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framework using knowledge
graph embedding for PubMed
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Here we study the semantic search and retrieval problem in biomedical digital

libraries. First, we introduce MedGraph, a knowledge graph embedding-based

method that provides semantic relevance retrieval and ranking for the

biomedical literature indexed in PubMed. Second, we evaluate our approach

using PubMed’s Best Match algorithm. Moreover, we compare our method

MedGraph to a traditional TF-IDF-based algorithm. Third, we use a dataset

extracted from PubMed, including 30 million articles’ metadata such as

abstracts, author information, citation information, and extracted biological

entity mentions. We pull a subset of the dataset to evaluate MedGraph using

predefined queries with ground truth ranked results. To our knowledge, this

technique has not been explored before in biomedical information retrieval.

In addition, our results provide some evidence that semantic approaches to

search and relevance in biomedical digital libraries that rely on knowledge

graph modeling o�er better search relevance results when compared with

traditional methods in terms of objective metrics.
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1. Introduction

1.1. PubMed

PubMed is the National Library of Medicine’s (NLM) free authoritative

database of citations and search engine of more than 30 million articles in biology,

medicine, pharmacy, and life sciences and across multiple curated databases such

as MEDLINE1. PubMed is used by more than 2.5 million users each day, serving

clinicians, physicians, researchers, and students (Fiorini et al., 2018). It is worth

mentioning that PubMed is a database of citations, not a database of full-text

articles. About two-thirds of the articles indexed in PubMed do not provide access

to full texts2. Instead, when a free full text is available by the publisher, published

1 http://www.nlm.nih.gov/pubs/factsheets/medline.html

2 https://pubmed.ncbi.nlm.nih.gov/
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as open access, or supported by a National Institutes of Health

(NIH)3 grant, the full article gets indexed in PubMed Central4,

NLM’s accessible repository of full-text articles. Accordingly, the

PubMed search engine relies on metadata and citations instead

of parsing full-text articles when providing a search experience.

Articles’ metadata are indexed and parsed in fields to be utilized

in the search process. Metadata fields include titles, abstracts,

authors, journal names, publication dates, submission dates,

related Medical Subject Headings (MeSH)5 terms, citation and

references information, funding grants, and projects.

PubMed uses an algorithm that relies on fuzzy string

matching to match the query with relevant citations. For

example, when a user enters in the search box an author

name followed by a journal name, all the articles that author

published in that journal will appear. In addition, PubMed

uses the Automatic Term Mapping system (ATM) (Thirion

et al., 2009). The ATM system expands the input query and

finds which fields the query entered intended. The expanded

query is then matched with the most relevant documents using

MeSH terms, keywords, and other metadata that could be

treated as an index. The most relevant articles are then retrieved

using the Term Frequency-Inverse Document Frequency (TF-

IDF) algorithm Jones (1972) and ranked based on date or

alphabetically using either the title or the author name (Fiorini

et al., 2018). Other methods include ranking by date or author

information. Recently PubMed deployed its newest relevance

ranking algorithm named BestMatch (Fiorini et al., 2018).

BestMatch relies on a machine learning model trained on

features extracted from user search logs on PubMed in the

past several years. The system has been shown to outperform

TF-IDF-based ranking. However, BestMatch does not consider

that the user query logs that the system has been trained on

contain ambiguous queries. In addition, even though the authors

evaluated the system thoroughly using an A/B testing approach

with real users to evaluate the ranking quality, the algorithm

did not provide solutions for the problem of understanding

query intentions through semantic models. For example, a user

can enter the word “cancer” in the PubMed search box, and

they might mean multiple things by “cancer”. For instance, they

might want an article in the journal named “Nature: Cancer”.

Alternatively, they might want authors who work and publish

in the field of cancer. Or, they might want all relevant articles

that mention cancer or research done in the field of cancer.

They might also be looking for a specific citation with a title

or author name, journal, and year. Alternatively, they might

be looking for several articles related to cancer. Search engines

and information retrieval systems such as PubMed and Google

rely on objective metrics and algorithms to rank their search

3 https://www.nih.gov/

4 https://pubmed.ncbi.nlm.nih.gov/

5 https://www.nlm.nih.gov/mesh/meshhome.html

results. The ranking of the search results does not necessarily

reflect what the user meant by the query. They, however,

reflect the most objective relevance based on the text of the

input query. That is done by analyzing the frequency of the

strings in the input queries in the corpus of documents. In

addition, other models incorporate the citation network of the

documents, such as PageRank in the case of Google (Page et al.,

1999). Hence, integrating semantics in search algorithms and

information retrieval systems, especially in biomedical literature

searches, is crucial to move toward systems that can sort

out ambiguity, understand query intentions, and aid in true

knowledge discovery.

In recent years and the Web 2.0 information revolution,

Semantic Web technologies have proliferated (Berners-Lee

et al., 2001). Semantic web technologies aim to create an

understandable and readable web by machines. The graph

model was introduced to represent knowledge in web pages

semantically using standards such as the Resource Descriptor

Framework (Lassila and Swick, 1998). The idea was driven by

earlier work in digital ontology and concept maps. Knowledge

graphs were then born as a data model used to store information

and data semantically. Knowledge graphs have also been

extended as graph databases for data persistence as it allows for

a more flexible representation of data and relationships than the

relational data model (Hogan et al., 2021).

