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Multi-objective cluster based
bidding algorithm for
E-commerce search engine
marketing system

Cheng Jie*, Zigeng Wang, Da Xu and Wei Shen

Walmart Labs, Sunnyvale, CA, United States

Search engine marketing (SEM) is an important channel for the success

of e-commerce. With the increasing scale of catalog items, designing an

e�cient modern industrial-level bidding system usually requires overcoming

the following hurdles: 1. the relevant bidding features are of high sparsity,

preventing an accurate prediction of the performances of many ads. 2. the

large volume of bidding requests induces a significant computation burden

to o	ine and online serving. In this article, we introduce an end-to-end

structure of a multi-objective bidding system for search engine marketing

for Walmart e-commerce, which successfully handles tens of millions of bids

each day. The system deals with multiple business demands by constructing

an optimization model targeting a mixture of metrics. Moreover, the system

extracts the vector representations of ads via the Transformer model. It

leverages their geometric relation to building collaborative bidding predictions

via clustering to address performance features’ sparsity issues. We provide

theoretical and numerical analyzes to discuss how we find the proposed

system as a production-e�cient solution.
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1. Introduction

In this article, we consider the problem of building an industrial-level scale search

engine marketing (SEM) system aiming at promoting the company’s business by showing

and recommending advertisements on search-result pages. Among various forms of

online advertising, sponsored search auctions often contribute significantly to online

advertising revenue as search results often have more prominent exposure.

Since the onset of search engines such as Google and Yahoo, designing an efficient

SEM model is continuously attracting attention from both academia and industry,

and the emerging challenges appeal particularly to the co-domain of economics and

computer science. Over the years, a large body of literature has studied the constrained

bidding optimization model, which maximizes business objectives under the prefixed

spending limit. For instance, Borgs et al. (2007) and Feldman et al. (2007) establish

SEM bidding models for a single advertiser as constrained optimization problems in

a deterministic setting where the advertisers’ position, clicks, and the cost associated
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with a bid are known a priori. In comparison, SEM bidding as

an optimization problem under the stochastic setting has been

studied in Pin and Key (2011) and Abhishek and Hosanagar

(2012). Game-theoretic structures of SEM have been studied by

Borgers et al. (2013) and Aggarwal et al. (2009), and both studies

aim to boost the welfare of all advertisers on search engine

platforms. More recently, a new stream of work has emerged

which formulate the SEM bidding optimization as a dynamic

pricing problem (Cheng, 2018) by incorporating the sequential

behavior of SEM ads (Dayanik and Parlar, 2013; Shen et al.,

2020).

In practice, however, we found that the optimization SEM

bidding models built by the seminal works are often too

restrictive for practical implementation, although they are

usually rigorously justified through mathematical theories. In

particular, the high volume of candidate ads is a crucial

factor that hurdles the applicability of those methods in

the real world. We must tackle two main challenges when

dealing with the industrial scale of candidate ads. First, due

to the limited number of search-engine platform ad slots,

most SEM ads’ feedback data are inevitably sparse, preventing

an accurate and effective estimation of their performances.

Second, under the high volume of ads, bidding evaluations

through complex optimization algorithms are too costly to

implement, especially when we demand a high frequency of

bidding operations.

To address the above challenges induced by the high volume

of ads, we introduce a generic bidding framework that is

currently in production for the multi-million-scale ads bidding

for Walmart’s e-commerce business. The solution of our system

comprises two major components:

• A deep-learning-based multi-stage predictive algorithm for

predicting the performance of the advertisement through

their multi-modality signals, including the user feedback

data and the contextual features of ads;

• Amulti-optimization algorithm that assigns a bidding price

for each ad based on its performance forecast according to

the objectives of business demands.

Toward building such a system, we first construct a

language model to extract vector representations of the ads

through deep-learning Transformer (Vaswani et al., 2017)

architectures. After capturing the customer’s intention of the

ads page through vector representations, we can now fully

leverage the geometric characteristics of the representations to

aggregate ads’ information that would be sparse otherwise. The

multi-stage prediction algorithm then enriches the grouping

patterns of features via ads clustering, further alleviating the

sparsity issue of the features. In the meantime, the clustering-

based solution improves the scalability of the second-stage

optimization algorithm by significantly reducing the number of

entities in the downstream evaluation of the bids.

