
TYPE Review
PUBLISHED 01 February 2023
DOI 10.3389/fdata.2023.1017420

OPEN ACCESS

EDITED BY

João Valente Cordeiro,
New University of Lisbon, Portugal

REVIEWED BY

Marisol Martinez Alanis,
Universidad Anahuac Mexico, Mexico
Sachi Nandan Mohanty,
College of Engineering Pune, India

*CORRESPONDENCE

Darren S. J. Ting
ting.darren@gmail.com

SPECIALTY SECTION

This article was submitted to
Medicine and Public Health,
a section of the journal
Frontiers in Big Data

RECEIVED 12 August 2022
ACCEPTED 16 January 2023
PUBLISHED 01 February 2023

CITATION

Ting DSJ, Deshmukh R, Ting DSW and Ang M
(2023) Big data in corneal diseases and
cataract: Current applications and future
directions. Front. Big Data 6:1017420.
doi: 10.3389/fdata.2023.1017420

COPYRIGHT

© 2023 Ting, Deshmukh, Ting and Ang. This is
an open-access article distributed under the
terms of the Creative Commons Attribution
License (CC BY). The use, distribution or
reproduction in other forums is permitted,
provided the original author(s) and the
copyright owner(s) are credited and that the
original publication in this journal is cited, in
accordance with accepted academic practice.
No use, distribution or reproduction is
permitted which does not comply with these
terms.

Big data in corneal diseases and
cataract: Current applications and
future directions

Darren S. J. Ting1,2,3*, Rashmi Deshmukh4, Daniel S. W. Ting5,6 and
Marcus Ang5,6

1Academic Unit of Ophthalmology, Institute of Inflammation and Ageing, University of Birmingham,
Birmingham, United Kingdom, 2Birmingham and Midland Eye Centre, Birmingham, United Kingdom,
3Academic Ophthalmology, School of Medicine, University of Nottingham, Nottingham, United Kingdom,
4Department of Cornea and Refractive Surgery, LV Prasad Eye Institute, Hyderabad, India, 5Singapore National
Eye Centre, Singapore Eye Research Institute, Singapore, Singapore, 6Department of Ophthalmology and
Visual Sciences, Duke-National University of Singapore (NUS) Medical School, Singapore, Singapore

The accelerated growth in electronic health records (EHR), Internet-of-Things,
mHealth, telemedicine, and artificial intelligence (AI) in the recent years have
significantly fuelled the interest and development in big data research. Big data
refer to complex datasets that are characterized by the attributes of “5 Vs”—variety,
volume, velocity, veracity, and value. Big data analytics research has so far benefitted
many fields of medicine, including ophthalmology. The availability of these big data
not only allow for comprehensive and timely examinations of the epidemiology,
trends, characteristics, outcomes, and prognostic factors of many diseases, but
also enable the development of highly accurate AI algorithms in diagnosing a wide
range of medical diseases as well as discovering new patterns or associations of
diseases that are previously unknown to clinicians and researchers. Within the field
of ophthalmology, there is a rapidly expanding pool of large clinical registries,
epidemiological studies, omics studies, and biobanks through which big data can be
accessed. National corneal transplant registries, genome-wide association studies,
national cataract databases, and large ophthalmology-related EHR-based registries
(e.g., AAO IRIS Registry) are some of the key resources. In this review, we aim to
provide a succinct overview of the availability and clinical applicability of big data in
ophthalmology, particularly from the perspective of corneal diseases and cataract,
the synergistic potential of big data, AI technologies, internet of things, mHealth,
and wearable smart devices, and the potential barriers for realizing the clinical and
research potential of big data in this field.
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1. Introduction

The concept of big data was first introduced in 1990s to capture dataset that are too complex
to be stored and analyzed using traditional computer software (Mallappallil et al., 2020). It was
previously defined as data that display the characteristics of “3 Vs”—volume, velocity and variety
(Mooney et al., 2015). Additional attributes such as veracity and value have also been suggested
to fully capture the true nature and values of big data (known as the “5 Vs”).1

1 https://www.ibm.com/blogs/watson-health/the-5-vs-of-big-data/
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In the recent years, the accelerated growth in electronic health
records (EHR), disease registries, biobanks, mHealth, Internet-of-
Things (IoT), telemedicine, and artificial intelligence (AI) have
helped unlock the multi-faceted potential of big data (Chiang et al.,
2018; Li et al., 2021; Sahu et al., 2021). Compared to traditional
dataset, the wealth of information provided by big data (which are
often derived from large-scale or nationwide studies) can facilitate
comprehensive and timely examination of the epidemiology, trends,
characteristics, outcomes, and prognostic factors of the diseases
(Roski et al., 2014; Mallappallil et al., 2020). In addition, the
findings help to guide public health policies in terms of risk
factors modulation, disease prevention and control, optimization
of healthcare service provision, and allocation of research funding
targeting more prevalent diseases (Roski et al., 2014).

The multi-dimensional values of big data have been increasingly
capitalized in many branches of medicine, including ophthalmology
(Cheng et al., 2020; Li et al., 2021). One of the best examples
relates to the recent use of big data in understanding the trends
and spread of COVID-19, risk factors, treatment outcomes, and
morbidity/mortality, which helped inform the clinical practice and
public health policies (Haleem et al., 2020; Ting et al., 2020c;
Villanustre et al., 2021). Furthermore, big data have enabled the
development of highly accurate AI algorithms (which are often data-
hungry) in diagnosing a wide range of medical diseases as well
as discovering new patterns or associations of diseases that are
previously unknown to us (Figure 1) (Ting D. S. W. et al., 2017; Milea
et al., 2020; Mehta et al., 2021; Rim et al., 2021; Ting et al., 2021b).

Within the field of ophthalmology, there is a rapidly expanding
pool of large clinical registries, epidemiological studies, omics studies,
and biobanks through which big data can be accessed (Chua et al.,
2019; Tan et al., 2019). In view of the increased availability and
accessibility of big data and recent technological advancements, this
paper aimed to provide a succinct overview of the availability, clinical
applicability and future potentials of big data in ophthalmology,
particularly from the perspective of corneal diseases and cataract.

