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Understanding sociodemographic factors behind COVID-19 severity relates to

significant methodological di�culties, such as di�erences in testing policies and

epidemics phase, as well as a large number of predictors that can potentially

contribute to severity. To account for these di�culties, we assemble 115 predictors

for more than 3,000 US counties and employ a well-defined COVID-19 severity

measure derived from epidemiological dynamicsmodeling.We then use a number

of advanced feature selection techniques from machine learning to determine

which of these predictors significantly impact the disease severity. We obtain

a surprisingly simple result, where only two variables are clearly and robustly

selected—population density and proportion of African Americans. Possible

causes behind this result are discussed. We argue that the approach may be useful

whenever significant determinants of disease progression over diverse geographic

regions should be selected from a large number of potentially important factors.

KEYWORDS

SARS-CoV-2, sociodemographic factors, feature selection, Random Forest, XGBoost,
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1. Introduction

More than two years into the COVID-19 pandemic, there are still many open

questions regarding the spread and severity of SARS-CoV-2. Not only can we not

explain, on an individual basis, who will experience severe illness or no symptoms

at all, but we often lack this predictive power even on the larger scale of entire

regions, where personal traits and individual genetical predispositions are averaged out.

Different countries or regions within a country experience diverse numbers of new

cases and fatalities, with patterns that are difficult to anticipate. On the other hand,

the potential benefits of the ability to understand and foresee the regional COVID-

19 behavior are clear: it would assist governments in appropriately allocating resources,

help sustain economic activities, and allow to correctly and timely estimate risks and

necessary measures—thus saving human lives and reducing the overall epidemic impact.
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Naively, in the present era of abundant and widely available

data, one could expect that most of these questions could be settled

down by systematically comparing the COVID-19 numbers with

various demographic and environmental parameters. However,

while much progress in this direction has been made (e.g., Adhikari

and Yin, 2020; Allel et al., 2020; An et al., 2020; Gupta and

Gharehgozli, 2020; Pan et al., 2020; Djordjevic et al., 2021b;

Hradsky and Komarek, 2021; Lorenzo et al., 2021; Markovic et al.,

2021; Perone, 2021; Rontos et al., 2021; Salom et al., 2021; Singh

et al., 2021; Wang et al., 2022), many methodological obstacles

complicate this type of research and often lead to conflicting

conclusions of otherwise similar studies.

One obvious problem lies in often significant correlations

between potentially relevant demographic predictors, making

it challenging to disentangle their influences. This is further

complicated by interactions between the variables and the

nonlinear ways some of these predictors may influence COVID-19

observables. To distinguish between such delicate effects requires

careful numerical analysis and sufficiently large COVID-19 data.

State-of-the-art statistical and machine-learning methods can be

effective if they are provided with sufficiently large, high-quality

data. To train accurate models, one should collect relevant data

from a large number of smaller regions. However, in the COVID-

19 context, this comes with a trade-off: diverse regions tend to

have inconsistent testing/reporting policies, and the data is often

less reliable (or entirely unavailable) for smaller regions. In general,

this dependence of COVID-19 observables (e.g., case counts and

fatalities) on local policies (mostly on testing protocols and rules

on which deaths are attributed to COVID-19) poses a problem in

how to compare the data from various regions meaningfully. Even

when policies reasonably coincide, making equal-time comparisons

rarely makes sense since different counties of states belong to

different phases of the epidemics curve.

Another methodological issue is to define the response variable,

i.e., to quantify the precise aspect of the pandemic that we want

to investigate and the appropriate proxy variables. In particular,

there are two main, substantially different aspects of assessing

the pandemic effects: (i) Analyzing virus transmissibility, i.e.,

how rapidly it spreads in the community, which is necessary to

understand the evolution of COVID-19 case numbers, and (ii)

Investigating SARS-CoV-2 severity—i.e., understanding individual

hospitalization/morbidity/mortality risks, what causes differences

in infection severity, and identifying subpopulations or regions

more prone to severe forms of the disease. Of the two, much

more effort has been devoted to the former, while the studies

investigating the disease severity face the additional problem of

choosing a relevant severity measure intrinsically independent of

the transmissibility. For example, using COVID-19 fatalities is

not suitable, despite being often used in this context (Wu et al.,

2020; Moreira et al., 2021) since it is strongly correlated with

COVID-19 prevalence (i.e., transmissibility) in the population

(Markovic et al., 2021)—qualitatively, a larger number of cases

(larger transmissibility) also leads to a larger number of fatalities.

In this paper, we focus on the problem of COVID-19 severity

to address the above-mentioned caveats. As the dataset, we collect

COVID-19 time series (of case numbers and deaths) with values

of over one hundred diverse sociodemographic variables for more

than 3,000U.S. counties. This dataset has optimal properties in the

sense of being both large and reasonably uniform (in the sense of

COVID-19 policies). That is, all considered regions belong to the

same country (and therefore have reasonably uniform policies).

