Costa et al., 2016;

Lucas-Dominguez et al., 2021).

Despite these advances, there remains a “genomic data gap”

(Omotoso et al., 2022). The genomic data gap refers to a lagging

rate and volume of datasets submitted by specific regions to

open research data repositories. Datasets are largely produced

by high-income, western countries such as the United Kingdom,

United States, and Canada (Cyranoski, 2021). For example, during

the COVID-19 pandemic, African scientists deposited < 2% of the

total SARS-CoV2 datasets deposited to Global Initiative on Sharing

Avian Influenza Data (GISAID).

Part of the genomic data gap is the division of labor between

the datasets and associated publications. That is, there may be a

gap in who participates in the dataset production and to what

extent they are also contributing to the publications. For example,

African scientists contributed to Ebola by providing access to

local populations but did not play a leading role in many of the

collaborations, reflected by their low representation of African

scientists as first authors on the resulting publications (Zhang

et al., 2020). The division of labor in N-S scientific collaborations

on datasets has important implications for innovation and equity

outcomes. For instance, Xu et al. (2022) found that “flat” teams are

associated with more innovative outcomes because less hierarchical

teams meant that more of the collaborators participated in the core

intellectual tasks.1 In large data-intensive teams, studies have found

that a hierarchical organization of the technical labor and dataset

preparation can bemore efficient, but also leads to less generalizable

outcomes due to the inaccessibility of the details of the data cleaning

and analysis steps in the final manuscript reporting the results

(Azoulay, 2019). Equity can be enhanced when the division of labor

is peer-to-peer rather than hierarchical team structures because

flatter teams are associated with increased knowledge sharing. For

example, in N-S scientific collaborations with small, flat teams tend

to more easily build research capacity for southern researchers and

access to local populations for northern researchers (Wagner et al.,

2015; Atkins et al., 2016).

Yet despite the critical role of the N-S division of labor datasets

in shaping research outcomes, we still know little about N-S

collaborations on datasets at scale and over time. For example,

we lack empirical analyses of questions such as: How frequently

have N-S collaborations on datasets occurred? What is the N-S

division of labor on datasets? Have N-S collaborations on datasets

increased with the maturity of global data sharing infrastructure?

With a few exceptions (Chen et al., 2022; Omotoso et al., 2022),

science of science studies tend to rely on publications and patents

to examine N-S collaboration patterns. To this end, the increase in

N-S collaborations on genomic datasets and the policy mandates to

1 Bratt, S., Gomez, C. Lee, J., Langalia, M, Nanoti, A., and Leahey, E. [Under

review]. Division of Labor on Scientific Datasets [Unpublished manuscript].

University of Arizona, School of Information.

submit data to open research data repositories presents an urgent

need to understand the longitudinal dynamics of the prevalence

and division of labor in the N-S scientific collaborations on datasets.

It remains difficult to assess the United Nations (UN)

Sustainable Development Goals (SDGs) around strengthening

research capacity (Cash-Gibson et al., 2015; Lee et al., 2016) because

we lackmetrics using formal network terms (e.g., statistical, theory-

driven). Without an understanding of N-S collaborations network

structures and the division of labor on datasets the SDGs are

undermined because we are left with a empirical gap in current

models that inform science policy interventions, especially for the

data-intensive sciences (e.g., genomics).

In this paper, we take a first step to characterize the prevalence

and structure of international collaborations between scientists

from countries in the global north and south on research datasets.

We employ a mixed methods case study research (MMCSR)

approach. We first conduct a bibliometric analysis using GenBank

dataset metadata about collaboration over 29 year (1992–2021)

and the World Bank country income classification and Science &

Technology (S&T) Capacity Index (STCI) to analyze the frequency

of and division of labor in N-S scientific collaborations on genomic

research datasets. We then qualitatively examine a sample of

collaboration clusters that include both scientists from the global

north and south situate the quantitative results in context. Based

on these findings, we discuss the implications for the use of the

S&T capacity index andWorld Bank country income classifications

for estimating collaborative equity and research capacity in the

genomic context. The findings inform policy interventions that

aim to strengthen research capacity in developing nations and

monitor equity in international collaborations a UN Sustainable

Development Goal (Lee et al., 2016). The longitudinal analysis of

the division of labor on N-S collaboration on datasets is one of

the first. As such, the study addresses the empirical gap as to the

extent and distribution of work in scientific collaborations between

scientists from the global north and south on research datasets.

This paper is organized as follows: We first provide a

background literature review of the empirical landscape, with a

focus on studies of N-S research collaborations in genomics on

datasets and the division of labor on datasets. Next, we describe

our research questions and the overarching study methodology

(i.e., a “MMCSR” approach). We then detail the data sources used,

data analysis techniques employed, and operational measures of

the study. The findings follow and are structured by our two

primary research questions. We offer a discussion of the findings

and conclude with limitations and future work.