Our contributions1

Overall, the contributions of this study are summarized as

follows:

• We are the first to propose an end-to-end multi-objective

SEM bidding framework that incorporates deep learning-

based ads representation, clustering, and prediction.

• We formulate a multi-objective bidding optimization

problem and theoretically justify a proposed solution

toward the optimization problem. The solution is used to

evaluate each SEM ad’s bidding price.

• To generate vector representations of SEM ads, we

present a novel approach utilizing historical user-item level

engagement data and Transformer architectures.

• To cluster large-scale SEM ads based on their embedding

vectors, we introduce a multi-stage method that

significantly reduces the computation cost.

• We use numerical analysis to reason the theoretical

assumptions of our multi-objective bidding model and

conduct offline and online experiments to illustrate the

significant benefits of our proposed bidding system.

Related work. The previous literature addresses the sparsity

issue primarily by using the ads’ “keywords” in addition to

the feedback data (Hillard et al., 2010). However, using word

tokens as a categorical feature can pose severe problems in

building predictive models due to the high cardinality. Unlike

(Hillard et al., 2010), our approach constructs continuous vector

representations of ads and, therefore, avoids the tenuous work

of dealing with massive word tokens. We point out that the idea

of clustering SEM ads have also been proposed to overcome the

high computation demands (Mahdian and Wang, 2009; Chen

et al., 2013). However, the clustering algorithms developed in the

above study are based on the distributions of SEM ads’ historical

feedback data, thereby excluding those with sparse historical

features, which is problematic for modern SEM applications.

The rest of the article is organized as follows: In Section 2,

we introduce the mathematical formulation of the SEM bidding

model and present an overview of the infrastructure of the SEM

bidding system. Section 3 illustrates the details of the SEM ad

embedding methods and the proceeding two-stage clustering

algorithm. With SEM ads clusters being established, Section 4

layout the model training process of predicting the performance

metrics of SEM ads. In Section 5, we thoroughly examine the

performance of the proposed cluster-based bidding solution via

1 An original version of the article can be found in the KDD IRS

workshop (Cheng et al., 2021). Compared to the workshop article, we

extend the bidding optimization model from single objective to multi-

objective, add more discussions on the predictive model building Section

4 and include more extensive numerical results and analysis in the

experiments Section 5.
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both offline studies and online experiments. As expected, the

clustering step is essential for trading off the sparsity, accuracy,

and scalability.

2. Background for SEM bidding

We first introduce the underlying bidding model and system

that power Walmart’s SEM business.

2.1. Multi-objective SEM bidding model

In real-world practice, an E-Commerce company usually

tends to use marketing dollars to drive multiple business goals

in order to achieve balanced performance. Common business

objectives include but are not limited to revenue-related targets

such as gross merchandise value (GMV) and consumption

profits and customer exposure targets such as clicks and

acquisitions. Different business objectives are inevitably not

aligned with each other. Therefore, a mixture of business goals

brings about ambiguity in defining and modeling the problem.

To address such an issue, we establish our SEM biddingmodel as

an optimization problem aiming at maximizing a weighted sum

of various business objectives.

Notations and optimization problem
formulation

To better formulate the multi-objective model, we refer to

each business objective i involved in the problem as a reward i,

denoted as Ri. Moreover, since we construct the SEM bidding

template via ad groups generated by the procedures described in

Section 3, the reward i associated with an adgroup g is, therefore,

identified as Rig . Suppose an advertiser aims to maximize a

weighted sum of a set I of rewards given budget B, the SEM

bidding can be given by

max
{bg}

E
[

∑

g∈G

∑

i∈I

wiRig(bg)
]

(1)

s.t. E
[

∑

g∈G

Sg(bg)
]

≤ B, (2)

where bg is the bidding value assigned to the ads at group

g, Rig(·) and Sg(·) are the corresponding reward and spend

functions. Meanwhile, wi represents the weight of each reward

in the optimization objective.

Directly solving (1) is impractical since the expected

rewards E(Rig(bg)) and expected spending E(Sg(bg)) can be very

complicated (Feldman et al., 2007). However, by adding certain

practical assumptions on E(Rig(bg)) and E(Sg(bg)), the optimum

of (1) can be found quite efficiently. To this end, we first denote

the expected click for the bid value of b as E[Cg(b)], and introduce

the notions of RPS (reward per spend) and RPC (reward per

click) below.