2. Big data in corneal diseases

According to a recent report by the World Health Organization
(WHO), corneal opacity represents the 5th leading cause of blindness
globally (Flaxman et al., 2017).2 It is also estimated that ∼6
million people suffer from moderate to severe visual impairment
secondary to corneal opacity, including non-trachomatous and
trachomatous-related cases (see text footnote 2). More importantly,
corneal blindness has been shown to be significantly more prevalent
in low- and middle-income countries (LMICs), mainly due to
limited healthcare resources, higher rate of ocular trauma, poor
environmental and personal hygiene, malnutrition, and lower
educational level, amongst others (Flaxman et al., 2017; Porth et al.,
2019; Ting et al., 2021e). Given the enormity of corneal blindness
globally and the significant mismatch between the disease burden
and the availability of healthcare resources and workforce, strategic
measures are urgently needed.

Within the field of cornea, there is an increasing pool of large
corneal registries and epidemiological studies that contains rich

2 https://www.who.int/news-room/fact-sheets/detail/

blindness-and-visual-impairment

resources of big data. These include corneal transplant registries,
infectious keratitis studies, genomic studies, large ophthalmology-
related registries, EMR-based platforms, and biobanks (Keenan et al.,
2012; Chiang et al., 2018; Donthineni et al., 2019). These cornea-
related big data enable a better grasp of the prevalence, risk factors,
outcomes, and impact of various corneal diseases, which in turn
allow for more effective formulations of various therapeutic and
preventative strategies in tackling the diseases. In this section, we
summarize the main cornea-related big data in various countries and
their impact on clinical practice, research and public policies.

2.1. Corneal transplant registries

Corneal transplantation or keratoplasty is the most common type
of transplantation performed worldwide (Tan et al., 2012). Currently
it remains the main method for restoring corneal clarity and vision
in patients with visually debilitating corneal diseases (Tan et al.,
2012). However, the persistent shortage of donor corneas has posed
significant barriers to successful corneal transplantations (Gain et al.,
2016). This has also led to the implementation of various innovative
measures, with an aim to improve the eye donation rate (Rithalia
et al., 2009; Ting et al., 2016a), utilization of donor corneas (Ting
et al., 2016b; Gupta et al., 2018), and reduction of the need for donor
corneas (Kinoshita et al., 2018; Ting et al., 2022). In order to tackle
this persistent barrier, a wide range of national corneal graft registries
and eye banks have been established across the world, including the
US, the UK, Europe, India, Australia, and Singapore, amongst others
(Table 1) (Tan et al., 2015, 2019; Sharma et al., 2019; Dunker et al.,
2021).3

The purposes of these national registries and eye banks
are manifold. Firstly, it helps standardize the corneal donation-
to-transplantation pathway nationally and identify any potential
limiting factors, enabling more effective interventions to improve
the conversion rate of eye donation and the utilization rate of the
donated corneas (Gogia et al., 2015; Ting et al., 2016b; Sharma et al.,
2019). Secondly, the prospective database can facilitate examination
of the ongoing availability of donor corneas to allow for equal and
fair distribution of the donor corneas across the country (Ting
et al., 2016b; Gupta et al., 2018) (see text footnote 3).4 It also
helps inform the policymakers and relevant stakeholders on the
need for importation (or exportation) depending on the local supply
of donor corneas. Thirdly, they provide up-to-date examination of
the trends in the types and indications of keratoplasty (Keenan
et al., 2012; Park et al., 2015). For instance, various studies have
demonstrated a paradigm shift from penetrating keratoplasty (PK)
to lamellar keratoplasty [including anterior lamellar keratoplasty
(ALK) and endothelial keratoplasty (EK)] over the past decade in
many countries. A recent European Cornea and Cell Transplantation
Registry study of 10 centers from the Europe, the UK and
Switzerland (n = 12913 keratoplasty) demonstrated that Descemet
stripping automated endothelial keratoplasty (DSAEK) was the
most commonly performed technique (46%), followed by PK (30%)
and Descemet membrane endothelial keratoplasty (9%) (Dunker
et al., 2021). In addition, the study demonstrated that Fuchs

3 https://restoresight.org/

4 https://www.odt.nhs.uk/statistics-and-reports/
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FIGURE 1

An overview of the big data research, including the resources, potential synergism with artificial intelligence, and clinical applications.

endothelial corneal dystrophy (FECD), regraft, pseudophakic bullous
keratopathy (PBK), and keratoconus were the main indications for
keratoplasty. These common indications were consistently reported
in many other national studies conducted in other countries (Keenan
et al., 2012; Ting et al., 2012; Park et al., 2015; Tan et al., 2015;
Ang et al., 2016c; Fuest et al., 2017). Understanding of the common
indications for keratoplasty provides the clinicians and researchers
with a clearer picture of how the limited resources (i.e., donor
corneas) are being utilized. In addition, more targeted research effort
can be channeled toward these higher prevalent corneal diseases to
search for alternative therapeutic strategies and reduce the need for
donor corneas.

Furthermore, useful information can be obtained from these
national corneal transplant registries to understand the risk factors
and prognostic factors of keratoplasty, ultimately improving the
clinical outcomes (Ang et al., 2011, 2012a, 2016a; Bose et al.,
2013). Ang et al. (2016b) observed that patients with FECD and
bullous keratopathy achieved a better long-term graft survival
following Descemet membrane endothelial keratoplasty (DMEK)
when compared to Descemet stripping automated endothelial
keratoplasty (DSAEK) and PK. On the other hand, an Australian
national study of >15,000 cases of keratoplasty demonstrated that the
survival of lamellar keratoplasty (i.e., DALK and EK) fared worse than
PK, with some evidence showing the influence of learning curve on
the outcome of EK (Coster et al., 2014). Important prognostic factors
for graft survival rate, including the indication for graft, number of
previous grafts, history of ocular surface inflammation or glaucoma,
corneal neovascularization, and postoperative events such as graft
rejection or infection, were also identified via these national corneal
transplantation studies (Williams et al., 2008; Ang et al., 2012b, 2014,
2020; Sibley et al., 2020). Indications such as PBK and infectious
keratitis (IK) have been shown to be associated with a worse outcome
compared to “low-risk” conditions such as keratoconus and FECD
following keratoplasty (Tan et al., 2012), highlighting the need for

improvement in the treatment strategy for certain indications (Ang
and Sng, 2018).