2. Background literature

2.1. Research datasets in genomics: global
production and sharing

The “fourth paradigm” of science is an era characterized by

more computation, collaboration, and data-intensive activities than

prior scientific periods (Hey et al., 2009; Szalay and Blakeley,

2009). In genomics, research datasets are central to accelerating the

vision of the fourth paradigm of science. A signpost of the fourth

paradigm and centerpiece of dataset standardization and sharing is
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large-scale open research data repositories. Indeed, it is common

practice for genomics researchers to typically deposit datasets into

open research data repositories such as the National Center for

Biotechnology Information (NCBI) GenBank (Benson et al., 2018),

Protein Data Bank (RCSB PDB, 2023), and more generalized

dataset archives like Dryad (Dryad Digital Repository, 2023). For

instance, the Human Genome Project was enabled in large part by

sharing datasets at a global scale through GenBank, and advances in

addressing infectious disease research including COVID-19—owe

their expediency to large open research databases.

A “genomic data gap” remains vividly apparent in both the

sequencing technology capacity and the coverage of datasets in

the African continent (Sirugo et al., 2019; Fatumo et al., 2022,

p. 100). In the case of African genomic data production during

COVID-19 pandemic, African scientists contributed <2% of the

total SARS-CoV2 sequence data due “lack of infrastructure and

enabling environment for genomic studies, scarce or no funding

and politics” (Omotoso et al., 2022). Moreover, Africans’ genomic

data only constitutes ∼3% of the data used for genome-wide

association studies 1.6% of genotype data in U.K. Biobank (Fatumo

et al., 2022; Omotoso et al., 2022; Ramsay, 2022).

This genomic gap has begun to be addressed through

capacity-building. The technological infrastructure for conducting

sample collection and sequencing has been spearheaded by local

organizations—e.g., the Nigerian 100k Genome Project (Fatumo

et al., 2022)—and through collaboration with international

partners. The next section reviews such collaborative efforts to

partner between the global north and south to address the genomic

data gap, and how N-S collaborations and the N-S division of labor

on datasets.

2.2. Scientific collaboration between the
global north and south on datasets

Global teams of scientists can accelerate health research

by integrating multi-disciplinary expertise (e.g., epidemiology,

transcriptomics) (Bietz and Lee, 2009). Collaboration at a

worldwide scale also can ease the cost burden of specialized

experiment and labor (Krueger, 1986; Chen et al., 2022). For these

reasons, among others, it is advantageous for scientists affiliated

with the global north and south to form partnerships. For instance,

it is beneficial to develop N-S collaborations between researchers

to study infectious disease. For instance, Zhang et al. (2020)

showed that over four major global disease outbreaks that the

United States (US) collaborated frequently on publications with

several African countries on Ebola research (e.g., Sierra Leone,

Guinea), the regions where Ebola primarily emerged to exchange

expertise and access local populations. Likewise, regional expertise

and distributed resources led to collaboration between China and

the USA on SARS. These studies reveal the relationship of the

regional outbreak and the scientific and technical capacity needed

to address the disease burden.

However, N-S collaborations have been critiqued for their

extractive and exploitative sometimes referred to as “helicopter

science” approaches (e.g., Vanni et al., 2014; Atkins et al., 2016;

Liverpool, 2021). Partnerships between N-S researchers of an

extractive nature are not sustainable due to conflicts of interest

and inequitable practices like unequal on data ownership, patent

claims, and publication authorship (Omotoso et al., 2022). Studies

specifically related to N-S collaborations in genomic suggest that

solutions to extractive collaborations on genomics datasets must

begin with “local research capacity building both in- and about

Africa’s health priorities.” They emphasize the importance of

equitable divisions of labor for obtaining and sharing genomic

data in Africa (Cash-Gibson et al., 2015; Omotoso et al., 2022).

As Omotoso et al. (2022) emphasize: “Local researchers should

consider forming a partnership with HIC collaborators who

understand the context and needs of the African region, and assist

in agenda development” (Omotoso et al., 2022).

Quantitative studies of science have begun to examine N-S

scientific collaborations at scale, using large scale bibliographic

metadata available through, e.g., OpenAlex, Web of Science, and

Microsoft Academic Graph, to investigate the implications for

research capacity strengthening for southern scientists. Studies

have focused on equity concerns in N-S scientific collaborations,

such as the tendency for N-S collaborations in research on marine

biodiversity to increase the “collaboration capital” of western

scientists (i.e., scientists from high income nations) and not that

of scientists from low or low to middle income nations (Tolochko

and Vadrot, 2021) and documented uneven N-S collaboration

practices like “helicopter science” (Gazni et al., 2012; Haelewaters

et al., 2021). Likewise, Gomez et al. (2022) found less citation

attention goes to southern publications (Khanna et al., 2022). These

inequities in collaboration and citation can exacerbate the already

uneven investment in infectious disease outbreaks, a disease is

carried largely by southern nations (Faure et al., 2021). Equity

issues are likely to be amplified when a country’s data infrastructure

is immature.

A branch of the efforts to ameliorate the inequities is to

focus on a flatter division of labor in N-S scientific teams.

Early research has suggested that less hierarchical interactions

between N-S researchers in a data-intensive genomic project

can help to build scientific and technical (S&T) capacity. In

the next section, we focus on these emerging studies of the

structure and dynamics of N-S division of labor in data-intensive

genomics research.