2.1.1. Definition 1

For each reward Ri, The RPSi, i.e, reward per spend (revenue

of an ad per unit of spend), equals: RPSig =
E[Rig (bg )]

E[Sg (bg )]
given

an ad group g. The RPC, i.e, reward per click, equals RPCig =

E[Rig (bg )]

E[Cg (bg )]
for a given ad g.

We now state the critical assumption.

2.1.2. Assumption 1

For a given ad group g, its reward per click RPCig is

invariant to the change of bid value bg . Furthermore, we suppose

E[Cg(bg)] = cg · bg for a given constant of cg . When the search

engine uses the first-price auction2, we have E[Sg(bg)] = cg · b
2
g

as a result.

Under Assumption 2.1.2, we have the following key result:

2.1.3. Theorem 1

The optimal solution to the optimization problem in (1) is

achieved when the weighted sum of RPS (reward per spend) is

the same for all g ∈ G.

Proof. The Lagrangian of (1) is given by:

L = E
[

∑

g∈G

∑

i∈I

wiRig(bg)
]

− λ{B− E
[

∑

g∈G

Sg(bg)
]

}, (3)

The KKT condition for the gradient of (1) is:

∀g :
dL

dbg
=

d

dbg
E
[

∑

i∈I

wiRig(bg)
]

− λ
d

dbg
E
[

Sg(bg)
]

=

0, λ >= 0

Since ∀i, Rig(bg), and Sg (bg) are independent of other ad

groups. KKT condition of (3) implies that an optimal solution

exists when:

d

dbg
E
[

∑

i∈I

wiRig(bg)
]

/
d

dbg
E
[

Sg(bg)
]

takes the same value across g ∈ G. Under assumption 2.1.2, we

immediately have, for ∀i,

E
[

Rig(bg)
]

= cgbgRPCig ,

E
[

Sg(bg)
]

= cgb
2
g

2 First price auction in sponsored search is referred to the mechanism

that once a click occurs, the bidder will be charged with the bidding-price

it provides for the ad slot of the search result (Turocy et al., 2007).
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d

dbg
E
[

Rig(bg)
]

/
d

dbg
E
[

Sg(bg)
]

=
RPCig

2bg
. (4)

As a result, the weighted sum of rewards satisfies the

following

d

dbg
E
[

∑

i∈I

wiRig(bg)
]

/
d

dbg
E
[

Sg(bg)
]

=

∑

i∈I wicgRPCig

2cgbg
=

∑

i∈I wiRPCig

2bg

Moreover, for ∀i, the reward per spend is: RPSig =

E[Rig (bg )]

E[Cg (bg )]
=

RPCig

bg
, and the weighted sum of reward per spend

equals

∑

i∈I

wiRPSig =
E[

∑

i∈I wiRig(bg)]

E[Cg(bg)]
=

∑

i∈I wiRPCig

bg

Hence, the KKT condition of (3) is equivalent to saying that

the weighted sum of
∑

i∈I wiRPSig are equal across g ∈ G.

Recall that Assumption 2.1.2 claims that RPCig is steady

against bg . Therefore, Theorem 2.1.3 implies that as long as we

have an accurate prediction of RPCig for each group and each

type of reward Ri, the optimal condition in (1) can be easily

achieved by setting the bids bg such that
∑

i∈I wiRPCig/bg are

equal across all ad groups g.

2.1.4. Remark 1

Note that the classical singular-ad bidding algorithm can be

easily recovered by replacing the ad group g with the single ad.

2.1.5. Remark 2

As shown in Section 5, the bidding strategy derived from

Theorem 2.1.3 can also retrieve a good approximation of

optimality for the SEM problem (1) under second price auction3

in that linear relations implied from Assumption 2.1.2 still

holds statistically.

2.2. SEM bidding system

The results in the previous section suggest that the critical

task for determining the bids of SEM ads is to accurately predict

each reward per click (RPC) for each ad group g. In the sequel,

we propose a design of the SEM ads bidding system illustrated in

3 Second price auction is referred to the rule that once an ad is clicked,

the related advertiser will be charged with the highest bid to participate

in the auction that is lower than the bid value the advertiser is o�ering

(Benjamin et al., 2005).

Figure 1. In Figure 1, the first task for obtaining the reward per

click (RPCi) predictions for each type of reward i is clustering

the pool of SEM ads into ad groups. It consists of two steps: 1.

building a representation learning model that encodes SEM ads

into embeddings; 2. clustering SEM ads into ad groups.