1.2. Contribution

To help investigate the challenges associated with semantic

understanding of queries when searching the biomedical

literature in PubMed, we introduce MedGraph, a knowledge

graph-based search engine and information retrieval method.

MedGraph relies on converting the metadata associated with

PubMed into a knowledge graph. The metadata includes

disambiguated author names, grant information, MeSH terms,

citation information, and a dataset of extracted bio entities such

as drugs, genes, proteins, and species from the text of the title

and the abstract of each article in PubMed. The dataset was

introduced by Xu et al. (2020), and it includes NIH project

involvement for each author and each article in PubMed. In

addition, it has extracted biological entities using deep learning

named entity recognition technique called BioBERT (Lee et al.,

2020). The dataset is available as a relational database linked

using each article’s unique identifier PMID. The dataset contains

articles from the year 1781 until December 2020. To prove

the utility of MedGraph, we extracted a small dataset of 2,696

articles and their associated metadata and citation network from

the PubMed dataset (Xu et al., 2020). We then extracted the

entities from the dataset and linked them semantically as a

knowledge graph. We then used a knowledge graph embedding

method named Node2vec (Grover and Leskovec, 2016) to

extract semantic features and embed the extracted knowledge
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graph in a Euclidean space. We then used the node vectors to

rank the articles using a cosine distance similarity measure on

the learned vectors according to the input query after pooling

all the vectors of related first-order neighbor nodes for each

article. On the query side, first, the input query is parsed and

expanded using the extracted biological entities in the original

dataset as an index. The expanded query is then matched to

their corresponding nodes in the knowledge graph. Thematched

node vectors are then averaged to vectorize each query.

Using various metrics, we evaluate the proposed method

against PubMed’s BestMatch algorithm as ground truth. In

addition, we compare our method with a traditional TF-IDF

approach (Jones, 1972; Ramos, 2003). Our results show that

MedGraph performs comparably to BestMatch. In addition, it

outperforms the traditional TF-IDF method providing evidence

that using knowledge graph-based semantic search will benefit

the biomedical and life science research community when

adopted as a widely used method in literature search through

digital libraries.

1.3. Relevant previous work

Knowledge graphs (KG) (Paulheim, 2017) have been

adapted to aid search engines and recommender systems.

KGs are highly efficient in those applications due to their

flexibility in modeling multi-cardinal relations at the entity

level. For example, Xiong et al. (2017), the authors introduced

explicit semantic ranking, harnessing KG embedding. The

algorithm uses graph representation learning on the metadata

of articles in the online search engine named Semantic Scholar

(Fricke, 2018). They use a KG embedding model to represent

queries and documents as vectors in the same vector space.

This work is the closest to the work we present here. The

authors provided strong evidence that using KG embedding

in searching academic literature improves the relevance of

the returned documents drastically due to the reliance on

semantics and entity matching in the process. While in Wang

et al. (2017), the authors demonstrated the usefulness of KGs

and semantic modeling in search engines when retrieving web

pages. They used a relation extraction algorithm to construct

a KG. Though they have not used graph embedding, they

devised a semantic matching approach based on support vector

machines.

In Montes-y Gómez et al. (2000), the authors introduced

extracting a KG from the text of two documents. They

then measured the similarity between these two graphs

extracted from the two articles, combining relational and

conceptual similarities. In Ebeid et al. (2021), the authors

showed the utility of ranking methods on embedded KGs

using simple cosine distance metrics to perform tasks such

as link prediction in the biomedical domain. While in

Matsuo et al. (2006), the authors described a system built

using keyword co-occurrence matching. They remodeled the

keyword matching process as a graph and applied a graph

clustering technique to match keywords and queries. In

Blanco and Lioma (2012), The authors modeled the text in

documents as a graph instead of a Bag of Words model

(BoW). Then, they used PageRank (Page et al., 1999) to

derive similarity measures between documents. At the same

time, the authors (Farouk et al., 2018) argued that graph

modeling could enhance search relevance results based on

context rather than just string similarity. They developed a

system where the input documents and indices are converted

to a KG. Their findings support (Ma et al., 2016), where

they drove the point that graph-based search engines are

highly efficient and valuable despite their challenges. Evidence

of the utility of graph-based search is strengthened in Guo

et al. (2021). The authors constructed a network of the

standardized MeSH headings assigned to articles in MEDLINE

(Motschall and Falck-Ytter, 2005). The relationships between

the MeSH headings were modeled as a graph where the edges

represent different hierarchical roles in the original MeSH

coding system. The graph of MeSH headings was then fed

to various graph embedding algorithms. The output was a

learned feature vector representing each MeSH heading for

each node. The data set is helpful in downstream biomedical

computational tasks.

While in Wang J. Z. et al. (2014), the authors used an

efficient graph-based search engine on par with PubMed. Their

approach tackled the problem of returning relevant documents

from three angles. They first built a parallel document indexer.

Second, they modeled each article’s metadata, such as MeSH

terms and keywords, as a graph and applied a personalized

PageRank (Lofgren et al., 2016) to rank the concepts in

the built graph, followed by TF-IDF (Pita et al., 2018) to

rank the documents relative to a query. Third, they included

the user’s search behavior as a factor in relevance, similar

to BestMatch (Fiorini et al., 2018). Despite its efficiency

compared to PubMed, the algorithm requires user input

and is not fully unsupervised. The BestMatch (Fiorini et al.,

2018) is the newest algorithm used by the PubMed search

engine to find the most relevant articles to a user’s query.