More importantly, the registries enable examination and
monitoring for any significant postoperative adverse events such as
infection and endophthalmitis (Chen et al., 2015; Gauthier et al.,
2017; Song et al., 2021). Edelstein et al. (2016) previously conducted a
study of 354,390 keratoplasty based on the data from the Eye Bank
Association of America, analyzing all adverse events following all
types of keratoplasty. They observed a higher rate of fungal infection
in their study compared to non-US studies and postulated that this
might be due to the lack of antifungal agent used in the corneal
storage medium in the US (Chen et al., 2015; Edelstein et al., 2016). It
was also found that fungal keratitis and endophthalmitis were more
common following EK (1.5–3 times higher risk) than PK and ALK,
potentially attributed to the increased warming time associated with
the preparation of EK tissues in the eye bank (Edelstein et al., 2016).
These findings will allow for the refinement of the eye bank protocol
in terms of processing and storage of donor corneas, ultimately
leading to improved clinical outcome and safety.

2.2. Infectious keratitis databases

Corneal opacity is the 5th leading cause of blindness globally,
with IK being the main culprit. IK was previously recognized as a
“silent epidemic”, and recently, a “neglected tropical disease” status
was proposed (Ung et al., 2019). The incidence is estimated to
range between 2.5–799 per 100,000 population per year (Ting et al.,
2021e). It can be caused by a wide range of organisms, including
bacteria, fungi, viruses, and parasites, and polymicrobial infection
(Ting et al., 2019b, 2021d; Khoo et al., 2020). In view of its significant
impact on human health, healthcare systems and economy, it is
therefore not surprising to observe a vast amount of literature on IK,
encompassing the epidemiology, risk factors, clinical characteristics,
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TABLE 1 Summary of main corneal transplant registries and institutions in
the world, categorized by continents.

Countries Corneal transplant registries (and
institutions)

Multi-continent

Global Global Alliance of Eye Bank Associations (GAEBA)
Pan American Association of Eye Banks

Asia

China Beijing Tongren Eye Center
Shandong Eye Institute

Hong Kong Lions Eye Bank of Hong Kong

Japan Cornea Centre and Eye Bank, Tokyo Dental College
Kyoto Prefectural University of Medicine

India Eye Bank Association of India (EBAI)

Malaysia National Transplant Registry of Malaysia

Philippines Santa Lucia International Eye Bank of Manila

Russia S. N. Fyodorov Eye Microsurgery State Institution

Saudi Arabia King Khaled Eye Specialist Hospital

Singapore Singapore Corneal Transplant Study, Singapore Eye Bank

South Korea Korean Network for Organ Sharing (KONOS)
Seoul St. Mary’s Eye Hospital

Taiwan National Taiwan University Hospital

North and South America

Brazil Brazilian Association of Organ Transplantation (ABTO)

US Eye Bank Association of America (EBAA)

UK and Europe

Europe European Cornea and Cell Transplantation Registry

France Centre Francois Xavier Michelet, CHU de Bordeaux, Site
Pellegrin

Germany German Ophthalmological Society (GOS)

Italy Societa Italian Traplanto Di Cornea (S.I.TRA.C)
Veneto Eye Bank Foundation

Netherland Netherlands Institute for Innovative Ocular Surgery

Sweden Swedish Registry for Corneal Transplant

UK UK National Health Service (NHS) Blood and Transplant

Australasia

Australia Australian Cornea Graft Registry (ACGR)

New Zealand New Zealand National Eye Centre

Africa

Ethopia Addis Ababa University

South Africa Pretoria Eye Institute

Adapted from the thesis published by Tan et al. (2015).

causative organisms, management, and outcomes of the disease.
Large IK studies published in the recent years are summarized in
Table 2 (Lin et al., 2017, 2019; Tan et al., 2017; Khor et al., 2018; Peng
et al., 2018; Green et al., 2019; Tavassoli et al., 2019; Asbell et al., 2020;
Khoo et al., 2020; Kowalski et al., 2020; Somerville et al., 2021; Ting
et al., 2021d).

The clinical and laboratory data captured by these large-scale
IK studies enables a better grasp of the microbiological profiles,
risk factors, disease impact, and treatment response. So far, from
the epidemiological standpoint, these studies have helped unveil
the considerable geographical, temporal and seasonal variations in
IK, which provide useful guidance to the choice of antimicrobial
treatment. For example, Staphylococci spp. and Pseudomonas spp.
were shown to be the most common organisms in the UK, the
US and Australia (Tan et al., 2017; Tavassoli et al., 2019; Khoo
et al., 2020; Kowalski et al., 2020; Ting et al., 2021d). In addition,
several studies (Tan et al., 2017; Ting et al., 2018, 2021d) have
identified an increasing trend of moraxella keratitis in the UK over
the past decade. In contrast, a recent Asia Cornea Society Infectious
Keratitis Study (ACSIKS) of more than 6,000 patients showed that
fungal and bacterial infections were the main causes of IK in
developing and developed countries, respectively (Khor et al., 2018).
More importantly. the study observed ∼50% of the eyes developed
moderate visual loss (<6/18 vision), with 46% of the performed
therapeutic keratoplasty failed by 6 months’ follow-up, highlighting
the significant impact on the affected patients.