After creating the SEM ad groups, the system will aggregate

the features for ads within each ad group, and then train a

predictive model to accurately forecast the RPCig for each ad

group. We plug the RPCig back to the optimization problem

and obtain the final bidding bg for each g ∈ G as bg =

(
∑

i∈I wiRPCig)/RPSg , where RPSg is known in advance.

Notice that the model training process is conducted offline while

the model prediction process is performed online with batch.

3. Embedding and clustering of SEM
ads

The ad-group level bidding in (1) performs the best when

each ad cluster is dedicated to a specific user intention. For

this purpose, we segment the SEM ads into mutually exclusive

ad clusters in terms of customer intention in two steps. First,

We build the customer-intention representation model which

provides an embedding for each ad. Second, based on the

embeddings, we develop a multi-stage clustering method that

groups the massive ads into small to mid-sized groups.

3.1. Customer intention embedding
model

The customer intention of an SEM ad is defined as the

integrated purchase intention (of the set of search queries) that

leads to the clicked ads on the search engine. For example, an ad

may appeal to customers who search for “apple phone 8 case” or

“iPhone 9 case,” if their intentions are the case covers for various

versions of the iPhone. If two ads share a large portion of clicked

search queries, their customer intentions should be close to each

other. Therefore, we design the customer intention model to

reflect the co-click relations among the SEM ads. We propose

the following metric to capture such intention.

3.1.1. Interactive metric

The interactive metric (I) is designed to calibrate the

similarity between customer intentions of two SEM ads. Given

two SEM ads A1 and A2, we first obtain the numbers of co-clicks

of the two ads and denote them as C(A1coA2) and C(A2coA1).

Given the numbers of total historical clicks of the two ads CA1
and CA2, the metric value for A1 and A2 is defined via:

IA1,A2 =

√

C(A1coA2) ∗ C(A2coA1)

CA1 ∗ CA2
(5)
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FIGURE 1

Overview of the infrastructure for providing search engine marketing (SEM) ads’ bids by our approach.

FIGURE 2

Interactive metric: An example.

Refer to Figure 2 for an illustration of interactive metric in

a real-world example, which effectively discounts the popularity

and exposure bias.

3.1.2. Contextual features of SEM ad

When a search query appears, the search engine will try

to match it with the SEM ads according to the content of
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FIGURE 3

Search engine marketing ads customer intention embedding model and its training process.

their landing pages. In light of that, we select the ads’ website’s

text content as the main feature for the customer intention

model, since the content should be a critical factor in customers’

decision making. The text feature of an SEM ad is a combination

of titles and descriptions of products contained in the ad’s

website. For the SEM ads with more than one product, we

choose the three top products to constrain the length of the

input feature. Once the features are extracted, they are processed

and converted through the standard tokenization and padding

procedures described in Devlin et al. (2019).

3.1.3. Transformer-based customer intention
representation model

Recently, the attention-based encode-decode structure

transformer has become the status quo architecture for natural

language processing tasks (Vaswani et al., 2017). Motivated by

the structure of the bidirectional transformer from Devlin et al.

(2019), we built a transformer-based deep learning model for

extracting the customer intention from the text features of

SEM ads. As we show in Figure 3, for a given ad A and its

tokenized feature TA, the model will consecutively go through

an initial embedding layer, 3 transformer layers, a dense pooling

layer, and two feedforward layers before generating the final

512-dimension normalized output vector.

3.1.4. Training data

The data we use for training the representation learning

model is the search_term_report from the search engine,

which provides the historical statistics of interactions (e.g.,

clicks, impressions) between SEM ads and their relevant search

queries. Specifically, for each SEM ad, we will extract historical

click numbers between the ad and each search query that leads to

the clicks during a given time window. Together with interactive

metric I defined in Equation 5, we create a data-setD containing

all the tuples of SEM ads having co-clicked queries together

with their interactive metric. In addition to the above positive

instances, we need negative instances to cover larger support of

the distribution. For that purpose, we sample a certain number

of ad tuples without co-clicked queries and append the tuples

onto the data-set D by assigning them with an interactive

metric value of −1. The steps of constructing training data are

illustrated in the left part of Figure 3. For the best practice,

the ratio between positive tuples and negative tuples should be

approximately equal to the average positive interactive metric in

the feedback data.

