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This work presents the application of a methodology to measure domain expert trust

and workload, elicit feedback, and understand the technological usability and impact

when a machine learning assistant is introduced into contingency analysis for real-time

power grid simulation. The goal of this framework is to rapidly collect and analyze a broad

variety of human factors data in order to accelerate the development and evaluation loop

for deploying machine learning applications. We describe our methodology and analysis,

and we discuss insights gained from a pilot participant about the current usability state

of an early technology readiness level (TRL) artificial neural network (ANN) recommender.
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1. INTRODUCTION

The field of power systems represents an exemplar for domains that struggle to incorporate new
technologies. Challenges with control room work culture tend to stifle technological innovation
and prevent the evolution of technology (Kennedy, 1995; Von Meier, 1999; Nisar et al., 2013).
To an extent, this can be expected, as power grid operators are responsible for critical services,
managing transmission and distribution of electricity to cities, residences, and other industrial
loads. Their complex jobs involve maintaining situational awareness of their area of responsibility
(AOR), monitoring voltage and frequency, balancing generation and load, responding to outages,
and responding to emergency scenarios. With high workload and high stakes, operators must
have reliable technology that doesn’t interrupt the speed or quality of work. However, grid
decarbonization, adoption of smart grid technologies, and displacement of traditional generation
by distributed renewables will soon disrupt current power systems operational paradigms. As a
result, a new generation of advanced power applications will be needed to ensure reliable, resilient,
robust, safe, and economic operations.

Machine learning advances can make it possible to aid operators and engineers in critical
action decisions, particularly when time pressure is involved. A notable implementation of
machine assistance is accurate forecasting of total system load as well as solar and wind
expectations for generation scheduling and energy market pricing (Lei et al., 2009; Makarov et al.,
2011; Almalaq and Edwards, 2017; Wang et al., 2019; Lai et al., 2020; Vanting et al., 2021).
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Despite the forecasting benefits that machine learning can
provide, a variety of reasons limit the adoption of these tools by
electric utilities (see Section 2.1). One of the largest hurdles is that
developers of future systems must consider not only the technical
aspects of machine learning (architecture of the algorithm,
training/ validation data quality, etc.), but also incorporate a wide
range of operational considerations and, ultimately, measure
whether new systems are usable by power system operators.
These include consideration of both technology readiness levels
(TRL) (Mankins, 1995) and human readiness levels (HRL) (See
et al., 2019), adherence to existing operational procedures and
increased workload during the adjustment process (Ludwick
and Doucette, 2009), as well as the impact of the tool on
human-machine trust (Hoff and Bashir, 2015), user autonomy
(BenMessaoud et al., 2011), operator situational awareness, and
grid performance. As a result, the current tool deployment
process in power grid control rooms is drawn out and deliberate.

We focus in this work on evaluating the introduction of
machine learning to address the problem of contingency analysis
in power systems. Contingency analysis (CA) is a process used to
identify potential violations of equipment and operational limits
due to unexpected loss of any single piece of physical equipment.
Performing this analysis allows operators to identify the best
course(s) of action to keep the power grid operational. Operators
currently rely on predetermined procedures and their own
experience to resolve contingencies in the power grid. This study
evaluates the readiness and usability of a recommendation system
called ACAT (Artificial Intelligence [AI]-Based Contingency
Action Tool). This system makes use of an artificial neural
network (ANN) to recommend contingency mitigation actions
to operators in order to quickly address potential violations.

To emphasize the importance of operator workflows, human
expertise, and how advancement on the HRL scale can facilitate
TRL advancement, our research team considered an early stage
TRL algorithm that was designed to provide recommendations
to control room operators and engineers for mitigating potential
power system violations. The disconnect between technology
developers and end-users is a living obstacle in getting well-
meaning technology in the hands of mission-critical personnel
that have to work with these proposed tools and systems on a
daily basis. Our work aims to provide an example of how a human
factors study can be conducted with an end-user to provide
actionable feedback to developers. We seek to accelerate the

development and evaluation loop inherent to these development
cycles by rapidly collecting information from domain experts
that addresses these operational procedures. This includes the
acquisition of objective, subjective, and qualitative feedback

measures to address cognitive load, trust, human readiness, and

the technological readiness, usability, and impact of a novel
system. The captured data are aggregated and analyzed to report
back on the current state of the system under evaluation.