Studies have shown that the initial severity of the ulcer and
presenting visual acuity serve as important prognostic factors for IK
(Khoo et al., 2020; Ting et al., 2021a,c). Therefore understanding the
risk factors via big data research allows for effective implantation
of various preventative strategies in reducing the incidence of IK.
Contact lens (CL) has been consistently identified as one of the most
common risk factors for IK (Cariello et al., 2011; Keay et al., 2011;
Ting et al., 2021a). In particular, the risk of CL-related IK was shown
to be associated with use of expired CL and overnight CL wear (Sauer
et al., 2020). Understanding of these underlying factors allow for
better education among the patients and CL wearers. Trauma serves
as another important risk factor for IK, particularly in the developing
countries (Ganguly et al., 2011; Kaliamurthy et al., 2013). In addition,
based on a population-based, cross-section sectional study, [Cornea
Opacity Rural Epidemiological (CORE) study] (Gupta et al., 2017),
it was found that the use of traditional eye medicine and self-
medication was prevalent in the rural regions of India, which could
lead to delay in seeking appropriate medical care and exacerbation
of corneal diseases and/or infection. These epidemiological studies
have helped improve the public awareness and call for new regulatory
legislations to address these issues.

Broad-spectrum topical antimicrobial therapy serves as the
current mainstay of treatment for IK, though their efficacy is being
challenged by the emergence of AMR, observed in several large-scale
IK studies (Lalitha et al., 2017; Asbell et al., 2020; Ting et al., 2021e).
Clinically, AMR-related pathogens has been shown to negatively
affect the outcome and healing time of IK (Kaye et al., 2010). In
the Antibiotic Resistance Among Ocular Microorganisms (ARMOR)
with data from >6,000 ocular isolates, Asbell et al. (2020) observed
that ∼40% of the Staphylococci spp. were methicillin-resistant, and
many of them were multidrug resistant. On the other hand, various
studies in the UK demonstrated a low rate of AMR (<5–10%) against
the commonly employed antibiotic regimens used for IK, including
fluoroquinolone, cephalosporin and aminoglycoside (Tan et al., 2017;
Tavassoli et al., 2019; Ting et al., 2021d). These findings emphasize
the wide geographical and temporal variations in AMR for IK and
the importance of updated examination in specific regions. Better
knowledge of the AMR pattern could also help guide the most
appropriate initial treatment for IK in each region.
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TABLE 2 Summary of large-scale infectious keratitis study (>1,000 cases) in the world published between 2016 and 2021, in chronological order.

Authors (Year) Study
period

Region No. of
scrapes

Culture
positivity (%)

Bacteria
(%)

Fungi (%) Acanthamoeba
(%)

Somerville et al. (2021) 2014–2020 UK 3,099 47.2 51.4 0.8 0.2

Ting et al. (2021d) 2007–2019 UK 1,333 37.7 92.8 3.0 4.2

Asbell et al. (2020)∗ 2009–2018 US 6,091 100.0 100.0 – –

Khoo et al. (2020) 2012–2016 Australia 1,052 48 64 2.3 –

Lin et al. (2019) 2010–2018 China 7,229 42.8 52.7 57.6 –

Tavassoli et al. (2019) 2006–2017 UK 2,614 38.1 91.6 6.9 1.4

Green et al. (2019)∗ 2005–2015 Australia 3,182 100.0 93.1 6.3 0.5

Kowalski et al. (2020)∗# 1993–2018 US 1,387 100.0 72.1 6.7 5.2

Peng et al. (2018) 1996–2015 US 2,203 23.7 100.0 – –

Khor et al. (2018) 2012–2014 Asia 6,563 43.1 38 32.7 2.26

Tan et al. (2017) 2004–2015 UK 4,229 32.6 90.6 7.1 2.3

Lin et al. (2017) 2009–2013 China 2,973 46.1 41.9 44.6 13.6

∗These studies only included culture-proven IK cases.
#This study also included viral keratitis cases.

2.3. Corneal genomic studies

The increase in large-scale genetic studies, particularly genome-
wide association study (GWAS) and genome-wide linkage study
(GWLS), has significantly advanced our understanding of many
diseases, including corneal diseases, and offer potential novel targets
for gene therapy (Riazuddin et al., 2009, 2010, 2013; Baratz et al.,
2010; Burdon et al., 2011; Bykhovskaya et al., 2012; Czugala et al.,
2012; Li et al., 2013; Lu et al., 2013; Sahebjada et al., 2013;
Dudakova et al., 2015; Afshari et al., 2017; McComish et al.,
2019). GWAS is an invaluable methodology designed to analyze
common genetic variations across the whole genome, particularly
single nucleotide polymorphisms (SNPs), by analyzing the genotype-
phenotype associations of a disease in case-control cohorts with a
large number of individuals. On the other hand, GWLS is a useful
tool used to genotype a particular disease by examining families with
affected and unaffected individuals (Karolak and Gajecka, 2017; Tam
et al., 2019).

FECD and keratoconus are by far the two most commonly
investigated corneal diseases. The research focus on these two
conditions is primarily driven by the high burden and prevalence of
the diseases. Moreover, they represent the most common indications
for keratoplasty in many countries (Ting et al., 2012; Park et al.,
2015), placing significant burden on the donor corneas. Over
the years, GWAS has increasingly been used to identify genetic
susceptibility regions in FECD and keratoconus (Iliff et al., 2012;
Karolak and Gajecka, 2017). For instance, Hardcastle et al. (2021)
recently conducted a multi-ethnic GWAS of keratoconus, including
>100,000 individuals, and identified 36 significant genomic loci
that were associated with keratoconus. McComish et al. (2019)
discovered a novel genetic locus in PNPLA2 at chromosome 11
for keratoconus based on over 6 million genetic variants. Several
novel genetic loci for FECD, including TCF4, LAMC1 rs3768617,
LINC00970/ATP1B1 rs1200114, and KANK4 rs79742895, have also
been identified (Afshari et al., 2017). GWLS have also facilitated the
identification of a number of important genetic mutations linked to

keratoconus, including TGFBI, TCEB1, CAST, COL8A1, and LOX
genes (Karolak and Gajecka, 2017). Next-generation sequencing,
which enables extensive and deep sequencing of the DNA (Londin
et al., 2013), has recently been employed to detect novel mutations
associated with many other types of corneal dystrophy (Zhang et al.,
2019).