To focus on the influence of sociodemographic and economic

factors, i.e., to neglect the complex influences of vaccination

and different virus strains, we concentrate on the first epidemic

wave—though, in the future, our study could also be extended by

including suitable predictors for these factors. For each county,

we estimate a well-defined measure of severity alone, which is

a priori independent of the virus transmissibility. This measure,

denoted as m/r, was introduced in Markovic et al. (2021) and

is based on epidemiological modeling, representing the ratio of

population-averaged mortality to recovery rates. Intuitively, the

faster rate of dying from COVID-19, and slower recovery rate,

relate to larger severity.

We apply several machine learning techniques to identify

which demographic variables are relevant predictors of the m/r

severity measure. In particular, we use repetitive rounds of

(relaxed) Lasso and Elastic net linear regressions (with feature

selection and regularization) and Random Forest and XGBoost,

implementing ensembles of weak learners (decision trees). Random

Forest and XGBoost can also accommodate highly nonlinear

relations of the response to predictors and their interactions.

Both can assign importance to the predictors, allowing for

straightforward selection of significant predictors (with all other

advantages of these techniques). Finally, we will also use a

recently popularized [within the Uber platform (Zhao et al.,

2019)] mRMR (minimal Redundancy Maximal Relevance) feature

selection method, allowing better dealing with correlated datasets.

mRMR will be integrated into Random Forest and XGBoost, which

combines the advantages of thesemethods withmRMR.Overall, we

carefully devise several state-of-the-art feature selection methods,

intending to start from a large number of sociodemographic

factors and, in an unbiased way (without prior assumptions),

determine the most important predictors directly from the data.

While machine learning has been successfully applied to a number

of COVID-19-related problems, such as disease diagnosis and

prognosis (Alizadehsani et al., 2021; Mahdavi et al., 2021; Amini

et al., 2022; Kamalov et al., 2022; Rajab et al., 2022; Ramírez-del

Real et al., 2022; Yousefzadeh et al., 2022) it was to our knowledge

less frequently applied in the ecological study design (a transverse

comparison of geographical regions) as done here (Wang et al.,

2021).

The analysis presented here is also helpful from another

perspective. In Markovic et al. (2021), we studied COVID-19

severity based on U.S. states instead of counties. Comparing the

results of these studies can provide an important insight into the

possible effects of spatial resolution (from 51 states to over 3,000

counties) on the obtained results. To our best knowledge, it is

currently unresolved what happens with conclusions of ecological

regressions (transverse/cross-sectional study design across different

regions employed here) in a transition from a smaller number of

spatially larger geographic regions to a substantially larger number

of smaller regions. Consequently, our study can also aid a better

understanding of the implications of ecological regression study

design, particularly in the context of machine learning applications.
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2. Materials and methods

2.1. Data collection

Demographic data at the county level were collected from

several sources. The demographic composition of the U.S.

population by gender, race, and population under 18 and over

65 was taken from the U.S. Census Bureau website integrating

multiple different reports (U.S. Census Bureau, 2020). Information

about population behavioral health risks at the county level

was taken from the County Health Rankings website (County

Health Rankings, 2020). The number of hospital beds and

emergency unit capacity per county was obtained from the

Homeland Infrastructure Foundation-Level Data (HIFLD) website

(Homeland Infrastructure Foundation-Level Data, 2020). Poverty,

deep poverty, median household income, per capita income,

number of households, and predictor variables describing various

levels of education on the county level were downloaded from the

U.S. Department of Agriculture website resource Atlas of Rural

and Small-Town America (U.S. Department Of Agriculture, 2021).

Medical parameters such as hypertension, cardiovascular disease

mortality, diabetes, obesity, inactivity, lower respiratory disease

mortality, and daily smoking prevalence were downloaded from

the Global Health Data Exchange website (Global Health Data

Exchange, 2021). Individual county areas (U.S. Census Bureau,

2018) and exact FIPS codes (U.S. Census Bureau, 2011) were

also downloaded from the U.S. Census Bureau website. Python

scripts were used to map multiple county information sources

using FIPS code values, and the resulting dataset is provided in

Supplementary Tables 1, 2.

2.2. County severity measure calculation

Information about cumulative daily COVID-19 deaths and

cumulative registered infection cases at the county level was

retrieved from Dong et al. (2020). From these case counts, the

COVID-19 severity measure m/r was calculated as previously

derived (Markovic et al., 2021) using our SPEIRD infection

dynamics model (Djordjevic et al., 2021a,b):

m

r
=

CFR (∞)

1− CFR (∞)

Here CFR(∞) is the Case Fatality Rate in saturation, i.e.,

calculated at the end of the epidemic wave. CFR corresponds to the

ratio of cumulative fatalities and case counts, where both quantities

are calculated at the end of the wave. To estimate its saturation

value, without relying on a single date for the wave end, we use a

mean CFR value for the time interval at the end of the wave when

the case counts (and correspondingly also CFR) enter saturation.

This time interval (end of the wave) was estimated at the level of

states and then associated with the corresponding counties (see

Supplementary Table 3), as it was shown that the wave intervals

could be inferred more accurately from larger (conglomerated)

spatial units (Vilar and Saiz, 2021). For more details on the

derivation of m/r, see Supplementary methods.