In particular, we contribute:

• A methodology that measures domain expert trust, cognitive
load, and technological usability of recommender systems,
with the goal of rapidly acquiring and analyzing objective,
subjective, and qualitative measures.

• Results of the application of this methodology to an
early-stage tool designed to provide contingency mitigation
recommendations to power grid operators.

• Insights gained from observing user interactions under
individual scenario conditions and difficulties.

The methodology applied here provide a framework for
developers and human factors experts evaluating recommender
systems, with a particular focus on how humans respond to
and rely upon the provided recommendations. Researchers can
then apply this methodology when integrating those systems
into a workflow. The methodology proposed should help to
identifying limitations and shortcomings in the system or
challenges in its integration into human operations. This will
support improvement of the system under development and
accelerate the integration of the system into operations.

2. RELATED WORK

In this section, we discuss existing work in three topics
related to this research. We briefly review common barriers to
technology adoption (Section 2.1), we provide an overview of
common terminology and discuss active research in human-
machine trust (Section 2.2), and we describe the usage of
heart rate variability as a proxy for understanding cognitive
load (Section 2.3).

2.1. Barriers to Technology Adoption
From the many barriers to the adoption of new technology
identified by Rogers (1962), we focus our discussion here on two
relevant categories: barriers caused by the technology itself (TRL)
and barriers caused by the user’s ability to use the technology
effectively (HRL). From cloud computing (Zhang et al., 2021)
to smart grid technologies (Dedrick et al., 2015) to system
and information security (Schoenmakers, 2013), the adoption of
technology into control rooms encounters many of these barriers
as well as others.

Characteristics that are inherent to the technology itself
often are often the result of flaws with the system, including
unreliability, failures, malfunctions, and low accuracy (Butler and
Sellbom, 2002; Al Farsi and West, 2006; Kemper et al., 2006;
Randeree, 2007; Schaeffer et al., 2013). Beyond these direct issues
lie other problems that may result from the deployment of new
technology, including information flow disruption (Poon et al.,
2004; DePhillips, 2007; Schaeffer et al., 2013; Plaete et al., 2015),
issues with data continuity (Ross, 2009; May et al., 2011), and
issues with data standardization and interoperability (Ludwick
and Doucette, 2009; Castillo et al., 2010; Lycett et al., 2014;
Agalgaonkar et al., 2016).

Barriers related to the effective utilization of technology by
users are also varied. General challenges with system usability
and related difficulties in use are often a significant concern
of new adopters (Venkatesh, 2000; Lærum et al., 2001; Miller
and Sim, 2004; Meade et al., 2009; Holden, 2011). Related to
these challenges are concerns about a loss of productivity while
integrating a new tool into a workflow (Snoeyink and Ertmer,
2001; Meinert, 2005), as well as the accompanying increased
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workload that is inherent to the adjustment process (Reardon
and Davidson, 2007; Simon et al., 2007; Ludwick and Doucette,
2009; Rao et al., 2011). When thinking specifically about the
introduction of machine intelligence, loss of user autonomy
and agency is also a concern raised by users (Ross, 2009;
BenMessaoud et al., 2011; Wenskovitch et al., 2021), as is a lack
of trust in conclusions reached by the machine (discussed in the
next subsection).

2.2. Human-Machine Trust
A critical consideration for introducing automation into an
established process is ensuring that the human maintains an
appropriate degree of trust in the automation (Wenskovitch and
North, 2020). Lee and See 2004 define trust as “the belief that a
technology will help an individual accomplish his/her goals in
situations of high uncertainty and complexity.” Lyons and Stokes
argue that trust also captures one’s willingness to be vulnerable to
the machine entity (Lyons and Stokes, 2012), while Onnasch et al.
(2014) note that the consequences for automation errors are the
most severe when the systems are exhibiting the highest levels of
automation. Trust factors can bemeasured by the performance of
the human, themachine, and/or the team as a whole (Damacharla
et al., 2018). These metrics fall into a variety of categories, such as
measuring performance, safety, and efficiency. They can also be
measured either subjectively or objectively.