In view of the rapid proliferation of the genomic studies, many
genetic banks, databases and web-based resources such as https:
//www.ncbi.nlm.nih.gov/gtr/ and https://www.omim.org/ have been
created to capture and summarize the genomic association of a wide
array of human diseases, including ocular diseases. The availability
of these results not only help reduce unnecessary duplication of any
previously conducted research, which often involves extensive time,
effort and funding, but also expedite the discovery and development
of new therapeutic targets via knowledge- and data-sharing.

2.4. Electronic health record-based registries
and biobanks

The rapid emergence of EHR in healthcare systems in the recent
years has allowed the capture and analysis of big data by the
clinicians, researchers and relevant stakeholders (DesRoches et al.,
2008; Day et al., 2015; Evans, 2016). One of the most notable
examples in the field of ophthalmology is the Intelligent Research in
Sight (IRIS). Registry, which is a US-based ophthalmic EHR registry
established by the American Academy of Ophthalmology (Parke Ii
et al., 2017; Chiang et al., 2018). In 2016, the IRIS Registry had
already captured data from >17 million eye patients, including over
a million of patients with dry eye disease (DED), and >35 million
ophthalmic visits from 7,200 US-based ophthalmologists, providing
valuable information on prevalence, demographic factors, risk
factors, management and outcome of a wide range of ocular diseases
(Chiang et al., 2018). So far, the IRIS Registry has enabled research
in many fields of ophthalmology, including cornea (Anchouche
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et al., 2021), cataract (Pershing et al., 2020; Owen et al., 2021; Lacy
et al., 2022), glaucoma (Chang et al., 2021; Olivier et al., 2021), and
retina (Malhotra et al., 2021; Khanani et al., 2022). For instance,
Anchouche et al. (2021) included >60,000 patients of chemical and
thermal ocular injuries in the US (using the IRIS Registry data)
and demonstrated a significant increase in the incidence by 20%
from 2013 to 2017 in the US. In a similar vein, Donthineni et al.
(2019) demonstrated the value of utilizing EHR-derived big data to
estimate the incidence of DED in India as well as the predisposing
factors such as age, gender, socio-economic status, and profession.
Using the same EHR database of >2 million patients, Das and
Basu (2022) were able to identify >20,000 patients who presented
with epidemic keratoconjunctivitis and characterized the clinical
features and outcomes, enabling more accurate and timely diagnosis
and treatment.

Furthermore, there are nationwide databases such as the UK
Biobank which also contain extensive clinical, imaging and genomic
data related to the eye, including the cornea (Chua et al., 2019).
UK Biobank is a large-scale biomedical database and research
resource, which contains extensive health, genetic and bioimaging
information from >500,000 people in the UK, with regularly
update on additional follow-up data.5 Corneal hysteresis serves as
an important biomechanical property of cornea, and it has been
shown to influence the measurement of intraocular pressure and
risk of glaucoma (Deol et al., 2015). Based on the data of >90,000
participants obtained from the UK Biobank, significant associations
between corneal hysteresis and various demographic factors such as
age, sex, and ethnicity were detected (Zhang et al., 2019). Khawaja
et al. (2019) similarly identified five novel loci that are associated
with corneal biomechanical properties, including corneal hysteresis
and corneal resistance, which may have important implication on
the pathogenesis of keratoconus. In addition, GWAS based on the
UK Biobank data enabled the discovery of four novel genetic loci,
including HERC2, LINC00340, NPLOC4, and ZC3H11B genes, for
corneal astigmatism (Shah and Guggenheim, 2018).

3. Big data in cataract

Cataract is the leading cause of blindness and visual impairment
globally, affecting around 94 million of the world population,
particularly in the low- and middle-income countries (LMICs) (see
text footnote 2) (Flaxman et al., 2017). Currently, ∼20 million cases
of cataract surgery are being performed each year (Wang et al.,
2016), making it the most commonly performed surgery worldwide.
In view of the continuous advancement in the phacoemulsification
technology, surgical techniques, biometry calculation for IOL power,
and IOL technology, the demand for perfect vision and no/minimal
risk of surgical complication continues to rise (Erie, 2014; Ting D.
S. J. et al., 2017; Sudhir et al., 2019; Day et al., 2020; Ting et al.,
2020a). Furthermore, as cataract surgery is the most commonly
performed ophthalmic surgery, it often used as the benchmark for
assessing an ophthalmologist’s surgical competence, especially during
the specialist training or residency program.

To date, many national cataract databases have been established
across the world (Table 3). One of the primary aims of these
databases is to examine and audit the outcomes of the cataract

5 https://www.ukbiobank.ac.uk/

TABLE 3 Summary of main cataract registries in the world, categorized by
continents.

Countries Cataract registries (and institutions)

Asia

China Shanghai Cataract Operations Database

India Aravind Eye Hospitals Registry

Israel Israel Cataract Registry

Malaysia Malaysia Cataract Surgery Registry

North and South America

US Intelligent Research in Sight (IRIS) Registry (supported by
the American Academy of Ophthalmology)
Medicare Database
Paediatric Eye Disease Investigator Group
(PEDIG) database
Toddler Aphakia and Pseudophakia Treatment
Study Registry

UK and Europe

Denmark Paediatric Cataract Register (PECARE)

Europe EUREQUO (supported by the European Society of Cataract
& Refractive Surgeons; ESCRS)

Germany Germany Cataract Registry

Sweden Swedish National Cataract Register

UK National Ophthalmology Database (NOD) [supported by the
Royal College of Ophthalmologists (RCOPhth)]

surgery performed by the surgeons. Secondly, it also helps provide
a benchmark for the visual outcome and safety of the surgery
for all the cataract surgeons, with adjustment of the experience
and complexity of the case-mix. In addition, these big data
may also identify important factors that can predict the risk of
intraoperative and postoperative complications, including posterior
capsular rupture (PCR), retinal detachment, cystoid macular edema
(CMO), endophthalmitis, and many others.