BestMatch relies on extracting features from articles and

including prior user search logs into a relevance ranking

predictionmodel. Themodel then finds themost relevant results

personalized to each user. BestMatch provides excellent results

compared with previous approaches in PubMed, yet it does

not consider any semantics failing to distinguish ambiguity

in queries.

In the next section, we describe our methodology and

framework proposed in this article. In Section 3, we describe

our evaluation experiments and results. Section 4 discusses the

results, implications, and future work.We conclude in Section 5.

A complete bibliography is available in Section 6. An additional

literature review is included in the Supplementary material.
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2. Method

In this section, we explain in detail the proposed KG

based biomedical information retrieval framework MedGraph

as shown in Figure 1. An additional illustrative example of our

framework’s pipeline is available in Supplementary Figure 1.

2.1. The PubMed metadata database

In Xu et al. (2020), the authors extracted a metadata

database from the corpus of the PubMed articles available

from 1781 until December 2020 (30 million). The extracted

information includes names of biological entities such as genes,

proteins, species, drugs, and diseases and disambiguated author

information and citation information. The primary purpose

of that dataset was to create a full KG of the articles in

PubMed. The extracted biomedical KG could be used in

various biomedical information retrieval and data mining tasks.

Here we utilize the extracted biomedical knowledge graph

described in Xu et al. (2020). The dataset comes as a relational

database linked by a unique identifier, each article’s identifier

in PubMed, also known as the PMID. Those account for

31, 929, 000 articles. Author information from each article,

including first names, middle names, last names, and affiliations,

has been extracted and disambiguated in separate tables. In

addition, the disambiguated authors have a unique identifier

of AIDs.

Table 1 provides statistics and a description of the PubMed

relational database for essential tables. The original dataset

contains 27 tables linked by PMID. Here we extract metadata

from seven tables. In addition, we do not use 31 million articles

for our dataset. Instead, we choose a subset of articles that have

been submitted to journals between the dates of 2/1/2019 and

2/3/2019. This subset of the articles yielded 2,696 articles when

queried on PubMed. We then use the 2,696 articles to extract

a first-order citation network from the table C04_ReferenceList.

The citation network produced 100,456 articles. Finally, for the

100,456 articles, we extracted the rest of the metadata from the

tables listed above, which will be described later.

2.2. Indexing

Indexing is simply mapping unique vocab to documents

or the opposite like the index at the back of a book. You

can expand that definition and match the extracted unique

vocab to a dictionary (Xu et al., 2020). The index here is the

mapping between the limited unique vocab of the recognized

entities and their respective documents which is enough for

our task. The difference between our indexing strategy and

a more generalized approach is that we did not expand the

index to include all unique entities we just limited the index

to the extracted biomedical terms. In addition in our case, we

use the terms extracted during the named entity recognition as

a limited index. Moreover, the table named B10_BERN_Main

represents the names of drugs, genes, diseases, and species

extracted using named entity recognition using the biomedical

deep learning language model BioBERT (Lee et al., 2020) in the

dataset presented in Xu et al. (2020), which acts as an index

in addition to being part of the KG that we will describe its

extraction later in the following subsection. In addition, the

index will be used to match input user queries and expansion

and create query vectors. More formally, each article p ∈ P

will contain a set of biological entity mentions m ∈ M. Each

mention is part of a set of mentions that distinguish each

unique biological entity b ∈ B where M′ ⊆ M and b →

|M′|. In addition, each unique biological entity has a type that

can be one of four types[ drug, disease, gene, species] where

b(t) ∈ B(T) and T = [drug, disease, gene, species]. Hence

the relationship becomes p[b(t)] ∈ P[B(T)] ∀ b → |M′|.

Note that we only use extracted biological entities from the

text of each article to index our corpus of articles instead of

using MeSH terms or UMLS (Bodenreider, 2004) vocabulary,

which is considered a standard approach in work that has

been done before in biomedical information retrieval and

text mining.

2.3. Knowledge graph extraction

KG extraction converts the relational database of the

PubMed metadata to a graph of interconnected entities,

as shown in Figure 2. For each article, we first extract all

author names, names of drugs, genes, proteins, diseases, and

species, and related MeSH terms and Chemical Substances

terms from the tables described above. Then, the unique

identifiers representing each entity create the KG. As

described before, KGs are represented as a list of triples.

For example, in our case, when we extract an author name

for an article from the metadata database, we represent that

information as [“article/pmid/86509”, “isWrittenBy/wrote”,

“author/aid/6754”]. Similarly, when we extract a drug

name from an article, that information is represented

as [“bioentity/drug/1256”, “isMentionedIn/mentions”,

“article/pmid/78456”]. In addition, if an NIH grant

or project funded an article, that information will be

represented as [“ article/pmid/5678”, “isFundedBy/funds”,

“nih_project/project_id/4123”]. Note that the relationships are

represented equally as the data in this KG model compared with

a relational model.

Accordingly, each article and associated metadata will be

represented as a mini KG or a concept graph, as shown in

Figure 2. Those mini KGs or concept graphs could be seen as

subgraphs of a larger encompassing KG. In our case, we link all

the subgraphs in two ways. First, we use the citation network
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FIGURE 1

An overview of the MedGraph framework.