In Markovic et al. (2021) it was shown that the m/r measure

is independent of transmissibility, which is also evident from the

direct (though nonlinear) relationship between m/r and CFR (due

to the fact that CFR is, per se, independent from the frequency of

the virus transmission). Therefore, our measure does not depend

on the rate at which the epidemic spreads, and is consequently

independent of the social distancing measures and/or quarantine.

It also does not depend on the epidemic phase since it is a

function of CFR at the end of the epidemic wave (when both the

number of fatalities and cumulative case counts have stabilized).

Additionally, the m/r value is not expected to significantly depend

on the testing policies. That is, while both the cumulative number

of (detected) COVID-19 deaths and the cumulative (detected)

case counts depend on the volume of testing, their dependence is

qualitatively of the same manner: fewer tests will result in lower

case counts but also in more COVID-19 deaths that failed to be

attributed to the pandemic. Thus, these two effects tend to cancel

each other.

Several other severity/fatality measures have been proposed

so far, including the total number of fatalities, as the simplest to

obtain, yet inadequate measure, which is highly correlated with the

total number of detected cases, making it impossible to distinguish

the severity from the transmissibility of the disease (Markovic

et al., 2021). Some other, more promising approaches found in the

literature include the use of CFR and its variations, such as delay-

adjusted CFR (Yeoh et al., 2021). These measures, however, do not

have a clear mechanistic interpretation (Böttcher et al., 2020), as

they are not derived from a dynamic/mechanistic model of the

disease spread.

Since CFR at the end of the first peak for COVID-19 has

a relatively small value for most counties (∼10−2), from the

equation above follows that in such cases m/r and CFR(∞) have

similar values, so m/r in principle leads to the robust results

compared to other measures (but only provided that CFR for

these measures is calculated in saturation, i.e., at the end of the

peak). However, this does not have to be the case for other

infectious diseases with potentially higher CFR, for which the

difference between m/r and CFR(∞) would be more drastic,

particularly since m/r is a nonlinear function of CFR(∞). In

such a case, and for the reasons stated above, the use of m/r

as the severity measure is more adequate. Even in the case of

low CFR, and as explained above, using m/r has the following

advantages: (i) In distinction to ordinary CFR, CFR in m/r

expression is calculated at saturation (end of the peak), which

naturally follows from m/r derivation and makes the measure

independent of the epidemic phase. (ii) The measure has a

clear mechanistic interpretation and is inherently independent of

transmissibility (and by that, also of the effects of epidemiological

policies and interventions), which further simplifies the result

interpretation. Based on that, using m/r as the response variable

in ecological regressions applied to epidemiological problems

is preferable. In addition to the study of COVID-19 severity

determinants at the level of USA states in Markovic et al.

(2021), the measure was also successfully applied at a global

level to better understand the apparently puzzling relationship

between Global Health Security Index (GHSI) and COVID-

19 mortality in different world countries (Markovic et al.,

2022).

Frontiers in BigData 03 frontiersin.org

https://doi.org/10.3389/fdata.2023.1038283
https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org


Tumbas et al. 10.3389/fdata.2023.1038283

2.3. Data processing

All assembled variables were subjected to standard

transformations of different strengths and directions (square,

square root, cubic root, logarithm, negative square root, negative

cubic root, and negative logarithm) to reduce the skewness of

the data and bring them closer to normal distribution. For each

variable, the transformation that minimizes the absolute value of

the skewness from the Python SciPy library (Virtanen et al., 2020)

was chosen, which was automated by a custom Python script. The

county severity measure was transformed using the square root

function (also chosen to minimize skewness).

Outliers were identified as being outside three median

absolute deviations (MADs). After applying transformations,

outliers were substituted with the corresponding variable median

values. Transformations and subsequent outlier substitution by

median values removed heavy distribution tails (observed for some

variables) so that the distributions were brought closer to normal.

2.4. Model hyperparameter tuning

Processed data was split into training and validation sets (80-

20). The validation set was set aside, while the training set was used

for hyperparameter selection (through 10-fold cross-validations)

and final model training. To select optimal hyperparameter values,

we put them on an extensive grid (specified below for each model)

and chose the parameter combination leading to the smallest cross-

validation MSE (Mean Squared Error). Alternatively, to obtain

sparse models (see below), hyperparameter combinations within

one standard error of minimalMSEwere considered. The data were

standardized (the mean subtracted and divided by the standard

deviation) in each cross-validation round. The hyperparameter

grid search results are provided in Supplementary Tables 4–13.

Final models were trained on the entire training dataset with the

previously selected optimal hyperparameter values. MSE calculated

on the validation set was compared to (approximately) agree with

the training set MSE as a consistency check.

2.5. Lasso regression

Lasso regression applies L1 regularization (Hastie et al., 2009),

controlled by the λ hyperparameter value. Hyperparameter grid

search was performed as described in 2.4., with exponential grid

spacing and maximal λ value corresponding to all zero coefficients.

λ values that lead to minimal cross-validation MSE within one

standard error were selected. λ for training the model on the entire

training dataset corresponds to the maximally sparse Lasso model

(i.e., largest λ) within these values. Non-zero coefficients were

extracted from the model.