Trust as an overall concept consists of three variable layers,
identified by Hoff and Bashir (2015). Dispositional trust refers
to the general tendency to trust automation, independent of
both context and of specific systems. Situational trust depends
on the current circumstances, exploring the development of
trust with the current system and problem. Learned trust is an
operator’s evaluation of a system over time, drawn both from
past experiences as well as the current interaction. Fostering
the appropriate amount of trust in automation is a continuous
challenge that optimizes the tradeoff between the capabilities of
the system and the user’s perception of those capabilities (Lee and
See, 2004). There are penalties for both overtrust and undertrust
in the capabilities of a system: misuse or overtrust refers to
failures that occur when people inadvertently violate critical
assumptions and rely on automation inappropriately, whereas
disuse or distrust refers to failures that occur when people reject
the capabilities of automation.

There are a number of antecedents of trust that can be utilized
to foster additional trust in a system. Familiarity is perhaps
the most obvious trust factor; a user who has a substantial
amount of contact with automation will have more time to
develop trust in the automation, understanding how and why it
operates in the way that it does. Hoff and Bashir (2015) present
a literature review on trust in automation, noting the role of
familiarity and learned trust. Both predictability and reliability
also play important roles; working with an automation that is
predictable (Lee and See, 2004) and reliable (Hancock et al.,
2011) enhances trust with the system. If a system can predict
upcoming difficulties and/or provide proactive assistance without
prompting by the analyst (and that assistance is dependable),
the user can develop additional trust in the system (Ho et al.,
2017). Finally, transparency provides a significant impact to trust

in automation, including transparency of decision logic (Lyons
et al., 2016b; Sadler et al., 2016; Wang et al., 2021), the intent
that underlies actions taken (Lyons, 2013; Lyons et al., 2016a),
and current system state (Mercado et al., 2016). The research
presented in this study builds on Madsen and Gregor’s Trust
Questionnaire (Madsen and Gregor, 2000), described in further
detail in Section 3.3.

Trust in automation remains a very active topic of
research, exploring methods of enhancing trust, recognizing and
addressing known challenges, and proposing a significant future
research agenda. McDermott et al. (2018) provide a thorough
guidebook that is designed to help system developers who
are working to design trustworthy machine teammates, while
Smith (2019) proposes a checklist and agreement framework
for human-machine teams. Paul et al. (2019) present a
research agenda that is specific to trust in human-machine
teams for cybersecurity operations, identifying a need for
better insight, context, and explainability in human-machine
teams in this space. Several recent research endeavors have
focused on producing guidelines for implementing artificial
intelligence (AI) technologies into current workflows, as well
providing advice for interacting with AI. The extensive guidelines
produced by Amershi et al. (2019) include initial planning
and overarching systems guidelines, guidelines that govern
interactions, guidelines for handling when the AI is wrong,
and guidelines that govern behavior with the system over
time. Extending this work, Nushi et al. (2020) build a case
for how to best apply these guidelines, including setting the
right expectations for users, mitigating bias, and supporting
interaction experiences over time.

2.3. Cognitive Load and Heart Rate
Variability
Another consideration for integrating automation into a
workflow is the effect on the cognitive load level of the human.
If using the new system increases the difficulty of the task, then
overall performance could be impacted by higher cognitive load,
or the amount of information that is currently being processed
within working memory (Sweller et al., 1998).

Like trust, cognitive load can be measured by subjective
or objective means. Subjective measures are typically evaluated
by survey or debriefing following a task, and they include an
evaluation of perceived difficulty or mental effort (DeLeeuw
and Mayer, 2008). A frequently-used survey is the NASA
Task Load Index (TLX), a survey that evaluates workload
subjectively by asking a user about the mental demand, physical
demand, temporal demand, performance, effort, and frustration
level when completing a task (Hart and Staveland, 1988).
Common objective measurements for cognitive load are often
performance-based, including response time and number of
errors (Sweller et al., 1998).