3.1.5. Model training

Let fθ (·) denote a customer intention model with parameter

vector θ . Given an ad tuple (Ai,Aj) along with their interactive

metric Iij, we define the loss function as

−Iij log σ
(

fθ (TAi )
T fθ (TAj )

)

(6)

Where σ (·) is the sigmoid function. The inner product

of fθ (TAi )
T fθ (TAj ) captures the cosine similarity between the

embeddings of (Ai,Aj), given that output vectors of the model

fθ (·) are normalized. The structure of the model, together with

the procedure for calculating the loss function, are presented on

the right side of Figure 3. The optimization problem for finding

the optimal θ is now given by:

θ⋆ = argmin
θ∈2

∑

(Ai,Aj)∈DT

−Iij log σ (fθ (Ai)
T fθ (Aj)) (7)

The objective (7) indicates that the larger the interactive

metric between two ads, the more impact this ad instance

will carry when determining model parameter θ . Including the
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negative instances will allow the model to further separate ads

that lack a shared customer intention. Moreover, using negative

samples can avoid over-fitting and the corner case where all

SEM ads have a similar embedding. We use the ADAM (Kingma

and Ba, 2015) optimizer, a variant of stochastic optimization for

training (7).

3.2. Multi-stage SEM ads clustering
algorithm

In what follows, we discuss clustering with ads embedding.

Due to the high volume of ads in modern SEM, though many

efficient machine learn models have been introduced (Hartigan

and Wong, 1979; Sakshi et al., 2015; Schubert et al., 2017),

it is still impractical to apply the clustering algorithms that

require computing all the pair-wise distances. Here, we present

a multi-stage method that leverages the SEM ads’ taxonomy and

significantly reduces the computation demand.

3.2.1. SEM ads classification

The first step of the multi-stage clustering algorithm is to

classify each SEM ad into one of the product types, which can be

any taxonomy that is labeled for the items: electronics, beverage,

etc. Most companies have a predefined taxonomy for each item,

which should be actively exploited. SEM ad with only one item

can be directly concluded to its product type, and serve as the

training sample of the taxonomy classification model. For SEM

ads with more than one item, we train a feedforward neural

network to predict each ads’ product type, which takes the

embedding of the SEM ad as input.

3.2.2. Clustering within each product type

Following the classification, we apply the “bottom-up”

Agglomerative clustering (Joe, 1963) using embedding vectors

as features to create mutually exclusive ad groups for the SEM

ads within each product type. Naturally, the cosine distance is

employed as the linkage metric and it also allows us to determine

the threshold based on which the final clusters are formed. We

point out that the first classification step significantly reduces

the computation complexity compared with directly clustering

all the ads.

TABLE 1 Search engine marketing (SEM) ads vs. ad groups: Data-set

overview.

Model AUC F score Accuracy

Customer intention embedding 90% 86% 87%

Bert pre-trained 84% 82 % 81%

Universal sentence encoder pre-trained 78% 75% 75%

Glove pre-trained 76% 70% 68%

TABLE 2 Linear regression: CPCg ∼ β0 + β1 · bg.

Coefficients Estimation t-value p-value

β0(intercept) 0.07 –1.34 0.13

β1(CPCg ) 0.84 4.45 <0.01

Multiple R-squared: 0.931, Adjusted R-squared: 0.94

F-statistics: 241.5, P < 0.01

FIGURE 4

Model training: Gradient boosting regression trees.
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FIGURE 5

Cost per click (CPC) bids scatter plot with regression line for di�erent ad group buckets regarding clicks.

4. Predicting RPC for SEM ads

In the next step, we build a machine learning model for each

ads cluster to predict the key quantity of RPCg , i.e., the revenue

per click, whose role was illustrated in Section 2.2.

4.1. Features

The features we use for predicting RPC can be categorized

into three classes: 1. the historical feedback statistics such as

clicks and conversions; 2. the activity metric for the ad’s landing
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pages such as bounce rate and number of visits; 3. contextual

features of the ad, which are currently the average of ad intention

embedding vectors for each ad group. Our real world application

experience suggests that when sufficient, historical feedback data

are the most important features in forecasting future RPCs,

whereas the sites and ads contextual features are generally

serving as complementary roles in prediction when the ad

groups have relatively scarce feedback data.

4.2. Model selection

There are varieties of machine learning models available

for predicting RPC. On the high level, the predictive

models can be categorized into two frameworks: 1.