TABLE 1 A description of main tables in the downloaded PubMed dataset provided in Xu et al. (2020).

Table No. of

rows

No. of

distinct

entities

Description

A01_Articles 31,928,777 31,926,861 A table containing PubMed articles’ bibliographic information.

A02_AuthorList 131,446,038 18,519,492 A table containing PubMed authors and their unique identifiers.

B10_BERN_Main 295,921,671 20,136,150 A table containing all types of extracted bio-entities by BioBERT are used in both building the

Knowledge Graph and as an index.

C03_Affiliation_Merge 62,015,712 9,502,394 A table containing affiliations and extracted fine-grained items.

C05_NIH_PubMed 22,946,601 116,530 A table containing projects from NIH ExPORTER and mapping relation between PI_ID, PMID, and

AND_ID.

C04_ReferenceList 633,401,975 23,856,949 A table containing reference relations between PMID and reference PMID. It was extracted from the

Web of Sciences.

FIGURE 2

The image represents how each article is converted to a concept graph or a smaller knowledge graph.
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FIGURE 3

A part of the extracted knowledge graph.

provided in table C04_ReferenceList, representing extracted

citation information from PubMed and Web of Science. The

citation network provides the edges necessary to link most

articles using the relationship “isCitedBy/cites.” For example,

two articles will be linked and represented in the knowledge

graph as a triple [“article/pmid/652148,” “isCitedBy/cites,”

“article/pmid/415923”]. Second, since the authors and the

names of drugs, diseases, genes, and proteins are disambiguated

and unique, if an author appears with multiple names across

several articles, all the names they appeared with will have

the same author identifier number. Similarly, they will have

the same unique identifier if they occur with different names,

such as Aspirin and NSAID for drugs, proteins, genes, and

species. Moreover, we create a mini KG for each article using

a unique identifier. The linked KG will also be semantically

related because an author will appear in multiple articles, a drug

name in various articles, and the citation network connects all

articles. The final KG will be a semantically linked network

representing articles, authors, NIH grants, drugs, diseases, and

genes. Extracting a KG dataset as described above for the whole

corpus of articles in PubMed is a daunting task. We extract

only a small subset of articles with their citation information

to prove the concept. KG extraction can be formalized by

seeing each subject and object in the extracted triples [vi, rk, vj]

as nodes v of type l in a KG v(l) ∈ V(L) where each

node has a type l ∈ L where L = [“article”, “author”,

“gene/protein”, “drug”, “disease”, “species”, “nih project”, “mesh

term”, “chemical substance”]. Edges in the KG are equivalent

to verbs or predicates in the triple representation, as shown

in Figure 3. Each edge e(k) ∈ E(K) has a type k ∈ K

where K = [“isCitedBy/cites”, “isMentionedIn/mentions”,

“isFundedBy/funds”, “mesh”, “isRelatedTo/relates”]. Hence the

triple relationship can be reformalized to G = (V ,E).

Regarding the validity of the extracted KG please refer

to Xu et al. (2020). As mentioned before the authors

extracted entities using BioBERT, a finely tuned state-of-the-

art biomedical BERT model. The validation was done by

comparing the results to a pretrained general BERT model

on the general domain corpus. The relations were validated

using multiple normalization models and dictionaries such as

GNormPlus for Gene/Protein and Sieve-based entity linking for

Diseases. Author disambiguation was validated using the NIH

ExPORTER and NIH-funded research databases.

2.4. Knowledge graph embedding

Knowledge graph embedding models can be transductive as

in learned from the structure of the graph itself (Perozzi et al.,

2014; Tang et al., 2015; Grover and Leskovec, 2016). Or they
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FIGURE 4

A representation of the Skip-gram model.

can be distance based by forcing a scoring function to evaluate

the plausibility of the triples in the KG (Bordes et al., 2013; Lin

et al., 2015). Or based on end-to-end graph-based deep learning

models such as Graph Neural Networks (Kipf and Welling,

2016). More knowledge about graph embedding can be found

in Wang et al. (2017). Here we aim to learn a set of feature

vectors for each node or entity in the KG as shown in Figure 4.

The feature vector needs to encode the structure of the graph.

More formally, for the graph G = (V ,E) a matrix X ∈ R
d is

learned via the function f : v ǫ V → R
d. One of the constraints

on the learned embedding matrix is that it can be decomposed

to X = ZTv Zu so that X preserves the similarity between its

component matrices where v ∈ V and u ∈ V and Zv ≡ XT and

Zu ≡ X. Preserving the similarity is learned through predicting

the probabilities of co-occurrence between 2 nodes in the same

neighborhood within a specific context windowC after sampling

the graph using a random walk strategy to a size of a corpus

sampled nodes, T.

P(v1, v2, v3, . . . , vt) =
1

T

t=1∑

T

∑

−c ≤ j ≤ c, j=0

log P(vt+j|vt)

(1)

Where c ∈ C and t ∈ T. v1, v2, v3, . . . , vt are sampled

from the first order neighborhood N of a randomly chosen

node vi. To train matrix X, we approximate the probability

P(v1, v2, v3, . . . , vt) over positively and negatively sampled and

labeled nodes using a sliding window on the sampled chains

of nodes from the graph as described in equation 1. Nodes

within the context window are labeled 1, while nodes outside the

context window are labeled 0. A sigmoid function is then used

to normalize the parameters of the matrix X. A backpropagation

phase then takes place to optimize the loss function:

Jt(θ) = log σ (uT0 vc) +
∑

j = P(V)

log σ (−uTj vc) (2)

Where u and vǫ V and ui and vi are row vectors ǫ X.