One of the most well-known examples is the Swedish National
Cataract Register, which is the oldest nationwide cataract registry
established in 1992 (Lundström et al., 2002). So far, it has produced
>60 publications in the literature, covering many aspects of
cataract surgery such as visual and refractive outcomes, posterior
capsular rupture, endophthalmitis, postoperative practice pattern,
and development of a composite risk-stratification scoring system,
amongst others (Farhoudi et al., 2018; Zetterberg et al., 2021; Friling
et al., 2022; Ridderskär et al., 2022). The European Registry of Quality
Outcome for Cataract and Refractive Surgery (EUREQUO), which is
supported by the ESCRS, represents another large-scale database that
has so far captured more than 3 million cases of cataract surgery in
Europe.6 This database provides pertinent surgical outcomes as well
as the patient-reported outcomes following cataract and refractive
surgeries, allowing the operating surgeons to audit their results and
implement changes to their surgery (if required) to further improve
the clinical outcomes. In addition, the big data obtained from this
database (which included >2 million cases) has enabled effective
analysis of risk factors for PCR and dropped nucleus during cataract
surgery (Lundström et al., 2020; Segers et al., 2022).

6 https://www.escrs.org/about-escrs/registries/eurequo/
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In the UK, the Royal College of Ophthalmologists (RCOphth),
UK, established the DHR-based National Ophthalmology Databases
(NOD) in 2009, with an aim to monitor and improve the outcomes
in cataract surgery and various ophthalmic conditions, including
diabetic eye disease, age-related macular degeneration, glaucoma,
and retinal detachment.7 In 2020, the NOD published the annual
report on cataract surgery, which included >200,000 cataract surgery
performed by >2,000 surgeons (web). The report highlighted that
86% of the eyes achieved at least 1 Snellen-line improvement in vision
postoperatively. The overall PCR rate was 1.1%, with a higher rate
(2.4%) in less experienced trainee surgeons and lower rate (0.9%)
in consultant surgeons. Within the UK, all ophthalmic surgeons,
including consultants and trainees, are required to record the
number of cataract surgery performed and the rate of complications
(particularly the rate of PCR), The findings from the NOD not only
set important benchmarks for all the UK cataract surgeons but also
help identify surgeons and trainees who require additional support
and training on cataract surgery, particularly if the PCR rate is
considerably higher than the national benchmark. These data have
also been utilized to stratify the risk of PCR and vitreous loss, enabling
the development of effective risk-stratification system to optimize
patient selection and safety (Narendran et al., 2009; Day et al., 2015).

As mentioned above, IRIS Registry has showcased its clinical
and research values in many fields of ophthalmology. Within the
context of cataract surgery, Pershing et al. (2020) demonstrated a
0.04% rate of postoperative endophthalmitis among >8 million cases
of cataract surgery and identified important predictive factors such
as younger age, need for anterior vitrectomy, and when cataract
surgery is combined with other ophthalmic surgeries. In addition,
researchers were also able to utilize the IRIS Registry in analyzing
and comparing the refractive outcomes and risk of endophthalmitis
between immediate sequential and delayed sequential bilateral
cataract surgery, which helps inform the clinical practice (Owen et al.,
2021; Lacy et al., 2022).

In addition, the recent COVID-19 pandemic has caused an
unprecedented surge in the service backlog and number of cases on
the waiting list, particularly for cataract surgery (Ting et al., 2020b).
With the availability of big data obtained from the EHR, it enables
a comprehensive and systematic analysis of the utilization of the
clinical and theater space, workflow efficiency (e.g., turnaround time
between each cataract surgery), and supply-and-demand matching
in terms of available workforce/resources and service backlog, which
are useful for strategic planning and allocation of the resources
within healthcare services. Big data from large-scale population-
based studies also provide invaluable information on the service
coverage and health equity (or inequity). For instance, effective
cataract surgical coverage (eCSC) is often used as a measure to
evaluate the service access to cataract surgery and the outcome of
the surgery. A recent population-based study, based on 148 Rapid
Assessment of Avoidable Blindness (RAAB) survey data from 55
countries involving∼500,000 adults aged 50 years and older, reported
that eCSC varied considerably between countries, with higher rate
in countries with greater income level, highlighting the need for
increased efforts to improve access and quality of the surgery in
under-resourced countries (McCormick et al., 2022).

7 https://www.nodaudit.org.uk/resources/publications-annual-report

4. Future directions

4.1. Integration of big data and artificial
intelligence

The relationship between big data and AI-assisted technologies is
highly synergistic and inextricably linked. The enormity and nature
of big data usually require advanced computing power, software
and algorithms (e.g., machine learning and deep learning-based AI
algorithms) to process and analyze the data. On the other hand,
development of highly accurate and generalizable AI algorithms often
requires the input of big data that satisfy the attributed of “5 Vs”. With
the rapid development of big data research and digital technologies
in the recent years, it is anticipated that AI-power big data analytic
platforms, coupled with telemedicine, will shape the future landscape
of medicine (Sim et al., 2016; Ting et al., 2019a; Wu et al., 2019).
The need for these innovative digital technologies in clinical practice
was further heightened by the recent COVID-19 pandemic where
all branches of healthcare services, including ophthalmology, have
been severely impacted (Babu et al., 2020; Ting et al., 2020b,c, 2021f;
Whitelaw et al., 2020; Ho et al., 2021; Kim et al., 2021).