Typical regression models where historical feedback data

together with the contextual embedding vectors of ads

are features joint. 2. Time series sequence models which

leverage the time series structure of the feedback data to

predict RPC.

For typical regression models, the gradient boosting

regression tree (GBRT) usually stands out since it excels at

attaining high prediction accuracy on tabular data. Recently,

the development of high efficiency packages such as XGboost

and LightGBM (Guolin et al., 2017) makes training an

accurate boosting regression tree time manageable on

the scale of our SEM ads’ features data. The process of

training the gradient boosting tree on SEM ads is illustrated

in Figure 4.

Intuitively, one would argue that the sequential

time series model would outperform the tree regression

model. However, the discussions and experiments

in Section 5.3 shows that GBRT can achieve similar

accuracy metric as complex time series models such

as recurrent neural networks (LSTM) with much higher

computational efficiency.

4.3. Model training

We choose the clicks-weighted square error as the loss

function for model training because the ad groups with higher

clicks often have more impact on the business. Formally, by

denoting the parameter of the model by η ∈ H and the total

clicks of the ad group byCg , the objective function for predicting

a reward per click(RPCi) is given by:

η⋆ = argmin
η∈H

∑

g∈G Cg(r
η
i (Xg)− RPCig)

2

∑

g∈G Cg
, (8)

Where rη is the RPC predictive model.

TABLE 3 Linear regression: Cg ∼ β0 + β1 · bg.

Coefficients Estimation t-value p-value

β0(intercept) 2.1 1.56 0.09

β1(CPCg ) 104.6 2.97 <0.02

Multiple R-squared: 0.59, Adjusted R-squared: 0.6

F-statistics: 150.5, P < 0.01

5. Experiments and numerical
analysis

5.1. Ablation study

Here, we conduct an ablation study to compare the

performance of the ads representation model developed in

Section 3 with other candidates for embedding models. To this

end, we select a few pre-trained text embedding models as

the candidates for comparison. The performance embedding

models is determined by the accuracy of the model to correctly

predict whether a pair of ads is positively connected or not.

Positive connectivity indicates whether the two ads have shared

co-clicks, as explained in Section 3.2. The data selected for

the evaluation consists of 500 positive and 500 negative pairs.

Note that the evaluation data is not used for model training at

Section 3.2.

Following the notations in Section 3, for a given ad

pair (Ai,Aj) and a given embedding model f , the probability

of two ads being positively connected is calculated by the

sigmoid transform of the two ads dot-product, expressed

as σ (f (TAi )
T f (TAj )). The performances of different models,

measured by various accuracy metrics4, are displayed in Table 1.

The accuracy metrics of different models exemplify that the

customer embedding model depicted in Figure 3 performs the

best in recognizing the connectivity of the SEM ads.

5.2. Numerical analysis on bids, clicks,
and cost

In this section, we present the real-world numerical evidence

to justify the validity of Assumption 2.1.2, which is the key

principle of our bidding system. Recall that the main idea of

Assumption 2.1.2 implies that the bid price is linearly correlated

to both clicks and cost per click (CPC). In order to validate the

claim, we pick a time window of a month and select all the SEM

4 F score and accuracy are calculated according to the best possible

probability thresholds.
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FIGURE 6

Clicks bids scatter plot with regression line for product types of ad groups.

ads with clicks larger than 0 during the time window for our

numerical analysis.

Following the protocol of cluster-based bidding, we organize

the SEM ads into a set of ad groups G and retrieve the monthly

statistics for each adgroup.We fit a regressionmodel of bid value

bg against CPCg , i.e, CPCg = β0+β1 ·bg . The parameters of the

linear model β0 and β1 are determined through clicks weighted

mean square error. Results of the linear model, including

goodness-of-fit measures, are presented in Table 2.

The significance of the slope, together with the high R-

squared value in Table 2 indicates a statistically significant linear

relationship between the bidding value bg and corresponding

CPCg . Also notice that the slope β1 here is close to 1.

Furthermore, we split our ad groups into different buckets
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according to their monthly clicks, and Figure 5 reveals the

scatter plot and regression line between bid and CPC of

sample ad groups among different buckets. The results in

Figure 5 suggest that the higher clicks an ad group has,

the stronger the linear relationship between its bid value

and CPC.

Similarly, we fit another regression line of bg against clicks

Cg of ad group g. According to Table 3, the two metrics are

also statistically correlated. Moreover, we fit regressions lines

separately on different product types of ad groups based on

Section 3.2. As revealed in Figure 6, clicks and bid values are

correlated across different product types, and such correlations

are usually stronger than the one derived from the entire dataset,

according to the goodness-of-fit measures.