The previously described algorithm is the Skip-gram model

introduced in Mikolov et al. (2013). It is worth mentioning

that first-order neighborhood means one edge at a time. It is

different than the walk length. Other types of graph embedding

algorithmsmight take into consideration 2nd and 3rd order. But

in general, it is computationally impractical and intractable to

take more than that. To extract KG embedding representations,

we use Node2vec, the algorithm described in Grover and

Leskovec (2016). Node2vec performs a modified version of

the random walk strategy in Perozzi et al. (2014), including

parameters p and q to control the sampling strategy. The p

parameter controls the likelihood of the walk revisiting a node.

The q parameter controls whether the search is constrained

locally or globally. Given q > 1 and a random walk on an

initial node, the random walk samples nodes closer to the initial

node as in Breadth-First Search. Whereas, q < 1, random

walk samples nodes further from the initial node like a Depth

First Search. This customizability in search behavior allows the

random walker to capture diverse structural and topological

properties within the graph. The sampling strategy builds a

corpus of walks starting from each node. The Skip-gram model

trains on this corpus to generate a unique embedding vector for

each node in the KG. Once the model finishes training, we get an

embedding vector of size d for each node regardless of its type,

whether an article, author, drug, disease, gene, NIH project, or

MeSH term.

2.5. Article embedding

Our goal is to build a backend KG-based embedding model

used by a front-end search engine to rank articles relevant

to specific user queries. This step uses a pooling operation

averaging all the node embedding vectors of all types of nodes

connected to each article node in its first-order neighborhood.
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FIGURE 5

How article embeddings are generated.

We created the article embedding model in two stages. First, we

performed the pooling operation of averaging all the nodes of the

articles as described before mentioned in the citation network,

which gives us 100,456 articles. Next, we did a second pooling

operation where we averaged the first-order neighbors of articles

for the 2,696 articles we intend to search.

In Figure 5, the graph on the left is our KG, where we

only have article nodes along with other node types as shown

in Figure 3. For example, suppose we want to calculate the

embedding for article a3, one of the 2,696 articles, but it is also

connected to other article nodes in the graph. So we average

all the embedding vectors of the neighboring articles only, that

is, a2, a4, and a6, and the resultant vector will be the one

representing a3.

2.6. Query tokenizer

This module acts as an interface with the user. It takes

user queries and parses them. The input queries are assumed

to be in English and are tokenized by splitting over white

spaces after removing punctuation, stop words, and verbs. For

example, a query like “show me articles on depression and type

2 diabetes” after tokenization it will be reduced to [“articles,”

“depression,” “type,” “2,” “diabetes”]. The output keywords will

be passed to the query expansion module. Note that the

assumption here is that the query should include keywords in

the index.

2.7. Query matcher

The list of extracted keywords is then expanded using

a sliding window of sizes 2, 3, and 4. The sliding window’s

function captures multiple tokens from the initial keyword

list. It slides over the list of keywords and expands it. For

example, our list of keywords [“articles,” “depression,” “type,”

“2,” “diabetes”] will be expanded to [“articles,” “depression,”

“type,” “2,” “diabetes,” “articles depression,” “depression

type,” “type 2,” “2 diabetes,” “articles depression type,”

“depression type 2,” “type 2 diabetes”]. The expanded list

of keywords is then matched using a Levenshtein string

distance comparator to the index. The index contains all

the extracted biological entities from the articles and their

unique identifiers and locations. For the matched mentions

in each article in the index, each biological entity’s unique

identifier will be extracted and passed to the next step. Similar

to PubMed the system exits if the keywords are not found in

the index.

2.8. Query embedding

This step aims to find all the nodes in the KG with

the same identifiers as the identifiers returned by the query

matcher. After identifying the nodes, their corresponding

learned embedding vectors from the KG embedding step is

extracted. All the vectors are averaged to a single vector in a

pooling operation like Figure 5. The single vector becomes our

query embedding vector.

2.9. Cosine distance and ranked results

In a Euclidean space, the cosine of angle θ between two

vectors A and B is determined using the relationship:

similarity = cos (θ) =
AB

||A|| ||B||
(3)

Since our KG has been embedded in Euclidean space,

the similarity between two nodes is equivalent to the cosine

of the angle between the two vectors representing the

two nodes. So at this point, we have a query vector and

a set of article vectors. A simple operation between the

query vector and the article vectors would yield the list of

articles relevant to the query vector. When sorted by the

cosine score, the list of articles will be presented as ranked

retrieved articles.
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3. Evaluation

3.1. Dataset

For general tasks in information retrieval there exists

multiple benchmark datasets (Thakur et al., 2021). However, in

biomedical information retrieval, there is a lack of benchmark

datasets specific to this particular task (Fiorini et al., 2018). That

said it is not unusual in information retrieval for researchers

to device their evaluation procedure and dataset like we did

here. The only difference is that here we did not perform A/B

testing with users. We used the common heuristic mean average

precision (MAP) on a reproducible dataset. The contribution

of this work lies in the fact that an information retrieval

researcher can take this tested framework and apply it to another

biomedical digital library or further test it on any digital library.