Another quantitative measure of cognitive load is heart rate
variability (HRV). HRV measures variation in time between
heartbeats, or more precisely the variation in recorded intervals
between R spikes, the peaks of an electrocardiogram wave.
Measuring this variability in heart rate consistently shows that
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when mental workload is increased, HRV decreases (Aasman
et al., 1987; Porges, 1992; Sweller et al., 1998; Cinaz et al., 2013). In
contrast, studies that measure only the heart rate rather than the
variability have found both increases (Harris et al., 1990; Mulder,
1992; Wilson, 1993; Stuiver and Mulder, 2014) and decreases
(Casali andWierwille, 1983; Veltman and Gaillard, 1996) in heart
rate when cognitive load is increased. A benefit to using HRV as
a means of measuring cognitive load is the unobtrusive nature
of many of the devices used to acquire physiological measures,
though this is coupled with the clear limitation of requiring
specialized hardware. Kramer (2020) reviews how a variety of
biometric measures can be obtained and measured through these
sensors and devices, quickly detecting phasic shifts in mental
workload.

3. METHODOLOGY COMPONENTS

In this section, we describe the components to the methodology
that are employed to measure the impact of a new system on
domain expert trust, cognitive load, and technological usability.
The methodology and components are generalizable, although
some of the particular metrics here are specific to the power
systems domain. In Section 4, we describe the details of
an experiment that demonstrates this methodology with an
ideal user. This methodology incorporates the rapid acquisition
of objective (Sections 3.1, 3.2), subjective (Section 3.3), and
qualitative (Section 3.4) feedback from a participant. Table 1
provides an overview of the data, measurements, tools, and
processing for each section of this methodology.

3.1. Heart Rate Variability
To capture the data needed to interpret heart rate variability
(HRV), participants are fitted with a Zephyr bioharness1. This
commercial device is capable of measuring six inputs and
reporting more than 20 biometrics. Due to the demonstrated
connection between increases in cognitive load and decreases
in HRV (see Section 2.3), we use HRV as one proxy for
understanding the cognitive load of a participant throughout
the duration of an experimental trial. We also collect TLX
data from each participant as a subjective measure of workload
(see Section 3.3). The raw electrocardiogram (ECG) data are
processed using NeuroKit2 (Makowski et al., 2021), a Python
library for neurophysical signal processing, to extract a clean R-R
interval (distance between the characteristic tall peaks found on
the ECG) signal. Standard computations of ECG data include:

1. SDNN: Measured in milliseconds, this is the standard
deviation of N-N interbeat intervals that have been filtered and
artifacts have been removed.

2. RMSSD: Measured in milliseconds, this is the root mean
square of successive R-R interval differences. R-R intervals are
interbeat intervals between all successive heartbeats.

3. LFn: This is the ratio of the low frequency power (0.04–0.15
Hz) in the ECG frequency-domain to the total power.

1https://www.zephyranywhere.com/

4. HFn: This is the ratio of the low frequency power (0.15–0.4
Hz) in the ECG frequency-domain to the total power.

5. LF/HF ratio: This is the ratio of LF power to HF power.

There are a number of reviews that compare and contrast
these metrics as measures of mental workload (Shaffer and
Ginsberg, 2017). For short-term ECG recordings these metrics
show the most promise for capturing workload consistently over
the course of an experiment. Provided we required a more
objective means to measure cognitive load, while balancing the
ease of deploying sensors, other means of measuring workload
(namely EEG and ERPs) were not used.

3.2. Performance Scoring
Performance for a given task is typically determined based on
behavioral metrics and task relevant measures. When it comes
to preventative actions, determining ground truth is a major
challenge to measuring performance and impact. Part of the
complication is that there is not just one way to mitigate potential
violations and plan for contingencies.

When deploying the action recommendation algorithm, the
research team decided to measure performance of operator
actions through amixture of well-studied behavioral markers and
domain-specific measures. Below is a list of those metrics along
with descriptions.

1. Completion time: This is a measure of time that starts with
the time that the contingency is introduced to the participant
until the time the mitigating plan is implemented. In control
room environments, solving contingencies in a timely manner
is key.

2. Action Penalty: This is a measure of overall system changes
implemented in order to solve contingencies. Discrete actions
such as switching shunts or turning on and off generators
are counted. Discrete actions are combined with continuous
actions such as absolute generation changes to provide an
overall score. This penalty score is derived from existing
guidelines surrounding operator impact on power grid
systems (Anderson et al., 2022).