5.3. Experimental study

We conducted both offline and online experiments to

answer the following questions:

Q1: Can ads clustering improve the RPCs prediction

accuracy for different types of rewards by addressing the

spareness of feedback data?

Q2: Does the proposed two-step framework improve the

business performance?

TABLE 4 Search engine marketing ads vs. ad groups: Data-set

overview.

SEM ads SEM ad groups

Dataset sample size 21.4 M 1.9M

Missing feature (proportion) 89.7% 52.2%

Non-empty response ratio 6.8 % 37.4 %

Relative response RPCG variance 100% 53%

Relative response RPCC variance 100% 60%

5.3.1. O	ine experiment: Prediction accuracy
comparison

The offline experiment is designed to test whether the

proposed clustering methods address the sparseness issue

and improve the prediction accuracy of RPCs of different

rewards. Here, we choose gross merchandise value (GMV) and

commercial profits (CP) as the rewards for our experiment due

to their close ties with our needs. Moreover, we select a set of ads

with a total number of∼21million, and compare the accuracy of

RPC predictions of 1. directly applying RPC predictions on each

SEM ad (the baseline singular-ad-based algorithm); 2. clustering

SEM ads before predicting RPC for each ad cluster (our cluster-

based bidding algorithm). For a fair comparison, we evaluate

the performance metric based on each ad and set the predicted

RPC of each ad equivalent to the predicted RPC of its belonging

ad cluster when using the second approach. According to the

operation protocol of Walmart, we predict the weekly RPCs of

both GMV and CP as described in Section 4. For the proposed

approach 2, we apply the methods introduced in Section 3 to

cluster SEM ads into ad groups, and aggregate the ad features

within each ad group. The summary statistics for the ad groups

and the original SEM ads are displayed in Table 4. Notice that the

experiment has been redone since the publication of Cheng et al.

(2021), therefore both the data and samples are slightly different

from the results in Cheng et al. (2021).

5.3.2. Notation remark

Note that RPCs of GMV and CP can also be interpreted

as GMV per click and CP per click, respectively. For notation

convenience, in the following, we use RPCG and RPCC to denote

the corresponding RPC of GMV and CP.

In Table 4, the proportion of feature missingness is

calculated based on the non-contextual features, and due

to Walmart’s privacy policy, the variances of the RPCG

and RPCC response variables are presented as percentage

proportions to the largest among the two datasets. Table 4

manifests the two benefits of ads clustering: 1. the feature

sparseness is dramatically improved as exemplified by the

TABLE 5 The RPCG and RPCC predictions accuracy (relative to LR on singular-ad setting), and the o	ine model training time.

Metric Predictive model WMSE (Relative to LR Singular) WMAE (Relative to LR Singular) Training time

Singular based Cluster based Singular based Cluster based Singular based Cluster based

RPCG

LR(reference point) 100% 92% 100% 86% 8m 2m

RNN 24% 20% 30% 24% 70h 22h

Gradient Boosting 25% 21% 29% 23% 4.5h 1h

RPCC

LR(reference point) 100% 88% 100% 75% 7m 2m

RNN 29% 22% 28% 20% 66h 20h

Gradient Boosting 30% 23% 28% 21% 4.2h 1h
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FIGURE 7

Relative WMSE of the baseline and our approach when using GBRT. (A) GMV WMSE. (B) CP WMSE.

reduced missing feature proportion, 2. the reduced variance

of the response variable indicates that the clustering algorithm

tends to produce a more robust output for the downstream

RPCmodeling.

We experimented with three machine learning models

for predicting the weekly RPCG and RPCC : linear regression

(LR) model, LSTM, and gradient boosting regression tree

(GBRT). For building LSTMmodels, we re-construct the feature

dataset to time series sequences. We split the dataset into

training, validation, and test by 80% − 10% − 10%, where

the test dataset is used to report the predictive accuracy

of the trained models. In addition to the click-weighted

MSE (WMSE) mentioned in Section 4, we also include the

click-weighted MAE (WMAE) as the performance metric.

The performances of the trained models are displayed in

Table 5. Figure 7 presents examples of the gradient boosting

Frontiers in BigData 12 frontiersin.org

https://doi.org/10.3389/fdata.2022.966982
https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org


Jie et al. 10.3389/fdata.2022.966982

TABLE 6 Results for 3 online AB tests regarding 3 di�erent reward weights.