Hence we extracted a proof of concept dataset from the PubMed

database described in Xu et al. (2020) and available at http://er.

tacc.utexas.edu/datasets/ped. The database contains 3, 190, 000

articles indexed from the year 1781 to December 2020. We

extracted our target dataset of 2,696 articles submitted to journals

between 02/01/2019 and 02/03/2019. We came about those

dates by examining the number of articles that have been

submitted to journals for each month in the past 5 years in

PubMed. We then chose the month with the least number of

articles submitted, February 2019. Still, the dataset at that point

was too large. Note that we include extracted articles, but we also

query the reference table to extract the first order citations of

each article, so the number grows exponentially. Accordingly, we

kept reducing the number of days where articles were submitted

to their journals until we got a reasonable size dataset. The

dataset was extracted by first querying the PubMed online search

engine6 for the articles that were submitted to their journals each

month for each year since 2019:

(((("2019/month/01"[Date − Completion] : "2019/month/

30"[Date− Completion]))))

Then the month with the least number of completed and

submitted articles was chosen across all years. Then we adjusted

to choose only 3 days since the size of the yielded citation

network would have been beyond the scope of this study. We

then settled for the dates mentioned above and queried PubMed

with the query, which yielded 2,696 articles:

(((("2019/02/01"[Date−Completion] : "2019/02/03"[Date−

Completion]))))

We then extracted the PMIDs of those articles. The extracted

PMIDs were used to query the downloaded PubMed database

to extract all the necessary metadata for each article. We first

extracted the citation network of the 2,696 articles, which

yielded 100,456 articles, including the 2,696 articles. For the

100,456 articles, all the metadata has been extracted, including

author information, MeSH terms, Substances, NIH project

6 https://www.ncbi.nlm.nih.gov/pmc/

TABLE 2 The description of node and edge types in the extracted

knowledge graph.

Node/Edge type Count

No. of nodes 578,453

No. of author 393,864

No. of article 100,456

No. of NIH projects 27,109

No. of MeSH terms 20,015

No. of chemical substances 9,686

No. of disease 9,594

No. of drug 8,762

No. of gene 6,094

No. of species 2,873

No. of edges 2,226,999

No. of article-relatedTo-MeSHTerm 1,049,789

No. of article-writtenBy-author 596,340

No. of article-mentions-disease 176,516

No. of article-mentions-drug 108,435

No. of article-cites-article 104,138

No. of article-mentions-species 70,694

No. of article-mentions-gene 56,337

No. of article-isFundedBy-NIHProject 54,751

No. of article-relatedTo-substances 9,999

involvement, extracted drug, disease, and protein names, and

citation network from Table 1. The extracted metadata was used

to create the KG as described in Figure 2. The final KG is amulti-

undirected graph with the following description in Table 2. The

total nodes in the graph were 578, 453, representing nine types of

entities; authors, articles, NIH projects, MeSH terms, registered

chemical substances, diseases, drugs, genes, and species. Most of

those nodes were author nodes, followed by article nodes, then

several NIH projects,MeSH term nodes, and extracted biological

entities. Note that what defines a node in a graph is its identifier.

Each node in the KG is identified by its original identifier

concatenated to its type with a slash. For authors, identifiers

are Author IDs (AIDs) in the database, PMIDs identify articles,

Project IDs identify NIH projects, Header IDs identify MeSH

terms, and extracted biological entities are identified by their

unique Entity ID assigned by BioBERT in the original paper (Xu

et al., 2020). For example, an article node will appear in the KG

“article/pmid/652148.” On the other hand, edges in the KG are

identified by their edge type. Here we identify nine relationships

represented with edge labels, as shown in Table 2.

3.2. Experimental setup

We then trained the resultant KG to extract node embedding

vectors using a Node2vec (Grover and Leskovec, 2016) approach
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implemented using Python 3.8 and the library Stellargraph

(Data61, 2018). The algorithm first runs a biased random walk

sampling algorithm on the graph to sample chains of nodes

using the breadth-first bias parameter q = 0.5 and the depth-

first bias parameter p = 2 with a walk length of 50 and 5

walks per node. The sampled corpus of node walks is then used

to train a Skip-gram model as described in Figure 4. Next, we

tuned the Skipgam model over multiple iterations to yield the

best MAP value. The final model was trained using the vector

size 128 chosen from a list of [12, 24, 48, 64, 128, 256], context

window size 5 chosen from the values [3, 5, 7, 12] which are

mostly commonly used in the literature, and the number of

negative samples was 7 from the values [7, 10, 20] also from

the most commonly used values in the literature. The model

was trained on a Windows PC with an Intel i7 processor and

32 GB of RAM. We also implemented and trained a TF-IDF

model on our corpus of 100,456 articles and then extracted

the TF-IDF vectors for the 2,696 target articles to compare

against our method. With the help of the Python library Gensim

(Rehurek and Sojka, 2011), we first extracted a dictionary of

unique tokens in the corpus and then trained a Bag of Words

model. The Bag of Words model was then used to train the TF-

IDF model, yielding a vectorized document matrix and unique

vocabulary. We evaluated MedGraph to assess the quality of our

KG embedding based on relevance ranking against PubMed’s

BestMatch algorithm as ground truth. We extracted a set of

15 queries from PubMed, and we applied the search to the

articles that were completed between the dates of 2/1/2019

and 2/3/2019. The 15 queries were chosen randomly from the

extracted index of biological entities as described in Section 2.2.