2.6. Elastic net regression

Elastic net regression applies L1 and L2 regularization (Zou and

Hastie, 2005; Hastie et al., 2009), which are controlled by λ and

α hyperparameter values. Scikit-Learn library implementation of

Elastic net model was used (Pedregosa et al., 2011). α parameter was

put on a linear grid in the range (0,1), and for each α parameter, the

range of λ values was selected as described in 2.5. This resulted in

a 2-dimensional grid, searched as described in 2.4. Hyperparameter

combinations within one standard error of cross-validation MSE

were selected. Among these, (λ, α) combination that leads to a

maximally sparse Elastic net model was chosen to train the model

on the entire training dataset.

2.7. Random Forest regression

For Random Forest regression, minimal leaf size and maximal

tree depth were used as hyperparameters (Breiman, 2001; Hastie

et al., 2009). The number of regression tree estimators was set

to 600. Hyperparameter grid values that correspond, respectively,

to minimal leaf size and maximal tree depth are: {1, 2, 4, 8,

16, 32, 64, 128, 256, 512, 1024}, {1, 106, 211, 316, 421, 526,

631, 736, 841, 946, 1051, 1156, 1261, 1366, 1471, 1576, 1681,

1786, 1891}. A 2-dimensional grid was constructed, and a search

was performed as described in subsection 2.4. A hyperparameter

combination that corresponds tominimal testMSEwas selected. As

several combinations correspond to the minimum, the one with the

smallest maximal tree depth (corresponding to the shallowest tree)

was selected. The Random Forest model was then trained on the

whole training set, and predictors with greater than mean feature

importance were selected.

2.8. XGBoost regression

XGBoost regression model learning rate, maximal tree depth,

and the number of tree estimators were tuned hyperparameters

(Friedman, 2001; Hastie et al., 2009; Chen and Guestrin, 2016).

Hyperparameter values in the previously defined order are: {0.5,

0.1, 0.15, 0.2, 0.25, 0.35, 0.5}, {1, 2, 3, 4, 5, 6, 7, 8, 16, 32, 64, 128,

256, 512}, {15, 30, 45, 60, 75, 90, 100, 115, 130, 145, 160, 175}. A

3-dimensional grid was constructed, and a search was performed

as described in 2.4. A Hyperparameter combination corresponding

to minimal test MSE was selected and used to train the XGBoost

model on the entire training dataset. Predictor variables with

greater than mean feature importance were selected.

2.9. Relaxed models

Relaxed models (Hastie et al., 2009) were implemented through

a two-step iterative training process. The first training step is

described in the sections above (Lasso, Elastic net, Random Forest,

and XGBoost regression). Input data for the first step contains

an entire dataset with all 115 predictor variables. Hyperparameter

values are optimized after the first round as described above, and

predictor variables are selected for each model based on non-

zero coefficients (Lasso and Elastic net) or greater than mean

feature importance for Random Forest and XGBoost. In the second

iteration, the input dataset contains only predictor features selected
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by the first iteration, and model training is repeated in the same

way as for the first iteration. Second iteration (relaxed) models

are further used to extract the final predictor importance and

coefficients. In the Supplement Figures, we provide importance

estimates for all predictors.

2.10. Minimum redundancy maximum
relevance predictor selection

Minimum redundancy maximum relevance (mRMR) is an

algorithm for selecting the minimal-optimal subset of predictor

variables (Ding and Peng, 2005; Zhao et al., 2019). In mRMR

implementation (Mazzanti, 2022), F-statistics was used to assess

association with the response (relevance) and mean Pearson

correlation between predictors to assess redundancy. mRMR

regression returns top n selected features, where n was added as

an additional hyperparameter to Random Forest and XGBoost

regressions, with the grid values: {5, 10, 15, 20, 25, 30, 40,

50, 65, 80, 100, 115}. For each grid value, (1—minimal MSE)

was plotted, and the number of features was selected when the

plot approached saturation. This number of features and other

hyperparameter values corresponding to minimal cross-validation

MSE were used to train Random Forest or XGBoost models on the

entire training dataset. Predictor variables with greater than mean

feature importance were selected.

3. Results

We started by assembling an extensive set of sociodemographic

and medical variables for USA counties (115). The entire dataset

is provided in Supplementary Tables 1–3. The main challenge

for the data analysis is a large number of input variables from

which we should select the most important predictors of disease

severity. While this allows for an unbiased selection of factors

that can contribute to the disease severity at the level of counties,

a large majority of the initial set of variables likely do not

significantly contribute to the response. Therefore, keeping them

in the analysis may lead to a large noise and, consequently, model

overfitting. On the other hand, several sociodemographic factors

can genuinely contribute to explaining severity, so multivariate

analysis, in which one controls for simultaneous effects of these

variables, is necessary. Consequently, we start with linear regression

methods with regularizations and variable selection, Lasso (Hastie

et al., 2009) and Elastic net (Zou and Hastie, 2005; Hastie

et al., 2009). Both methods can exclude redundant variables that

do not significantly contribute to m/r. To reduce the effect of

noise, both algorithms were implemented in the so-called relaxed

procedure (Hastie et al., 2009), consisting of two iterations. In

the first iteration, the algorithm is trained on all predictors. A

hyperparameter combination within one standard error of cross-

validation MSE that led to a maximally sparse model was chosen.