3. System Penalty: This measure complements action penalty
and measures the degree to which the current state of the
system violates operating limits. Each unit component of the
power system has defined operating limits. This measure is
the simple sum of the exceedance or amount under operating
limits each component in the grid is currently operating. We
use this metric as an objective function for performance, in
that this is what the operator should be optimizing during a
given trial (Anderson et al., 2022).

For real-world deployment, assistance algorithms are often
engineered to obey strict rules about financial considerations,
safety considerations, and operating limits. As an early stage TRL
algorithm, ACAT development has been focused on providing
meaningful and accurate feedback to operators. Our goal was to
determine a set of useful metrics to aid in not only accurately
describing objective performance, but also metrics that are useful
to developers. While completion time provides a meaningful and
often-used human factors measure, action and system penalties
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TABLE 1 | Overview of the data, measure, tools, and processing for each component of the methodology.

Data Measurement Tools required Processing method

HRV Cognitive load Zephyr bioharness Neurokit2, custom code

Logs Performance PowerWorld Custom code

Survey Trust Modified madsen and gregor Statistical software

Interview Insight Survey and Conversation Coding of responses within the research team

provide accuracy measures that could be useful for ACAT
development. This is an example of how one might consider
incorporating domain-relevant metrics with AI-relevant metrics
in a usability assessment.

3.3. Surveys
After each trial, participants receive amodified version ofMadsen
and Gregor’s Trust Questionnaire (Madsen and Gregor, 2000).
This questionnaire measures several constructs that underlie
trust in a system. These constructs can be divided into Cognitive-
Based trust components (e.g., system understandability, technical
accuracy, and reliability) and Emotion-Based trust components
(e.g., faith and personal attachment to the system). See Table 2

for a description of each construct. With respect to the Cognitive
trust components, it is important to note that this survey
measures perceived reliability and accuracy, which may differ
from the actual system performance. For each item, participants
are asked to rate their agreement with a statement. Participant
agreement is measured on a five-point Likert-scale with anchors
ranging from 1 (Strongly Disagree) to 5 (Strongly Agree).

Two modified versions of the questionnaire are administered.
One version is designed to measure trust in ACAT. For this
version the language was modified to address ACAT specifically.
For example, the item from the original questionnaire “The
system analyzes problems consistently” is changed to “ACAT
analyzes CA violation problems consistently.”

In the control condition of this experiment, participants did
not use ACAT and instead rely completely on their operational
procedures. A second version of the trust questionnaire is
modified to assess trust in the operations procedures used
during the control condition. For this version, the language
is modified to address operations procedures specifically.
For example, the item from the original questionnaire “The
system analyzes problems consistently” was changed to
“My operation procedures help me to analyze CA violation
problems consistently.”

After each trial, participants also received the NASA Task-
load Index (TLX). This self-report measure assesses a person’s
workload on six dimensions (Hart and Staveland, 1988). Three
dimensions require one to consider the demands imposed on
them by the task or environment. These dimensions include
mental, physical and temporal demands. The other three
dimensions ask participants to assess their own ability to
manage these demands. These dimensions include self-rated
performance, effort and frustration. Each dimension is measured
by one item and the items are phrased as questions. Rubio et al.
(2004) found support for the measures validity demonstrating

high correlations (0.97 and 0.98) with other self-report measures
of workload.

Participants rated their workload on each dimension using
a six-point Likert scale. In our study, participants were asked
to answer each question considering their workload during
the scenario trial they just completed. For example, one
item asks participants to consider “How mentally demanding
was the trial?”

3.4. Semi-structured Interview Feedback
During each trial, we collect qualitative feedback as the
participant comments on their actions and describes their
approach toward mitigating a contingency. In order to maintain
their focus on exploring the scenario and to enable us to
accurately measure cognitive load, participants are not asked
to follow any think-aloud protocol. Instead, we capture any
spontaneous commentary as the participant works through
each scenario. After the participant submits their final solution
and begins work on the post-trial survey, we conduct a brief
semi-structured interview, gathering additional feedback on
the technological readiness of the system. A similar semi-
structured debrief is also conducted at the end of the experiment,
capturing the overarching thoughts and opinions of the
participant after experiencing the ACAT system in a variety of
scenario conditions.