They contained the names of diseases and drugs, as shown in

Table 3. For example, for the query “type 2 diabetes,” we use

the following query to search PubMed and then download the

resultant PMIDs of the ranked articles.

(((("2019/02/01"[Date−Completion] : "2019/02/03"[Date−

Completion])))) AND

(type2diabetes[TextWord])

Then for each query, we rank the articles based on

the cosine distance metric by comparing the query vector

to the article vectors described in Figure 1. We then prune

the list of the resultant ranked retrieved articles by K.

That means we choose the top K elements of the ranked

retrieved articles from MedGraph. Then we compute the

number of relevant articles, the number of retrieved articles,

and the number of relevant articles retrieved. We then

compute precision, recall, and F1-Score. Precision is the

number of relevant articles retrieved over the total number

of relevant articles. The recall is the number of relevant

articles retrieved over the total number of retrieved articles.

Moreover, the F1-Score is the harmonic mean of precision and

recall.

We also compute the Mean Average Precision (MAP) across

queries (Aslam and Yilmaz, 2006). MAP is a widely used metric

TABLE 3 A description of the queries we used to evaluate the system

against PubMed’s BestMatch ranked results were used as a ground

truth.

Query

ID

Text No. of relevant

documents

No. of tokens

1 Alcohol 37 1

2 Amino acids 11 2

3 Bacterial infections 6 2

4 Basal cell carcinoma 3 3

5 Bipolar disorder 10 2

6 Cancer 320 1

7 Diabetes 59 1

8 Hepatitis c virus 3 3

9 Histamine 2 1

10 Insulin 25 1

11 Loss of muscle strength 1 4

12 Pediatric cancer 1 2

13 Trauma 22 1

14 Type 2 diabetes 22 3

15 Urinary tract infection 5 3

in information retrieval to evaluate search engines. It focuses

on precision since recall can be misleading in some cases. To

compute MAP, we first calculate the average precision for each

query. That is done by finding each retrieved article in the

ground truth and for top K. Then computing precision at each

article in the retrieved articles. That is followed by averaging the

precision values across all retrieved articles K. Then averaging

across all the queries.

4. Results

Table 4 presents the results of the four metrics we

described in the previous section. We ran 12 levels of K

for both our method MedGraph and the standard TF-IDF

(Ramos, 2003) approach for ranking relevant documents.

Our results indicate that MedGraph has outperformed TF-

IDF on the PubMed BestMatch dataset at various levels of

K and across all queries and metrics. The only exception

is that MAP at higher K levels was higher for TF-IDF.

That might explain why TF-IDF returns more relevant

documents but does not rank them higher, while MedGraph

might retrieve less relevant documents more semantically

related and ranked closely. In addition, both precision

and recall for MedGraph were consistently higher. The

recall increased exponentially with higher K, and precision

decreased exponentially with higher K levels, as demonstrated

in Figure 6.

MedGraph had higherMAP and F1-Scores across allK levels

due to its higher recall and precision. The highest difference
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TABLE 4 Results averaged across the 15 queries on di�erent K levels.

Metric Method K = 1 K = 2 K = 5 K = 10 K = 25 K = 50 K = 75 K = 100 K = 150 K = 250 K = 500 K = 1,000

Recall
TFIDF 0.053 0.062 0.078 0.113 0.177 0.197 0.202 0.207 0.217 0.22 0.22 0.22

MedGraph 0.227 0.245 0.297 0.392 0.545 0.646 0.693 0.726 0.749 0.846 0.931 0.976

Precision
TFIDF 0.467 0.4 0.307 0.293 0.248 0.171 0.136 0.117 0.1 0.064 0.032 0.016

MedGraph 0.867 0.667 0.507 0.453 0.336 0.248 0.202 0.172 0.134 0.103 0.064 0.034

F1-Score
TFIDF 0.081 0.083 0.09 0.122 0.161 0.138 0.118 0.107 0.097 0.074 0.046 0.026

MedGraph 0.279 0.245 0.235 0.276 0.282 0.253 0.221 0.197 0.161 0.134 0.095 0.056

MAP
TFIDF 0.467 0.383 0.272 0.221 0.184 0.177 0.175 0.174 0.174 0.173 0.173 0.173

MedGraph 0.867 0.55 0.284 0.168 0.077 0.041 0.028 0.021 0.014 0.009 0.004 0.002

Bold values indicate the instances where MedGraph has outperformed TF-IDF on different metrics.

FIGURE 6

MedGraph vs. TFIDF on all four metrics.

between MedGraph and TF-IDF was at K = 1, indicating

that the first document in the retrieved documents almost

always existed in the ground truth dataset. However, recall

was the lowest because most of the relevant documents did

not exist in the first position in the retrieved documents. Of

course, as we increase K, the recall increases, indicating that

most of the relevant documents in the ground truth appeared

in the retrieved documents. At K = 10, MedGraph started

underperforming on MAP while TF-IDF stayed consistent at

higherK levels. That is becauseMedGraph ranks a small number

of the relevant documents highly, while many of the documents

do not appear in MedGraph. The documents that appear in the

retrieved documents are ranked closely and higher due to the

semantic nature of the algorithm, while the documents that are

not closely ranked and in the top are usually ranked lower and

tend to be spread out.