Only non-zero coefficient predictors are used in the second training

iteration to reduce noise influence on the model. Taken together,

the variable selection implemented through Lasso and Elastic

Net, together with the relaxed model selection procedure, allowed

reducing multicollinearity by removing redundant variables.

Results of the Lasso and Elastic net regressions are presented

in Figure 1. Hyperparameters in both models are optimized on

the grid through cross-validation so that the resulting model

corresponds to maximal prediction accuracies on new datasets.

Note that, as the data was standardized before the regression,

the obtained regression coefficients can be interpreted as the

importance of the given feature in explaining COVID-19 severity,

while the coefficient’s sign indicates the influence’s direction. Both

methods lead to similar results. Population density is singled out

as the severity predictor with the highest importance, followed by

the percentage of Black females. Both predictors positively affect

m/r, i.e., higher population density and Black female percentage are

related to higher disease severity. Of the predictors with somewhat

lower importance, traffic volume is negatively associated with the

disease severity, while PM air pollution and high housing costs

(an indication of poor socioeconomic conditions) are positively

associated with the severity. However, the importance of these three

features is notably smaller than the importance of the population

density and percentage of African Americans. Note that “Black

female” and “Black male” variables are highly correlated (Pearson

Correlation Coefficient of 0.93), which in practice makes them

hardly distinguishable and redundant. Due to this, in the text

we merge/consolidate them as a measure of African American

population prevalence (African Americans).

Lasso and Elastic net correspond to linear regression analysis.

However, in reality, the predictors may have a highly nonlinear

relationship with the output, while interactions between different

predictors in the model may also occur. Linear regressions cannot

account for such effects. Thus, we next used the ensembles of

weak learners (decision trees), i.e., XGBoost and Random Forest.

Another advantage of these methods is that they can better

handle multicollinearity, particularly when redundant variables are

removed (i.e., the most relevant variables selected), before training

the ensembles of the decision trees. We extensively optimized

(cross-validated) both methods over a large hyperparameter grid.

We again employ bothmethods in the relaxed setup to reduce noise

influence, i.e., only the predictors with importance above the mean

(standardly used threshold) in the first round are used as the input

in the second round.

Figure 2 presents feature importance in Relaxed Random

Forest and XGBoost. Again, robust results consistent across the

two methods were obtained, where by far the highest relative

importance is assigned to population density, followed by the Black

female variable. These results are consistent with those previously

obtained by Lasso and Elastic net regressions. Besides these two

features, which are clearly above the importance threshold in both

methods, traffic volume and high housing costs appear with values

barely above the threshold in XGBoost.

Mutual correlations between the predictors in the dataset

are another complication. To address this, we integrate the

mRMR method into Random Forest and XGBoost methods. The

method was initially introduced by Ding and Peng (2005) but

recently gained popularity with its implementation within the

Uber machine learning platform (Zhao et al., 2019). In essence,

mRMR ranks the variables to how well they are associated with

the response and how much they are redundant (where high

correlations with other predictors decrease the predictor rank). In

the Uber platform, the method was integrated only in Random
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FIGURE 1

Predictor selection by Lasso and Elastic net. The regression coe�cients, being a measure of the variable importance in explaining m/r, are shown for

(A) Lasso and (B) Elastic net. The selected variables are indicated on the x-axis, while the y-axis corresponds to the coe�cient’s values.

FIGURE 2

Estimated variable importance in relaxed Random Forest and

XGBoost methods. (A) Random Forest and (B) XGBoost methods are

implemented in the relaxed procedure, where only variables above

the importance threshold in the second round are shown. The

estimated variable importance is shown on the vertical axis. The

horizontal line indicates the standard threshold for the significant

predictors (corresponding to the predictor mean).

Forest, and fixed (preselected) hyperparameter values were used,

likely to reduce computational time in a time-sensitive setup.

Instead, we here carefully optimize hyperparameters by cross-

validation on an extensive grid. The number of selected predictors

in this cross-validation is also treated as a hyperparameter (see

Methods). We also implement mRMRwithin XGBoost, in addition

to being implemented in Random Forest.

Results of Random Forest and XGBoost with integrated mRMR

methods for variable preselection are shown in Figure 3. Optimal

selection of the number of variables was made through the plots

on the left-hand side of the Figures 3A, C, where the prediction

accuracy (assessed on the testing set in cross-validation) is shown

vs. the number of selected variables. Above a certain number of

included variables, the prediction accuracy enters saturation, which

we use for selecting the number of variables for training the final

model. The number of retained features was 25 for Random Forest

and 38 for XGBoost. Figures 3B, D (the right side of the panel)

again show the dominant importance of Population density and

the Black female variable. While in Random Forest, we obtain no

other features above the importance threshold, several features in

XGBoost have importance estimates above the mean importance

value. Most notably, the percentage of the rural population, high

housing costs, percentage of white males, and traffic volume. We

will see that most of these variables significantly correlate with the

two main predictors.