2.2.1. Division of labor in north-south
collaborations on datasets

The division of labor in data-intensive science has spanned

from complex hierarchies to simple two-person teams. Large “big

science” projects such as CERN, the Hubble Telescope, and the

Apollo space program, have tended to embrace a hierarchical

division of labor (Price, 1963; Collins, 2003; Turner, 2015). A

hierarchical chain of command can facilitate the management of

highly specialized, interlocking tasks of large-scale projects. For

example, the Laser Interferometer Gravitational-WaveObservatory

(LIGO) is a large-scale effort designed to conduct experiments

and detect gravitational waves depends on a distributed expertise

of a chain of labor (Collins, 2003). The LIGO scientists are

organized into clusters and branches of smaller teams that

answer to leadership among each tier. Like other space and
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astronomy research initiatives, LIGO is an international multi-

disciplinary collaboration, including South American scientists.

Other astronomy projects with scientists from countries with

differing research capacity and economic status are those between

European researchers and those residing in Chile (e.g., the ALMA

radio telescope), Argentina (e.g., Q&U Bolometric Interferometer

for Cosmology), and Brazil (e.g., the Longa Vista Observatory)

(Collins, 2003). While these big science teams do contain “flatter”

sub-groups, the structure of big science teams is still hierarchical,

with the leadership residing a several steps removed from research

“on the ground.” The division of labor is closely related to

communication patterns, and the harmonization of the goals of all

involved parties.

Unlike hierarchical teams, the tight-knit organization of

flatter teams tends to contribute more directly to building and

maintaining scientific and technical (S&T) human capital. S&T

human capital is established and sustained through social ties

and further access to S&T resources (Bozeman et al., 2001). In

the context of N-S collaboration, flat team structures facilitate

knowledge transfer and exchange because of the shared mental

models that are developed during frequent interactions among

all team members (Xu et al., 2022). For example, the short

average path length of a flat network facilitates the rapid

communication of information across the network, enabling the

individuals at the periphery of the network to receive and

potentially act on information with expedience. Also known as

knowledge diffusion, which, in a crisis, is critical for developing

solutions such as vaccines and for variant monitoring, the

short average path means the community is often working

with a friend-of-a-friend. Being close to your neighbor and

your neighbor’s neighbor has well-documented positive impacts

such as mentorship, tacit knowledge transfer, collaborative trust,

similar technology use (i.e., using the same software product)

and network resilience (Haythornthwaite, 2002). Put another way,

studies show flatter teams are associated with greater diffusion of

information (Monteiro and Hanseth, 1996), in part because all

the project scientists are involved in the core functions of the

project such that direct communication and information exchange

is facilitated.

A corollary to flatness found by researchers of interdisciplinary

research (IDR) teams is that if the collaboration displays

hierarchical structure, e.g., a distributed division of labor with few

overlapping tasks that are central, there is less communication,

and overall, fewer novel ideas generated (Xu et al., 2022).

Their findings suggest that non-hierarchical division of labor

in N-S collaboration networks can display features either

constrain research capacity strengthening, such as hierarchical

organization in the distribution of labor, intellectual elitism,

and groupthink (Vlegels and Huisman, 2021). Flatter teams are

associated with peer-to-peer exchange and can lead to research

capacity strengthening (Bates et al., 2006; Haelewaters et al.,

2021).

Despite these benefits, some studies also suggest that

even in flatter teams, the power dynamics within a team can

potentially have the opposite effect: constraining knowledge

diffusion create power hierarchies (Newman, 2001; Rogers,

2010). For example, Tolochko and Vadrot (2021) measured the

collaboration capital gained by western scientists vs. southern

scientists after an international collaboration, finding western

scientists more likely to benefit from the collaboration by

gaining more collaborative ties and sustaining them longer.

The study reflects how the structural properties of N-S

collaboration networks correspond to an increment in research

capacity. Tolochko and Vadrot (2021) suggested that the

division of labor between the scientists may account for the

discrepant outcomes in collaboration capital gained by western

(northern) scientists.

Taken together, these studies highlight the benefits of N-

S collaborations like increased research capacity and training,

and shared resources. However, they also raise the question

of whether flat, non-hierarchical teams are enough to support

effective equitable outcomes. The paradox depends in part on

the methods and metrics employed to measure S&T capacity and

equity outcomes. For instance, the studies show that flat properties

may not guarantee equity, though short-path lengths and clustering

has been associated with strengthening peer-to-peer relationships

(Armstrong et al., 2002). The metrics used are commonly based

on publication data, even though the modern genomic research

team has a broad distribution of labor. Because the studies are

limited to publication data, they may miss the dataset labor central

to contemporary genomics research. Including dataset authors

in the analysis of the division of labor may allow us a clearer

picture of the N-S collaborations. We lack longitudinal accounts

of changes in the collaboration structures of N-S teams, too. If

we can characterize the prevalence and division of labor on a

key signpost of the global collaboration networks—data-intensive

genomics collaborations on research datasets—we can develop

clearer metrics and empirical insights into this central feature of

the information age.

In this study, we systematically analyze the prevalence of N-

S collaborations on datasets and the division of labor of N-S

scientists on using the case of genomics research datasets submitted

to GenBank (1992–2021). The following research questions guide

our analysis:

Research Question 1 (RQ1): What is the prevalence of N-S

collaborations on datasets?