Alternatively, in other words, MedGraph produces relevant

articles that are closely ranked together due to the semantic

nature of the algorithm. In contrast, TF-IDF has almost the

same number of relevant articles but is not ranked closer

together. Finally, we computed the four metrics by pruning

the top K ground truth results from relevant documents

from BestMatch.

We used the same K levels provided to prune the

retrieved and relevant results. Figure 7 shows the difference

between pruning the relevant ground truth articles and

not pruning them. The values of recall and F1-Score do

not differ between both approaches. Yet, precision and

MAP are higher when the relevant documents are not

pruned using K. Pruning perhaps provides a mechanism

to control the ground truth dataset. We do not know

how exactly BestMatch ranked it. The returned BestMatch

articles from PubMed have different retrieved articles

without explanation, as shown in Table 4. Hence pruning

might make sense in some cases depending on the

evaluation dataset.

That is also seen in Figure 8, where precision

was much higher across queries with unpruned
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FIGURE 7

The di�erence between pruned and unpruned retrieved results.

FIGURE 8

The four metrics across various levels of K over the 15 queries. Upper is pruned, and lower is unpruned relevant documents.
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relevant results, indicating that MedGraph retrieved

almost all of the relevant results compared

with BestMatch.

5. Discussion

This work provided evidence of the utility and efficiency of

KG-based methods in information retrieval, especially in the

biomedical field. We highlighted the need for more techniques

that rely on semantic understanding of queries and datasets

to aid in automated knowledge discovery and information

organization. KGs have been around for a while, yet they have

not been fully utilized in search engines. Approaches such as

BestMatch for PubMed are very efficient but do not understand

semantics and are trained on user query logs that might change

over time, requiring retraining. Traditional TF-IDF approaches

do not rely on semantics and are almost outperformed by

newly developed methods like ours. The results also indicated

that MAP alone is not enough as an evaluation metric. The

ranking is usually evaluated using A/B testing approaches

involving user studies and metrics that would include users

ranking relevance by hand and then computing metrics such

as Normalized Discounted Cumulative Gain (Busa-Fekete et al.,

2012). Precision as a metric is very informative in evaluating

how many relevant articles were retrieved and, in our case,

MedGraph. It highlighted its superiority. Nevertheless, metrics

such as recall can be misleading. For example, if the system

only retrieved one document, but that document is in the

relevant documents no matter the rank, then recall shall be

100%. Precision acts as a self-assessment of the retrieved articles

by MedGraph because it compares the numbers of retrieved

relevant articles to the number of retrieved articles regardless of

the number of relevant articles.

In our future work, we plan to conduct a user study

where each user, typically a biomedical researcher or a medical

student, will be invited and asked to rank documents based

on specific queries. We will create our ground-truth dataset

instead of relying on BestMatch as our ground truth. We

also plan to expand the scope to extract a KG from the

entire dataset of 30 million articles (Xu et al., 2020) and

compare our model with BestMatch and TF-IDF using our

ground truth. Node2vec represents a basic model incapable

of encoding heterogeneity in KGs. Heterogeneity refers to

a KG having more than one type of node and more than

one type of edge or relationship. Hence more sophisticated

embedding algorithms such as Wang Z. et al. (2014), which

focuses on embedding not just the structure but also the

relations in the KG could be used. In addition heterogeneous

graph neural networks (Wu et al., 2020) could be also

used and both might provide better results. In that light,

we plan to experiment with various other KG embedding

models (Wang et al., 2017) like GraphSAGE that are capable

of handling dynamic KGs. In addition we will experiment

with embedding models capable of capturing more semantics

in the training of node embeddings, expanding our query

matching capabilities to include more than four tokens, and

handling out-of-context queries. Moreover, we plan to have

even more metadata nodes in our KG with the potential

of enriching the KG with other semantic datasets such as

Chem2Bio2RDF (Chen et al., 2010). Moreover, we plan to

experiment with different pooling operations in both article and

query embeddings and present a full parameter sensitivity and

ablation studies.

Its worth mentioning that to experiment on a huge

KG of billions of nodes, we need a parallel large-scale

heterogeneous embedding algorithm that could take in billions

of nodes that would presumably be extracted from the

whole PubMed corpus. Those models though exist and

some of them are used in the industry they can be

impractical in research. Most graph embedding algorithms

work on a very limited amount of data. Our sample

corpus here provides some evidence that this framework is

effective and provides better search results than traditional

methods opening the door to building a full-scale system.

Finally even though this framework here does not address

query intention particularly. Yet it considers semantics and

relations between terms in the ranking. Semantics could

be seen as a step toward future systems that consider

query intentions.

6. Conclusion

In this article, we presented a proof-of-concept method to

build a semantic search engine for the biomedical literature

indexed in PubMed named MedGraph. We showed that

our method is superior to more traditional approaches in

relevance ranking and provided evidence that semantic methods

in information retrieval are more needed. Furthermore, we

performed a complete evaluation using various metrics on

our approach using PubMed’s BestMatch as a ground truth.

We also presented an innovative way of converting relational

databases to KGs. In the future, we hope to expand this work

and provide a fully working model and system accessible by

researchers to provide better ways to discover knowledge and

advance science.
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