4. EXPERIMENTAL DESIGN

In this section, we describe the parameters of our experiment to
evaluate the current usability state of the ACAT recommender
tool. We describe the control room environment (Section 4.1)
and the software (Section 4.2) available to the participant,
summarize the experimental procedures (Section 4.3), provide
a reference overview of the scenarios used in the experiment
(Section 4.4), and present an example scenario that is
representative of the contingencies that the participant is
resolving in this study (Section 4.5).

4.1. Control Room
The experiment was conducted in the Electricity Infrastructure
Operations Center (EIOC) West Control Room at Pacific
Northwest National Laboratory (PNNL), shown in Figure 1. The
EIOC provides a realistic replica of a utility control room for
transmission and distribution system operations. The control
room includes 16 operator consoles arranged at three control
desks, all of which are connected to a dedicated network and
server enclave. At the front of the room is a large video wall
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TABLE 2 | The descriptions of each construct measured in our trust questionnaire.

Construct Description Component

Reliable The system performs consistently. Cognitive-based trust

Technical competence The system performances accurately and correctly.

Understandable A user can understand how the system works and predict its performance.

Faith Belief that the system can perform well in the future, even in situations when it is untested. Emotion-based trust

Personal attachment A strong preference for working with the system.

FIGURE 1 | A photo of the electricity infrastructure operations center (EIOC) west control room at pacific northwest national laboratory (PNNL). On screen are a

geographical schematic of the IEEE 118 Bus network, several instances of the PowerWorld Simulator, and the ACAT recommender.

system consisting of 40 individual monitors. The individual
operator consoles and control desks can be configured to enable
role-play between multiple participants serving as various North
American Electric Reliability Corporation (NERC) functional
entities, including reliability coordinator, balancing authority,
transmission operator, distribution operator, and generation
facility operator. This simulated control room environment
provides opportunities for the evaluation of new systems,
experiments designed to understand human factors, and realistic
training scenarios. Due to COVID safety considerations and
restrictions on room capacity, we focus this study on the
interactions between a participant (rather than a full team of
operators) and the ACAT recommender, seeking human subjects
with substantial expertise in real-time contingency analysis and
control room operational procedures.

4.2. Software
The participant in this study made use of two software systems
during the experiment. Participant interactions were performed
within PowerWorld Simulator, a commonly-used program

within control room environments for exploring the effects of
changes to the power grid. ACAT, the system under review in this
study, is a recommendation system intended to direct operators
toward optimal solutions for resolving contingencies.

4.2.1. PowerWorld
PowerWorld Simulator2 is a commercially available software
package used by utilities and researchers to perform common
analysis and simulation tasks for high voltage power systems on
a time frame ranging from several minutes to several days. It is
able to import model files from a wide variety of other software
packages and display them in an intuitive graphical user interface.

For the experiment, the participant was given three
PowerWorld displays (seen in Figure 1) containing a tabular
summary of equipment statuses, a one-line diagram with a semi-
geographic view of the power grid, and a tabular summary of
contingency analysis results. Equipment violations to be resolved

2https://www.powerworld.com/
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by the participant were highlighted in the tabular display as well
as with pie chart flow indicators on the one-line diagram.

Additionally, a custom logging script was written to record the
actions taken by the participant in PowerWorld over the course of
the experiment. This log file contained records of the particular
piece of equipment operated by the participant (generator, line,
shunt capacitor, etc.), new setting values for the equipment, and
timestamps logging when the participant updated the power flow
solution and contingency analysis results.