This question guides our analysis of the frequency of

collaborations on datasets occurring between scientists from

countries with different income status and S&T capacity? All

years (+ Plot the overall frequency of each n-wise collaboration)

Yearly (1992–2021) + Plot the frequency of n-wise collaborations

Mapping the countries with geographic visualization (overall, by

year 1992–2021).

Research Question 2 (RQ2): What is the division of labor in

N-S collaborations on datasets?

We measure the division of labor using the overlap of authors

between publications and datasets. We calculate the overlap of

author names on the dataset and the publication. GenBank

provides information about both the publication authors and the

dataset authors. Here, we operate under the assumption that dataset

authorship indicates the author is responsible for contributing to

the dataset, as in the case of publication authorship. We provide
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further details on our methodological approach and materials in

the following section.

3. Methodology

In this study, we take an approach known as “mixed

methods case study research” (MMCSR). The mixed methods

approach integrates the multiple types and sources of data

we need to address quantitative and qualitative aspects of our

research questions (RQs). The prevalence of and longitudinal

patterns characterizing N-S collaborations rely on quantitative

methods (e.g., counting the frequency of N-S collaborations).

To contextualize these quantitative patterns (e.g., the division

of labor in N-S collaborations), we require both a quantitative

characterization and qualitative techniques such as content analysis

of documents produced in selected cases of N-S collaborations.

The selected cases (i.e., the case study component of the “mixed

methods case study research approach”) provide contextualized

N-S collaborations of our specific cases for comparative analysis

(Creswell and Poth, 2016). Within our MMCSR approach, we

employ an “explanatory sequential design” in which we first

perform quantitative data collection and analysis (phase 1), which is

further explained by qualitative data collection and analysis (phase

2). In phase 1 we process and analyze the quantitative from the

GenBank database. In phase 2, we purposefully sample the N-S

collaborations and conduct a qualitative case study of the extracted

teams (Figure 1).

The quantitative analysis is contextualized with a case

study approach to examine the formation and development of

representative collaborations between countries.

3.1. Data collection and processing

Data sources used for the primary quantitative analysis

portion of this study from an ongoing project analyzing scientific

collaboration networks (Qin et al., 2009; Costa et al., 2014, 2016;

Bratt et al., 2017). The GenBank metadata from the project is

contained in a relational database spanning 1984–2001, with a few

earlier years (∼0.1% 1900–1983). The data collected for the project

is a fusion of multiple data sources: the metadata from the National

Center for Biotechnology Informatics (NCBI) GenBank, the NCBI

Taxonomy, the World Bank country income classification, and

Scientific & Technical Capacity Index (STCI) data.

A GenBank annotation record consists of a section of metadata

section and a section onmolecular sequence data. These annotation

records are available from the GenBank FTP server as compressed

semi-structured text files. We downloaded all the annotation

records from up until 2021 and extracted the metadata section

from all annotation records, which were then parsed into a

relational database (we excluded the genetic sequence data, which

comprised 80% of the data volume). This process resulted in

227,905,057 annotation records, in which 44,480,172 publications

were referenced.

To extract N-S collaborations from all GenBank records, we

queried our database for all records with geographic information.

The result was a year range of 1984–2021. Metadata attributes

in the collection are title, journal, year, country, author names,

institutional affiliation, and taxon data. The result includes a

total of 13,467 references with 7,186 data submissions and 6,281

publications. There were 18,510 authors with 445,848 edges.

3.2. Measures: scientists’ country a�liation
and division of labor

We operationalize scientific collaboration using co-authorship

on a paper or dataset. Co-authorship is a common measure of

scientific collaboration in the bibliometrics literature (Beaver and

Rosen, 2005; Costa et al., 2016; Wang and Barabási, 2021). The

measure of dataset collaboration is less established, given its relative

newness in studies of scientific collaboration on less “conventional”

scientific products such as software and datasets (Li et al., 2016).

Here, we extend the well-established logic of co-authorship on

publications as a proxy measure for collaboration to datasets. That

is, we infer that the co-contribution of two (or more) scientists on a

GenBank dataset submission record is indicative of collaboration

activity. However, if scientist X contributes to a publication but

not its associated dataset, and scientist Y contributes to the dataset

but not the associated publication, this poses a more difficult case

to assume collaboration. Our study reported here analyzes the

extent to which there is such an “overlap” of scientists on both

the publication and dataset. It is out of the scope of this paper to

develop a theoretical model of proxy measures of collaboration on

datasets; future work can examine this direction.

Countries were classified per the 2019 World Bank’s economic

groups: low-income countries (LIC), low-to-middle-income

(LMIC), upper-middle-income-countries (UMIC), and high-

income-countries (HIC). The World Bank uses these income

groups in the World Development Indicators database, which

includes all the members of the World Bank (189 countries) and

28 other countries with >30,000 people as their population. The

income groups’ classifications change occasionally but are for the

most part stable from year to year. We used the classification tables

for each year of our data to classify countries to reflect the status

of that country in that particular year and to track if they changed

classification status in a later year. The income group categories are

low, lower-middle, upper-middle, and high. To measure income,

the World Bank uses the GNI per capita in U.S. dollars.