Interestingly, only two predictors (Population density and

Black female) were robustly singled out from 115 variables used in

the initial input in the analysis. We finally assess the correlation of

these two variables with the other variables to discuss factors related

to the two main predictors associated with m/r. The variables with

the highest values of the correlation coefficients are shown on the

bar plots in Figure 4. All these variables have a statistically highly

significant correlation (P∼10−100). These correlations are further

discussed in the next section.

4. Discussion

In our large-scale high-resolution study (county-level with

many predictors), we robustly obtain population density and

percentage of Black females as the COVID-19 severity predictors

with the highest importance in regressions. For discussion, we

correlated these variables with the other predictors and selected

those with the highest correlations.

This can be informative when trying to understand our

somewhat surprising result: only two variables were clearly selected

among a large number of starting predictors. By considering these

correlations, we may also better understand possible factors that

contribute to these two variables being clearly distinct in their

association with COVID-19 severity.
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FIGURE 3

Relaxed Random Forest and XGBoost with mRMR feature selection. Feature selection for Random Forest (A) and XGBoost (C) by mRMR method.

Feature importance estimates in Relaxed Random Forest (B) and XGBoost (D), where only variables above the importance threshold in the second

round are shown.

As the Black female variable is strongly positively correlated

with the Black male variable, it can be considered as a

measure of the percentage of African Americans of both genders.

Furthermore, the fraction of the Black population is strongly

negatively correlated with the proportion of the non-Hispanic

white population and positively correlated with the AsianAmerican

and Hispanic populations. The Black female variable can be,

thus, considered a signature of the minority population, which

we found strongly positively associated with COVID-19 severity.

Indeed, this association also holds for the Hispanic population,

who, despite having (on average) higher life expectancy (County

Health Rankings, 2020) compared to non-Hispanic whites, suffered

the highest drop in life expectancy due to COVID-19 compared to

any other ethnicity (Woolf et al., 2021).

The positive association between the percentage of African

Americans and the severity of COVID-19 has already been

documented (Azar et al., 2020; Thebault et al., 2020) and discussed

in the context of several health and social factors. These are

the same factors that show up in our analysis through the

correlations of Blacks with other variables. First, Blacks are

strongly correlated with several determinants of poverty and

disadvantaged population, such as the prevalence of sexually

transmitted infections (STIs), violent crimes, different housing

problems, and smaller homeownership. COVID-19 severity has

also been associated with determinants of the disadvantaged

population outside the USA (Gao et al., 2022). Secondly, they

are strongly correlated with a number of medical factors, such as

low birth weight, insufficient sleep, hypertension, cardiovascular

diseases, and generally poor health. These medical conditions are

well-known COVID-19 risk factors, as extensively discussed in the

literature (Ssentongo et al., 2020; Ahmadi et al., 2021; Crispi et al.,

2021; Du et al., 2021; Saleh et al., 2022; Zhang et al., 2022). We next

focus on sociodemographic factors, whose interpretation may be

less evident.

Although the direct association between the prevalence of

violent crimes and COVID-19 severity is unlikely, this variable can

be interpreted as another measure of socioeconomic deprivation,

as it is established that both poverty and income inequality are

positively associated with the rate of violent crimes (Hsieh and

Pugh, 1993; Kennedy et al., 1998). While a higher rate of violent

crimes is correlated with a larger proportion of African Americans,

violent crimes are more likely to be class-related (Smith et al., 2021)
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FIGURE 4

Correlation of the population density and Black female with the other variables. Names of the variables with magnitudes of Pearson correlations

(either positive or negative) larger than 0.4 are shown on the bar plots for (A) Population density and (B) Black female.

than associated with African Americans per se. Violent crime areas

may also lead to high-stress levels (Berman et al., 1996; Ellen et al.,

2001; County Health Rankings, 2020), which can damage health

and be the underlying cause of a series of chronic conditions, such

as hypertension (Zimmerman and Frohlich, 1990; Ellen et al., 2001)

or obesity (Conklin et al., 2019), which are both well-known risk

factors for the severe outcome of COVID-19 (Kwok et al., 2020; Du

et al., 2021).

Housing issues, such as severe or high housing costs and

a low homeownership percentage, indicate poor socioeconomic

conditions (Dunn, 2002; County Health Rankings, 2020). Race

differences also play a role in homeownership, as it is much lower

among African Americans than non-Hispanic Whites (Jackman

and Jackman, 1980). Households affected by housing issues would

probably lack access to healthcare, as they may be unable to pay

for it (Carroll et al., 2017). In the pandemic context, members

of such households might not receive proper medical care, fail

to timely seek medical attention, or be unable to afford the

appropriate treatment andmedications. Prevalence of STIs, defined

as the number of newly diagnosed Chlamydia cases per 100,000

population, is also correlated with the Black female variable, which

is not surprising, as it has been shown that African American

adolescent women are disproportionately affected by Chlamydia

(Cooksey et al., 2010). The prevalence of Chlamydia and other STIs

can thus be viewed in the context of health inequality (County

Health Rankings, 2020).

Therefore, all sociodemographic variables significantly

correlated with Blacks correspond to underserved communities.