So far, big data-driven AI technologies have demonstrated its
clinical potential in many areas of corneal diseases and cataract. These
encompass screening and diagnosing a wide array of conditions
(e.g., keratoconus, IK, corneal opacity) and cataract, and preoperative
planning for refractive surgery, to making automated clinical
decisions for various diseases (Rampat et al., 2021). Studies have
shown that the diagnostic accuracy of several AI algorithms can be as
high as 92–97% in detecting keratoconus and preclinical keratoconus
or forme fruste keratoconus (Arbelaez et al., 2012; Smadja et al.,
2013; Hidalgo et al., 2016; Issarti et al., 2019; Lavric and Valentin,
2019; Ting et al., 2021b). Automated assessment of the corneal
endothelial cell density in normal and diseased eyes as well as corneal
guttata, based on AI-assisted algorithms using specular microscopy
images and/or retroillumination slit-lamp photographs, have been
developed to improve the management and follow-up in patients
with corneal endothelial diseases and post-endothelial keratoplasty
(Joseph et al., 2020; Vigueras-Guillén et al., 2020; Shilpashree et al.,
2021; Soh et al., 2021; Karmakar et al., 2022). A recent study also
reported the potential of machine learning algorithms in predicting
the 10-year graft survival of PK and DSAEK using random survival
forests analysis with highest variable importance factors (Ang et al.,
2022). Understanding of the predictive factors allows the clinicians
to address any modifiable preoperative factors, select the most
appropriate type of keratoplasty for each individual patient, and
optimize the long-term graft survival. This will also help reduce
the need for regrafting, which has been shown as one of the most
common indications for keratoplasty (Ting et al., 2012; Aboshiha
et al., 2018).

In addition, several studies have demonstrated the ability
of AI algorithms in diagnosing and differentiating the types of
IK, and differentiating active IK from healed corneal scar (Liu
et al., 2020; Lv et al., 2020; Koyama et al., 2021; Tiwari et al.,
2022). These technologies are particularly useful in regions where
resources and expertise are lacking. More recently, Li et al. (2020)
reported the superior performance of a DL-based AI algorithm
in diagnosing a wide range of corneal and conjunctival diseases,
including IK, pterygium and conjunctivitis, and cataract based on
using slit-lamp photographs. More importantly, the algorithm was
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able to provide automated clinical recommendation for further
management, including clinical observation, medical treatment and
surgical interventions. This can greatly reduce the diagnostic and
referral time and improve the workflow efficiency within the
healthcare system. For acute ocular conditions such as IK, timely
diagnosis is crucial in achieving a good outcome; hence an effective
AI-powered platform may serve as a novel diagnostic solution,
particularly in LMICs.

Automated detection and grading of cataract as well as diagnosis
of posterior capsular opacification by AI algorithms have also been
described (Xu et al., 2020; Gutierrez et al., 2022). Furthermore, newer
generations of IOL calculation formulae, based on big data-powered
AI algorithms, have also been developed to enhance the predict
accuracy of the IOL power (Ladas et al., 2021; Gutierrez et al., 2022).
By using a dataset of ∼5,000 patients, Li T. et al. (2022) recently
demonstrated the ability of AI in enhancing the prediction of effective
lens position and improving the accuracy of existing IOL formulas,
including Haigis, Hoffer Q, Holladay, and SRK/T. Therefore, it is
anticipated that the millions of data housed within several national
cataract registries can be utilized to train and develop effect AI-
based IOL calculation formulae and optimize the visual and refractive
outcomes of cataract surgery in the near future.

4.2. Empowerment of big data research by
internet of things, mHeath, and wearable
devices

The potential of big data research has further been fueled by
the recent rapid expansion and development in Internet of Things
(IoT) technologies, mobile health (mHealth; a branch of medical
and public health practice powered by mobile devices), and wearable
devices (Kelly et al., 2020). So far, it has been estimated that more
than 2 billion people own a mobile phone globally, with >50 million
people utilizing app-based, interactive health self-care and self-triage
(Millenson et al., 2018). The scopes and applications of mHealth
range considerably from delivering health education, digital therapy,
supporting clinical decision making for diagnosis and treatment, to
improving clinical outcomes via behavioral modification (Rowland
et al., 2020). Within the field of cornea, Inomata et al. (2020b) utilized
crowdsourced big data, obtained from a mobile app (DryEyeRhythm)
of around 3,000 participants, to identify participants with diagnosed
and undiagnosed symptomatic DED and determine their associated
risk factors. In addition, it was found that depressive symptoms are
more common in individuals with DED, enabling an earlier detection
and intervention for depression in this cohort of individuals (Inomata
et al., 2020a).

Recent advances in wearable devices have also enabled real-time
collection of millions of health datapoints (e.g., heart rate, blood
pulse, step count, daily activity, etc.) for non-invasive diagnosis and
monitoring of various diseases, including cardiovascular diseases,
pulmonary diseases, hypertension, and diabetes, amongst others
(Guk et al., 2019; Lu et al., 2020). Studies have shown that smart
contact lenses (CLs) with biosensing technology are able to detect
tear content and metabolites, including glucose and exosomes, which
enable real-time non-invasive detection and monitoring of diabetes
and cancer (Park et al., 2018; Li S. et al., 2022). The big data obtained
from these biosensing technologies may be useful for CL wearers in

the future where these smart CLs may help detect any early changes
in the tear metabolites and inflammatory cytokines, which may help
predict the risk of development of CL-induced DED, inflammatory
and infectious keratitis.

In addition, Chen et al. (2021) recently developed a blink-sensing
glasses to detect the blinking pattern between DED subjects and
health controls. It has been recognized in the recent years that
increased digital screen use (either for occupational, recreational or
educational purpose) is a significant predisposing risk factor for DED
(Mehra and Galor, 2020). Several mechanisms have been proposed,
including reduced/abnormal blinking (which can lead to increased
tear evaporation and ocular surface inflammation) and damage from
the emitting light from the digital screen devices. Therefore, the big
data generated from these blink-sensing glasses have the potential
of monitoring the blinking patterns and behaviors of the digital
screen users (or individuals with DED), which allows for an effective
modification of the lifestyle and improves the management of DED.

4.3. Role of big data in predictive, preventive,
personalized, and precision (P4) medicine

With the exponential increase in the availability of multi-
omics data, large-scale population-based studies, EHR, and digital
technologies, it is becoming possible to harness the power of these
big data for implementing predictive, preventive, personalized, and
participatory (P4) medicine. Instead of treating the patients reactively
based on the presenting symptoms and signs, P4 medicine advocates
personalizing the care to each individual at an individual molecular,
cellular and organ levels, making the treatment more effective and
cost-effective (Flores et al., 2013). Furthermore, the combination of
real-time health data collected from these wearable smart devices
with clinical and “multi-omics” data can potentially improve the
understanding and management of certain multifactorial diseases
(for instance, DED) where lifestyle and environmental factors play
a vital role in the pathogenesis and phenotypic features of the disease
(Inomata et al., 2020c).