Researchers have leveled compelling critiques of the use of

the World Bank country income classifications (Wagner et al.,

2001; Lencucha and Neupane, 2022), so we also incorporated

an emerging measure specific to capacity, the Scientific and

Technical (S&T) Capacity Index (STCI) developed by Wagner

and Leydesdorff (2009) and can be accessed at: (National Science

Capacity Index 2018-Unweighted, 2022) to triangulate classifying

the countries, nuancing the N-S binary. We also classified countries

according to an emerging measure, the Scientific and Technical

(S&T) Capacity Index (STCI) (Wagner et al., 2015). The STCI

accounts for economic, social, and technological features beyond

the GNI or GDP to characterize a “nation’s ability to carry out

research” (Wagner et al., 2015). We operationalize the division of

labor on datasets and publications with a measure of the ratio

of authors on the dataset and publications of a single GenBank
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FIGURE 1

Study design: a mixed-methods sequential explanatory case study design in two phases.

FIGURE 2

Sample GenBank annotation record.

submission. A GenBank dataset submission is described by an

annotation record (see Figure 2). The annotation record describes

the dataset. The metadata in the annotation record includes

the dataset authors, the date of the submission, and the related

“references”—the publications most closely associated with the

submitted dataset.

3.3. Case study analysis

Case studies provide in-depth contextual information specific

to the situated phenomenon. The context of the two mixed

income group cases were investigated using a qualitative case

study approach of two components. These two components were
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extracted using network component analysis in R’s iGraph package.

We then identified the nodes in the cluster and extracted their

affiliation metadata including title, co-authors, and outputs. Using

the publications associated with a cluster, we then identified

funding sources and selected policy outcomes, as well as media

documents from the Centers for Disease Control (CDC) articles,

events reported in media documents (i.e., news articles) associated

with mixed-income group statistics. We also used institutional

documents including calls for funding proposals, institutional

initiatives, published policy outcomes associated with clusters. To

measure research capacity, we conducted qualitative deductive

analysis of the documents, identifying the places where new

collaborations were formed, to reflect collaboration capacity (as our

proxy measures for research capacity strengthening).

4. Findings

In this section, we report the findings of the analysis, guided

by our two research questions: RQ1: What is the frequency of N-

S collaborations on datasets submitted to GenBank? RQ2: What is

the division of labor in N-S collaborations on datasets submitted

to GenBank?

4.1. Frequency of N-S collaborations
(1992–2021)

We analyzed the frequency of scientific collaborations

involving countries with differing World Bank country income

classifications and differing S&T Capacity Index (STCI). The use of

these classification systems allowed us to nuance the N-S binary,

representing the countries on a more accurate, granular level. In

the analysis of the frequency of the N-S collaborations, we first

conducted descriptive statistics of all scientists who submitted

datasets to GenBank. A total of 105 countries have submitted

datasets to GenBank (1992–2021). Note that scientists can be

affiliated with multiple countries, but that this in a minority of

cases (12% percent of scientists in our sample).

From 1992–2021, most of the dataset collaborations are

constituted of scientists from high-income countries (HIC) like

the United States, France, and Canada. The analysis conducted

on North-South collaboration aimed to explore the distribution

of collaborations among different countries. We found that the

majority of direct submissions (95%) came from scientifically

advanced and progressing countries, and that 71.71% of these

countries classified as high-income nations according to the

World Bank country income classification. Among these, the

most frequent international collaborations on datasets were among

scientifically advanced countries (see Figure 3).

The most frequent dataset submitters who were from countries

with lagging capacity are Thailand, Malaysia, and Algeria. The

scientists from these nations collaborated with the UK and France.

Over time, the N-S collaborations on datasets occurred a total of

11,324 times (i.e.,∼11 k dataset submissions), which increased over

the span of 29 years. When the whole network data was filtered for

only components with N-S researchers the network size decreases

sharply. The team size of these countries is larger on average than

the collaborations among advanced nations.

Figure 4 shows the appearance of larger N-S teams over time.

The incidence of larger connected components with researchers

from well-resourced countries suggests the organization of larger

efforts by larger institutions, given the size of the component is

health outbreak events requiring HIC collaborative efforts. We

find that when there are collaborations, there is “burstiness”—

collaborations that occurs because of work on infectious disease

outbreaks. For example, the Ebola virus led to collaborations

between researchers from Ethiopia, Jordan, and the United Stated.

The topics on which N-S collaborations on datasets tend to occur

are related to infectious disease outbreaks, and their timing of

publishing tends to coincide with the disease outbreak.

4.2. Division of labor on datasets and
publications

As one of the objectives of this study, we try to answer the

question of how many authors part of the dataset submissions to

GenBank were also part of the publications associated with the very

same dataset submissions. This overlap of authors between dataset

submissions and publications is what we call “author overlap”. We

performed an analysis of the fraction of author overlap, the average

and median dataset submissions and publications team size overall

and across the years from 1992 to 2021 (Table 1).