This suggests that Black female was singled out by our regressions,

not as a single severity predictor but as the variable that best

captures most of these effects, indicating that minorities and

socially disadvantaged populations were disproportionately

severely affected by COVID-19, which is coherent with the results

of several other studies (Dyer, 2020; Tirupathi et al., 2020; Arasteh,

2021; Chen and Krieger, 2021; Tai et al., 2021). Additionally,

middle-aged Black females have already been recognized as the

group with the highest disease burden in Mississippi (Martin and

Garrett, 2022). This could be related to the higher prevalence

of obesity in this social group (Martin and Garrett, 2022) or

a relatively high percentage of Black females who are essential

workers (Sugg et al., 2021) working in an environment with a

probability of high viral exposure. High initial viral inoculum at

the workplace could also lead to higher disease severity (Burgess

et al., 2020). Since people in disadvantaged areas are more likely

to be “essential workers” working in environments with a high

risk of COVID-19 exposure while simultaneously having limited

access to healthcare (Oronce et al., 2020), the obtained associations

with the disease case counts are not surprising. However, as our

severity measure is independent of transmissibility, our result is

not a mere consequence of a larger COVID-19 exposure but rather

a consequence of the interplay of medical and sociodemographic

factors discussed above.
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Population density appeared as, by far, the most significant

predictor of COVID-19 severity. The variable with the highest

correlation with population density is air pollution. This likely

points to an important factor behind the strong association of

population density with disease severity. Namely, the link between

air pollution exposure and respiratory diseases, and COVID-19, in

particular, is well established (Ogen, 2020; Wu et al., 2020; Pansini

and Fornacca, 2021).

In addition to pollution, the population density is also

significantly correlated with Blacks, where potential contributions

of this variable to the severity are discussed above. Other variables

correlated with the Black female also appear to correlate with

population density (STI, housing problems, insufficient sleep).

Interestingly, another racial-related factor (non-White/White

residential segregation), which did not turn out to be highly

correlated with Blacks, now appears significantly correlated with

the population density. Regarding minorities, the Asian population

of both genders is also significantly correlated with population

density. The variable with the highest negative correlation with the

population density is Rural, so the population density is a good

proxy for urban and metropolitan areas.

Apart from the influences via pollution and African Americans

(and related variables discussed above), likely, population density is

also, per se, a prominent risk factor. A strong, nonlinear association

between the epidemic’s size and population density has already

been proposed (Kermack et al., 1927) and empirically confirmed

(Li et al., 2018). As higher population density inevitably leads

to a much higher number of infected individuals in densely

populated areas, the number of patients requiring hospitalization

is more likely to quickly exceed the healthcare capacity. The

effect of overcrowding, in this case, is dominant compared to the

disparities in healthcare in rural areas, where population density

is low. Namely, even though people in rural areas often struggle

with poverty, lack of health insurance, and shortages in health

professionals (Probst et al., 2004), a lower probability of exposure

to the virus leads to the generally lower severity of the disease

in these areas, so that healthcare facilities cannot quickly become

saturated. Another possible explanation for the lower severity in

rural areas is underreporting of COVID-19 deaths in these areas

(Souch and Cossman, 2020). Namely, it has been determined that

excessmortality not attributed to COVID-19 was higher in counties

with a lower percentage of insured individuals, fewer primary care

physicians, and more at-home deaths (Stokes et al., 2021). As most

of these characteristics apply to rural areas (Probst et al., 2004),

the reported cases and deaths likely do not correspond well to the

actual situation.

Finally, this work provides an opportunity to compare the

results of this high-resolution (county-level) analysis with our

previous study at the state level (Markovic et al., 2021). While, in

addition to different geographic resolutions, the two studies also

use different variables—a larger number of (different) predictors

are used here—interesting comparisons can still be made. First,

predictors related to population density, African Americans,

pollution, and prevalence of chronic diseases were obtained in that

study. Although all these variables were directly selected at the state

level, in the present study, pollution and chronic diseases were also

identified via association with the two directly selected predictors.

Also, at the state level, African Americans were less robustly

selected, i.e., only in the analysis that considers nonlinearities and

interactions between the predictors, while in this study, it was

robustly selected as a major predictor.

The largest difference between the two studies is the effect of

the population age, which was selected as a significant predictor

(with the expected positive influence on severity) in Markovic

et al. (2021) but did not emerge as significant in this study. A

higher proportion of African Americans and population density

are associated with a younger population. It appears that, at the

county level, Blacks are a much stronger signal associated with a

younger population, which appears to conceal the age effect on

severity. That is, counties with older populations will also have

a smaller Black fraction, so they do not appear with higher m/r.

At the state level, the variations of Blacks are lower (so that

Blacks come out only in a more complicated machine learning

analysis), which allows the age effect to come out. On the other

hand, age has been clinically recognized as an important COVID-

19 severity risk factor. This, therefore, shows that the analysis at

lower and higher spatial resolutions are complementary, i.e., the

smaller spatial resolution is not necessarily more accurate/relevant.

One reason is that decreasing the size of the regions where

the analysis is done also decreases the number of case counts,

thereby increasing fluctuations and, consequently, the noise in the

model. This consequently argues that, at least for some significant

predictors, larger spatial resolution may clearly promote their

proper identification.