Group 1 Group 2 Group 3

Reward weights GMV: 0.7, CP: 0.3 GMV: 0.5, CP: 0.5 GMV: 0.3, CP: 0.7

Control/Test Control Test Control Test Control Test

Spend 100% 101% 100% 98% 100% 97%

GMV 100% 124% 100% 104% 100% 75%

CP 100% 85% 100% 107% 100% 130%

Weighted Rewards 100% 105% 100% 106% 100% 105%

t-test Statistics 2.7, p-value: 0.02 2.8, p-value: 0.01 2.1, p-value: 0.03

trees on RPCG and RPCC predictions when applied to the

baseline and our approach, under their best hyper-parameter

combinations. Due to the privacy policy, we provide the

accuracy metric with respect to the baseline model, which is

Linear regression (LR) on the singular-ad-based algorithm. The

model training, including hyper-parameter tuning, is conducted

on a Linux system with 256 core 2.80GHz CPUs and 1,600

GB memory.

The results from Figure 7 and Table 5 suggest that RPC

predictions via ad clustering consistently achieve better

performances compared with the singular ad prediction, both

in the cases of GMV and CP. Furthermore, the computational

time for training RPC at the cluster level is considerably

less than the singular-ad level. Given its high accuracy

and computational efficiency, gradient boosting regression

trees (GBRT) emerges as a practical choice for real world

application of RPC predictions. We would point out that the

training time presented in Table 5 does not include the train

data preparation time, which puts further disadvantages on

sequential models.

5.3.3. Online experiment: Business e�ciency
comparison

We designed the online AB testing experiment to see

whether the clustering-based bidding improves business

performance, mainly reflected by the weighted sum of rewards

under budget. Following the offline experiment section, we

select GMV and CP as the primary rewards and test our

proposed algorithm on three pairs of weights: (GMV 0.7, CP

0.3), (GMV 0.5, CP 0.5), and (GMV 0.3, CP 0.7). To this end,

we use stratified sampling to select three groups of SEM ads

as our target ads pool. Furthermore, we compare the business

performances between clustering-based bidding and traditional

singular-ad-based bidding algorithms when applied to the

selected SEM ads. Each group of SEM ads is optimized toward

one selected corresponding pair of weighted rewards, as shown

in Table 6.

Here, we leverage the Draft & Experiment platform from

Google Adwords5 to create three pairs of control and test

campaigns that host each group of 200k ads by duplicating

the original ads into two copies. For each pair of campaigns,

the singular-based and clustering-based bidding algorithms are

applied to the control and test campaign, respectively.

In Google Draft & Experiment setting, the control and test

campaigns start simultaneously, and during the test, Google

evenly splits incoming traffic to ensure a fair comparison. For

each pair of control and test campaigns, The experiment session

consists of 1 week of AA test and three following weeks of AB

test, during which the control and test campaigns are treated

differently. The results of 3 online AB tests corresponding to the

three pairs of reward weights are presented in Table 6, where we

present metrics relative to the control campaign.

Table 6 exemplifies that the cluster-based algorithm

outperforms the singular-based bidding algorithm across

all sets of reward weights, according to the weighted

sum of rewards and spend level between control and test

campaigns. Furthermore, notice that when the bidding

algorithm is designed toward optimizing the blended

business objectives, it will not necessarily optimize each of

the objectives.

To further justify our conclusion, for each of the AB tests, we

perform a paired t-test on the weighted RPS of two campaigns,

which are shown at the bottom of Table 6.

6. Conclusion and future study

This article introduces a two-step clustering-based SEM

bidding system that integrates modern representation learning

with the Transformer language model. We describe the detailed

development infrastructure of the multi-objective bidding

system that may bring insights to both practitioners and

5 https://ads.google.com, where the max capacity for a campaign is

200,000.
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researchers in this domain. The offline and online experiments

show that the proposed system compares favorably to the

alternatives in terms of accuracy and training efficiency. Our

successful deployment of Walmart e-commerce further reveals

combining clustering with a modern representation learning

as a scalable solution for industrial bidding systems. In the

future, the clustering and SEM ads embedding models can be

extended by adding pixel features of the items, and we can

incorporate more complex reward-spend functions into our

bidding systems.
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