The analysis shows us that the overall fraction overlap has a

value of 0.47, which implies that 47% of the total number of authors

contributed to the datasets as well as the publications. This fraction

overlap value increased from 0.18 (18%) in 1992 to 0.79 (79%) in

2021. This indicates more authors started contributing toward the

datasets across the years. This conclusion has also been supported

by the fact that the average dataset submission team size increased

from 1.1 in 1992 to 3.9 in 2021 (Figure 5).

There is no major difference in the mean (average) and

median values of the dataset submissions and publications

team size over the years (Figure 6). This indicates that there

are no outliers present in the dataset. For further analysis,

we can incorporate the countries the authors are associated

with to analyze the trends in the collaborations between the

global North and South countries, and which contribution

(dataset submission or publication) these countries are

associated with.

We selected two teams from this sample to examine two

research groups with mixed income (HIC-LMIC) researchers.

The two components identified are international collaborative

initiatives were connected to the Harvard Botswana Partnership

(HBP) and the Brown University/Tufts University AIDs

International Training and Research Program (AITRP). We

searched the literature describing and produced by the institutions

engaged in the collaboration (e.g., scholarly, institutional, and

media reports). The case studies of these two research groups

serve as a deep dive into mixing patterns over time to provide

a richer contextualization of cases. We selected these two

components as candidate cases because they represented research

groups comprised of mixing patterns. The two components
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FIGURE 3

Map of world with N-S collaborations.

FIGURE 4

Team size over time.

were consistently producing publications and dataset, providing

cases of successful HIC-LMIC research group collaborations.

We visualized the networks and colored the nodes according

to the income group as an initial exploration of existing mixed

HIC-LMIC components.

After visual examination, the clusters with mixed HIC-LMIC

components were computationally extracted and the metadata for

publications, datasets, and additional contextual information were

queried. Based on these metadata, we conducted a document search

on Google Scholar and the researchers’ professional websites, and

media and web content (e.g., funding documents, press releases).

Based on the earlier analysis of component size distributions,

we identified two mixed-income components of representative

size which had a sustained presence in the network (1992–

2018).

The first component-case study identified was associated with

four countries: USA, Thailand, Cambodia, and France. The second

component-case study was associated with the Harvard Botswana

Partnership (HBP). While France and the USA have consistently

(over the last 100 years) been classified by the World Bank as

high-income countries, Thailand and Cambodia have historically

switched lending groups and income group classifications since the

1980s, but slowly have climbed the ranks in both respects. Thailand

has become a global leader against HIV. Thailand has undergone
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TABLE 1 Division of labor statistics by year.

overlapping_
count

non_overlapping_
count

total_
count

fraction_
overlap

pub_count sub_count avg_pub_
team_size

avg_sub_
team_size

median_pub_
team_size

median_sub_
team_size

only_sub_
count

only_pub_
count

2,775,677 3,128,059 5,903,736 0.47016 4,540,349 3,713,755 5.2 4.2 4 3 938,078 1,764,672