5. Study limitations

We finally discuss some limitations of our study. Most

importantly, while we here assembled a vast number of COVID-

19 predictors, some factors that are likely very important (but

would be hard to quantify) are clearly missing. In particular, our

dataset consists of “static” variables and does not include “dynamic”

decisions and factors that emerge during the pandemic, such as

decisions on how to treat patients, medical protocols to be applied,

motivation/training of medical staff, etc. In other words, static

capacities or beneficial general conditions to fight pandemics may

not necessarily translate to optimal decisions (and willingness to

implement them), as has been well recognized in the case of, e.g.,

Global Health Security Index (Haider et al., 2020; Stribling et al.,

2020). How to systematically include/quantify such highly complex

factors remains to be seen.

On the other hand, a significant advantage of our study is that

the epidemic intervention decisions (social distancing, quarantine,

etc.) that impact the disease spread (transmissibility) (Hayashi et al.,

2022) do not influence our severity measure (Markovic et al.,

2021). This is because our severity measure m/r is independent of

transmissibility, which does not apply to measures commonly used

to quantify COVID-19 severity/mortality (such as the number of

fatalities). We feel this is a considerable advantage of our study,

as the actual effect of introduced intervention measures is hard to

quantify (Soltesz et al., 2020). Also, as discussed in theMaterials and

Methods section, m/r is neither expected to significantly depend

on the testing policies, since the variations in the volume of testing

affect both the numerator and the denominator of the CFR in the

same direction. However, the strict independence of m/r on testing
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policies would require that the influence of the testing coverage on

the case counts is exactly proportional to its effect on the number

of fatalities, which need not be the case. Possible larger deviations

in this sense might affect some of our conclusions.

Meteorological variables are also not included in this study.

While they may impact transmissibility (Salom et al., 2021; Lin

et al., 2022), they are unlikely to significantly impact the disease

severity/mortality, as explicitly obtained for the state-level analysis

(Markovic et al., 2021). Also, another potential limitation is that

we inferred the end of the peak time from states (and then applied

them to corresponding counties). It was previously shown that

the peak time range could be inferred more accurately in spatially

larger (conglomerated) regions (Vilar and Saiz, 2021), though we

cannot exclude some counties with different peak timing. However,

this should not significantly impact our results since in Markovic

et al. (2021), we showed that m/r enters saturation (i.e., is nearly

constant) for an extended time period, so the results should not

be susceptible to exact dates for m/r inference. More generally,

however, this issue corresponds to the conundrum of using smaller

vs. larger geographic regions, which is generally understudied and

should be better explored in the future.

Finally, as with other machine learning studies (limited to

exploring data associations), the significant predictors we identified

do not necessarily have to represent a causal relationship. In

particular, our analysis has singled out two demographic factors—

the percentage of Black females and population density—neither

of which seems to have a direct medical impact on the prognosis

of the disease. While this is clear for the population density, it is

also less likely (though not entirely impossible) that Black females

are genetically, per se, more predisposed to severe outcomes.

Therefore, in an attempt to point out possible causal associations,

we extensively discussed our results both in the context of previous

studies and by analyzing the correlations of these two factors with

the rest of the collected data. Thanks to the specific nature of

the identified factors and the large overall number of variables

included in the study, we believe that our interpretation of the

obtained results indeed reveals some of the main drivers behind

variations in the observed COVID-19 severity. Nevertheless, even

if the significant predictors only partially reflect direct causal

relations, they are still valuable risk assessment factors. Moreover,

theymay point to potential mechanistic relations that future studies

should explore.

6. Conclusion and outlook

We addressed the challenging problem of identifying some

of the potential main drivers of COVID-19 severity from a

large set of assembled sociodemographic factors. We showed that

machine learning methods with feature selection are well suited for

this task, producing robust results across different methods. The

combination of mRMR and ensembles of decision trees (Random

Forest and XGBoost) seems particularly promising for similar tasks

in the future, as it can simultaneously handle large, correlated

sets of predictors, their interactions, and nonlinear dependences.

We propose that this methodology is useful whenever there is

a measure of interest (response) defined over a diverse set of

geographic regions, and significant predictors of this measure (e.g.,

demographic, economic, medical variables, or their combinations)

should be selected among many variables that initially seem

potentially relevant. In the study of COVID-19 and any other

emerging infectious disease, identifying potential transmissibility

and severity determinants (and the consequent understanding

of the nature of their relation to the response variable) is a

very challenging problem that requires taking into account many

potential risk factors. The combination of the mRMR approach

(which offers a very efficient way of variable preselection while

eliminating all the redundant variables), and the nonparametric,

supervised machine learning methods based on the ensembles of

decision trees (which are capable of selecting important features

while taking into account possible nonlinear relation between the

features and the response variable), can be very promising in

resolving this problem, as our study illustrates.

In summary, our final result is simple and suggests that

densely populated areas with a high proportion of minorities

and disadvantaged populations are the main COVID-19 severity

risk factors. The result is here obtained for the USA, but it is

arguably more general. That is, the likely causes behind such

result are disadvantaged populations, environmental factors such

as pollution, and a potentially high increase of cases in densely

populated areas that available medical resources might not match.

These factors remain to be carefully investigated and understood in

the future.
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