Recently, Inomata et al. (2021) highlighted the potential of
mHealth by using a data-driven multidimensional smartphone-based
digital phenotyping strategy to assess and classify DED, which is a
highly heterogeneous and multifactorial disease. A wide range of
data, including demographics, medical history, lifestyle questions,
blink sensing (via smartphone cameras and CIFaceFeature for facial
detection), and daily subjective symptoms [using the Japanese version
of the Ocular Surface Disease Index (J-OSDI)], were collected
through the DryEyeRhythm mobile app. Subsequently, through
hierarchical clustering heatmap, the authors were able to visualize
and classify DED patients into several categories with distinct
DED characteristics, illustrating the potential of P4 medicine in
managing DED.

The potential of big data in shaping P4 medicine in
ophthalmology is huge. For instance, with the increased availability
of big data, it will be possible to personalize the choice of IOL for
patients who are undergoing cataract surgery and predict those who
are most likely to benefit from a certain type of IOL implant (e.g.,
multifocal vs. monofocal) in the future. One may also leverage the
power of big data (and AI) to predict of the risk of postoperative
complications following cataract surgery, which helps distinguish
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the group of patients who are suitable for community follow-up
vs. hospital follow-up, thereby relieving the burden on the over-
stretched healthcare services. Furthermore, with the combination
of phenotypic and genotypic data as well as lifestyle factors (e.g.,
tendency for eye rubbing), it may be possible to predict the group
of patients with keratoconus who are most likely to progress,
thereby enabling early prophylactic intervention such as corneal
cross-linking to prevent progression and maintain good vision.

4.4. Potential barriers for enabling big data
research and its clinical potential

The potential values of big data, EHR, telehealth and mHealth
in healthcare have long been recognized by the WHO, which was
published as a report by the Global Observatory for eHealth in
2016 (World Health Organization, 2016). However, several barriers
exist for translating their potential to real clinical values (Hulsen
et al., 2019; Uslu and Stausberg, 2021). One of the main barriers is
cost. Establishment and maintenance of these large-scale platforms,
registries and EHR often requires substantial financial resources and
workforce, which explains the scarcity of big data in under-resourced
LMICs. Depending on the scale of the registries and EHR, they can
cost the healthcare service from tens of thousands to multimillion
dollars to set up and maintain the platforms within the healthcare
services (Menachemi and Collum, 2011). Processing and analysis
of big data also necessitates advanced computing power, facilities
and expertise in order to arrive at clinically meaningful findings
and conclusions. Furthermore, considerable expertise, workforce,
resources, and facilities, all of which are associated with a high cost,
need to be in place to prevent or reduce the risk of EHR system
failure, which can significantly disrupt and paralyze the delivery of
the healthcare services and cause harm to patients.

In addition to the cost and workforce, there remains a number
of significant challenges associated with big data research, including
data completeness, accuracy, heterogeneous data sources/platforms,
data security, sharing, and visualization (Househ et al., 2017; Dash
et al., 2019). Most large-scale EHR systems are designed for delivery
of clinical services but not for evidence generation; therefore,
capitalization of the EHR-derived big data for clinical research
purposes is considerably challenged by the consistency, accuracy,
and completeness of data. In addition, many of the systems are
usually created for general medical and surgical services, which
leads to inaccurate or incomplete data collection for ophthalmic
diseases. For instance, many of the ophthalmic diagnoses/codes are
not available in the general EHR systems, inhibiting an accurate
assessment and analysis of the incidence, characteristics, causes, and
impact of ophthalmic diseases presenting to the health services.

Another potential barrier for big data research is data privacy
and sharing. Although there has been an increased availability of
big data captured through various sources (Figure 1), processing of
these data for research purposes are prohibited, unless: (1) the data
are fully anonymized; (2) the data owner (i.e., the patients, healthy
volunteers, etc.) provide “explicit consent”; or (3) the processing
of data are necessary for provision of healthcare services or for
public interest (Hulsen et al., 2019). In 2018, the European Union
introduced a new set of regulations—the General Data Protection

Regulation (GDPR)—to safeguard data privacy.8 It also places
constraints on data sharing where appropriate consent needs to
be obtained from the patient before the data can be shared with
another organization. In addition, data sharing and management is
further guided by the FAIR principles, which include “Findability,”
“Accessibility,” “Interoperability,” and “Reusability” (Wilkinson et al.,
2016). Therefore, to realize the potential of big data research in
ophthalmology, all these highlighted barriers will need to be fully
considered and addressed.

5. Conclusions

The continuous growth of IoT technologies, increased
acceptability of mHealth, accessibility and affordability of mobile
and wearable smart devices, and advancement in AI technologies
in the coming years are likely to further expand the potential and
applications of big data research in medicine and surgery, including
ophthalmology (Wang et al., 2020; Rono et al., 2021; Dow et al.,
2022). The establishment of big data resources such as corneal
transplant registries, genomic studies, biobanks, and large scale
EHR-based registries has so far provided a vast amount of valuable
clinical and research information on cataract and a wide range of
corneal diseases, ranging from non-sight threatening but functionally
debilitating (e.g., DED) to sight threatening conditions (e.g., IK,
PBK, keratoconus, etc.). Big data has advanced the understanding of
many diseases, provided important benchmark for treatment and
surgery, improved treatment outcome, and informed public policies.
It is also anticipated that big data research will help propel the field
of P4 medicine. However, there is currently a significant deficit and
mismatch in the availability and demand for big data in LMICs,
highlighting the need for increased effort and work to be invested in
the under-resourced countries where blindness secondary to corneal
opacity and cataract predominates (Pineda, 2015; Tan et al., 2015).
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