4,235 18,180 22,415 0.18894 21,036 5,281 4.4 1.1 4 1 1,046 16,801

7,190 27,470 34,660 0.20744 32,536 8,822 4.4 1.2 4 1 1,632 25,346

9,574 40,207 49,781 0.19232 47,303 11,406 4.5 1.0 4 1 1,832 37,729

16,771 46,814 63,585 0.26376 59,250 19,765 4.6 1.5 4 1 2,994 42,479

29,241 49,886 79,127 0.36955 73,139 32,733 4.7 2.1 4 1 3,492 43,898

42,895 60,929 103,824 0.41315 92,440 49,775 5.0 2.7 4 2 6,880 49,545

55,802 77,711 133,513 0.41795 110,948 71,093 5.0 3.2 4 2 15,291 55,146

69,779 103,549 173,328 0.40258 133,983 97,505 5.4 3.9 4 2 27,726 64,204

79,032 123,033 202,065 0.39112 148,414 117,828 5.5 4.4 4 3 38,796 69,382

75,834 124,088 199,922 0.37932 136,914 122,894 5.2 4.7 4 3 47,060 61,080

88,547 297,258 385,805 0.22951 157,581 270,717 5.3 9.1 4 3 182,170 69,034

86,359 234,364 320,723 0.26926 153,930 218,271 5.0 7.2 4 3 131,912 67,571

90,832 258,266 349,098 0.26019 160,597 238,949 5.3 7.9 4 3 148,117 69,765

94,703 294,220 388,923 0.2435 165,374 271,746 5.0 8.4 4 3 177,043 70,671

101,073 144,995 246,068 0.41075 172,431 155,407 5.3 4.8 4 3 54,334 71,358

106,551 112,963 219,514 0.48539 176,495 135,590 5.3 4.0 4 3 29,039 69,944

111,997 94,079 206,076 0.54347 175,043 131,027 5.0 3.8 4 3 19,030 63,046

123,900 90,720 214,620 0.5773 191,944 134,239 5.4 3.8 4 3 10,339 68,044

136,542 92,137 228,679 0.59709 203,903 147,152 5.4 3.9 4 3 10,610 67,361

135,243 89,247 224,490 0.60245 204,907 141,780 5.4 3.7 4 3 6,537 69,664

142,412 87,693 230,105 0.6189 211,716 147,311 5.3 3.7 4 3 4,899 69,304

144,122 91,226 235,348 0.61238 217,430 148,988 5.3 3.7 4 3 4,866 73,308

149,352 87,261 236,613 0.63121 219,081 153,753 5.2 3.6 4 3 4,401 69,729

149,011 82,915 231,926 0.64249 215,770 152,360 5.0 3.6 4 3 3,349 66,759

150,452 79,644 230,096 0.65387 214,921 152,948 5.0 3.6 4 3 2,496 64,469

148,470 71,894 220,364 0.67375 207,556 149,210 5.0 3.6 4 3 740 59,086

143,746 73,279 217,025 0.66235 204,372 144,673 5.0 3.5 4 3 927 60,626

131,544 71,095 202,639 0.64915 191,123 132,428 5.0 3.4 4 3 884 59,579

118,292 60,018 178,310 0.66341 169,433 116,465 5.4 3.7 4 3 −1827 51,141

22,516 5,949 28,465 0.79101 27,505 21,490 5.0 3.9 3 3 −1026 4,989
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FIGURE 5

Author overlap ratio 1992–2021.

FIGURE 6

Average dataset team size (1992–2021).
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socioeconomic development in the last century, “moving from

a low-income to upper-middle-income country in less than a

generation” (Siraprapasiri et al., 2016). Beginning in the 1970s, the

Royal Thai Government invested in health infrastructure showing

a “significant and sustained” commitment to health (Siraprapasiri

et al., 2016) by building health care facilities and establishing a

health care workforce.

The second case study component reflects a research-capacity

building effort initiated by the partnership called the Botswana-

Harvard Partnership (BHP). The BHP recently celebrated a 20-

year anniversary, indicating the collaboration was a concerted

capacity-building effort rather than a “serendipitous” collaborative

partnership. Botswana, like Thailand and Cambodia, has shifted

income classification and lending group categories. It is currently

an upper middle-income country, as of FY 1995. While it has

gained independence, it has lost funding support from global health

agencies because of its reclassification as an upper middle country.

Despite its economic growth, Botswana remains one of the most

severely impacted countries of HIV. It has established a provision

for universal free antiretroviral treatment.

5. Discussion

Systematic analyses of the dataset authorship are nascent. Our

findings indicate a data gap between scientists residing in high

income, scientifically advanced nations, providing insight into the

division of labor on datasets. However, the precise meaning of

dataset authorship in GenBank records is ambiguous. Dataset

authorship could indicate an author is the owner, creator, and/or

submitter of the dataset. For example, found the person, e.g.,

a postdoctoral fellow, who submitted the dataset to GenBank.

The early years of dataset submission to GenBank lacked clear

guidelines about who should appear as a “dataset author.”

Further, the metrics for measuring S&T research capacity in

dataset terms are likewise in their early stages. Just as promotion

and tenure (P&T) use of unconventional metrics such as datasets

and software remain largely publication-centric, so too have

indicators for the UN sustainable development goals (SDGs). In

this analysis, we saw how the use of World Bank income status

vs. S&T Research capacity might influence our interpretation of

collaboration to informmetrics and indicators of research capacity.

There are some countries such as the United Arab Emirates where

they are scientifically lagging, but a high-income nation. As such,

using classifications of countries in our analyses of metrics is

important. Likewise, we can ask: How does the N-S Language

help and hinder us? What are the strengths and limitations of

using GenBank data to develop indicators of dataset production

and collaborations? Our findings that the use of the S&T human

capital classification allowed us to see the nations in terms of

their advanced scientific capacity, whereas the World Bank did not

specify the capacity of a scientists’ country in those terms).

North-South Collaboration on Datasets and Research Capacity

We found that collaboration between mixed income groups and

S&T capacity groups were sporadic and infrequent, as indicated

by the low prevalence in the network. At the same time, other

bibliometric analyses have complicated the story of N-S scientific

collaboration. First, we cannot depend on measures of the presence

and frequency of collaboration between N-S as an indicator of

capacity-building. As Wagner et al. (2001) point out, just because

there is N-S collaboration does not guarantee that capacity-building

or strengthening occurred between the global north and south

collaborators. In fact, the collaboration may have been exploitative

or initiated to address a topic of interest to the high-income partner,

but of little local benefit. Second, distribution location of high-

income countries as the core of the network can be indicative of

overrepresentation of HIC.

However, we also found that the collaborations between the

mixed income groups have significantly larger components. These

results suggest mixed income group collaborations are a result

of intentional institutional efforts to build partnerships, such as

those seen in the case studies. The presence of large components

suggests a level of network cohesion, where the long-term

relationships can lead to the diffusion of knowledge. The Thailand-

Cambodia-France-USA partnership showed a growth in the health

infrastructure associated with increased scientific collaboration

in genomics. Likewise, the Botswana-Harvard Partnership (BHP)

reflected a committed effort over multiple decades to develop

programs and research capacity, coincident with public health

outbreaks. The partnerships can result in increased research

capacity as well as research breakthroughs, evidenced by the

phasing out of the antiretroviral stavudine in Thailand.

5.1. Division of labor metrics to assess
collaborative equity

Using quantitative studies of science for decision-making about

strategies for supporting equitable collaboration between N-S has

many benefits. First, aggregate patterns at the macro- and meso-

levels of scientific collaboration networks reveal broad trends and

the impacts of policy intervention at the network level, showing

the outcomes or ripple effects of policy decisions on collaboration

dynamics. Such at-scale studies enable us to quantify the effect size

of policy interventions. They are becoming more feasible and less

“niche” due to the rise of bibliometric data from databases like

OpenAlex (Priem et al., 2022), Microsoft Academic Graph (MAG),

and Semantic Scholar (Fortunato et al., 2018). However, as in the

case of this study, open research data repositories such as NCBI’s

GenBank, are difficult to access because of their technical barriers

to collecting, cleaning, storing, and accessing the data (Qin et al.,

2009).

Since “north-south” is conceptually problematic (Wagner et al.,

2001), we can also look to other indices to measure capacity. A

methodological component of the analysis is the selection of a

schema to classify countries according to their different economic,

social, and technological features relevant to the study. This

classification step is often overlooked, or at least unreported in

analyses of quantitative analyses of scientific activity related to the

“global north” and “global south.” The selection of classification

of countries to group them according to their differential income

and S&T capacities. Up to this point in this paper, we have not

problematized the N-S binary, referring to countries as belonging

to “global North” or “global South.” The N-S divide is a relatively

common, colloquial way to refer to countries with historically
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discrepant economies. But upon closer inspection, the terms global

north and global south do not accurately characterize countries, or

the scientists from those countries. Rather, the N-S classification

is a coarse-grained binary complicated once we interrogate the

classification parameters.

Following Lucy Suchman’s critique of Artificial Intelligence

(AI) as a “floating signifier” (Suchman, 2020, 2022), that is, an

abstract term to describe a broad phenomenon in ways that

are “slippery,” and ultimately “escapes concrete definition as a

referent” (Suchman, 2022), we argue the N-S classification is a

floating signifier. Here, it is unclear what is the actual referent of

a country in the “global North” (i.e., a country, say, Ethiopia or

the United Kingdom)? Previous studies have used the World Bank

country income classification to represent countries’ economies

along relative income dimensions measured by Gross National

Product (GNP) (e.g., high income countries vs. upper-middle-

income countries). Income statuses change on a yearly basis. We

reflect further on the strengths and limitations of developing

metrics for assessingN-S collaborative equity and research capacity,

focusing on how to employ these classification schemas for

developing quantitative assessment tools of research capacity and

collaborative equity at scale: the S&T Capacity Index (STCI) and

the World Bank country income classification.

5.2. Limitations

There are well-documented limitations to quantitative

approaches using bibliometric trace data for studying equity

in scientific collaborations. In general, co-authorship is not

neither a comprehensive nor consistent proxy for the nuanced

relationships and dynamic social interactions unfolding in scientific

collaborations, nor the political or socioeconomic landscape in

which scientists collaborate. Second, dataset co-authorship norms

are not well studied in the science of science or social studies

of science (e.g., in STS), leading us to assume that dataset co-

authorship is indicative of contributions to the dataset. Third,

quantitative modeling using archival data provides a delayed

view. Publication co-authorship as a proxy for collaborations

represents the finished product of the collaboration not a real-time

representation (Glänzel and Schubert, 2005; Bratt et al., 2017).

Real-time bibliometrics is a work-in-progress by quantitative

studies of science scholars (e.g., Hook et al., 2021). TheWorld Bank

country income classification dataset is for only 2019; however,

there are yearly datasets available to assign the country label (e.g.,

high income, low income) according to its status classification

every year. If there are changes from year to year as was the

case for several countries during COVID-19, the category may

change influencing the frequency counts of the country that year.

Therefore, it is a limitation of the study. Future research will analyze

the yearly classifications by using the yearly classifications of the

World Bank data. We assume that if countries change categories, it

is to progressively increase their status (e.g., in the case of Russia,

India, and Thailand who went from low income to upper middle

or high income). Future research will add the yearly granularity to

measure the impacts of collaboration dynamics on the change in a

countries’ income status. Future studies can also build on this work

by investigating the relationship of team size and the author order

on the increment of research capacity.

6. Conclusion

In this study, we systematically analyzed the frequency and

division of labor on N-S collaborations on datasets. This analysis

of the prevalence and structure of collaboration on datasets is

one of the first of its kind, to our knowledge, because it offers

a quantitative longitudinal first approximation of the extent and

structure of scientific collaborations between scientists from the

global north and south on research datasets. The mixed-methods

case study research approach provided a longitudinal empirical

analysis of the frequency of N-S collaborations and their co-

authorship dynamics over time, science policy can better support

the N-S collaborations in the data-intensive sciences. We found

the division of labor on datasets has increased in its overlap,

suggesting that teams in genomics may be becoming more “flat,”

with scientists sharing core tasks on both writing and data

production. By understanding the collaboration network structures

and dynamics on datasets, we can better design interventions to

support data-intensive collaborations in future global health crises.

Future research can analyze the division of labor on publication

vs. datasets.
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