4.2.2. ACAT
ACAT is the technology under evaluation in this study. At the
time of this study, ACAThas a Technology Readiness Level (TRL)
of 3 (on a 9-point scale) due to the fact that it had been trained to
consider line and transformer outages on a single power system
model with a fixed topology (Mankins, 1995). A TRL of 3 means
that the technology demonstrates some core ability to address
concepts of interest experimentally and analytically, but hasn’t
demonstrated that capability in the applied environment or in
a laboratory environment. ACAT serves as a recommendation
provider, displaying effective corrective action recommendations
to remediate real-time contingency analysis (RTCA) violations.
The system itself makes use of an artificial neural network and a
semi-supervised corrective action algorithm (Chen et al., 2019).
A large number of simulation base cases are generated that are
unique to a specific grid, varying load and generation to represent
a wide range of operating conditions (Chen et al., 2016). These
simulation base cases are then passed to a contingency analysis
tool (Huang et al., 2009) to identify violations and evaluate
their severity. The ANN is then trained on the simulation base
cases and accompanying violations. Currently, ACAT is a PNNL
developed tool that is not publicly available. However, there is
active research in developing prototype tools to aid control room
operators in decision-making and to that end, the ACAT tool
serves as a specific instance of a recommender system.

Solutions to new contingencies fed into the model are
generated via the corrective action algorithm. This algorithm
uses an iterative process to compare known stable system
states to the load and generation profile under evaluation,
developing a mitigation procedure to transition from a state with
a violation to one without. This mitigation procedure is validated
by the ANN to identify any potential follow-up violations
that may result from applying the solution. Following this
validation step, a sequence of control actions is then displayed
to the operator as a recommended procedure for resolving the
contingency. Recommendations generated by ACAT take the
form of text on a large monitor in the control room, and they
identify substations on the 118-bus system and what actions
(shedding load, redistributing power, etc.) should be taken. The
recommendations span the general class of actions that human
operators can take as corrective actions. Operators are not
required to act on these recommendations but can.

4.3. Experiment Procedures
Rather than collecting a team of participants to fill the collection
of control room roles in a normal operating environment (e.g., a
reliability coordinator, a balancing authority, and a transmission

operator), this research focused on the interaction between a
single participant and the ACAT recommender. We made this
determination to maintain focus on interactions with the ACAT
recommender, allowing us to better measure performance, trust,
and the operator’s real-time opinions about the quality of the
tool and its recommendations during trials when ACAT was
present. During each trial, the participant was responsible for
identifying the contingency analysis violation, determining the
proper mitigating actions, and implementing those actions in
the PowerWorld simulation. The workflow deployed in this
experiment is modeled off of actual workflows for power system
engineers. The general steps include presentation of a scenario,
an exploratory solving phase, a final solution implementation,
and completing a post-scenario survey.

Two adjacent consoles were configured with two instances
of the PowerWorld power system simulation software. The left
console was set up as the simulated real-world Supervisory
Control and Data Acquisition (SCADA) interface and one-
line diagram. The right console was configured as a “study-
mode” session, with two monitors containing tabular displays
and one-line diagram from ACAT and PowerWorld. In the
performance results presented in Section 5.2, these are labeled
as “SCADA” and “study-mode” respectively. A paper copy of
the power system operations manual was also available for the
participant to consult at all times during the experiment. This
operations manual contains instructions for resolving common
contingencies in the grid and evaluating the severity of violations,
as well as finding use in training sessions.

The experiment took place over the course of three partial-day
sessions. At the beginning of each day, the participant was fitted
with the Zephyr bioharness. The first day included a training
session, so that the participant could gain exposure to the layout
of the room and consoles, had time to work with the IEEE 118 Bus
network that was used in the scenarios3, and had an opportunity
to practice using both the PowerWorld and ACAT software.
Additionally, training is assumed to be sufficient enough to
dampen learning effects and performance variability associated
with unfamiliarity. A tutorial introduced the participant to the
naming and location of generators, the topology of the lines, and
the overall power distribution in the network, as well as time
to read the 118 Bus system manual. The participant was also
informed about the data collected, including button presses and
hovers, decisions made in the network, and free response answers
to interviewer questions.

Following the training session, the participant was presented
with scenarios of varying difficulty (described in Section 4.4)
and asked to resolve the contingencies in each scenario. Trials
alternated between solving a scenario with and without the
presence of an ACAT recommendation. Each of the scenarios
that we created were tested under both experimental conditions,
but the order of the trials was designed so that the participant did
not see a scenario twice on the same day. Following each trial, the
participant completed a copy of the survey appropriate for the
trial condition (see Section 3.3 for details of the differences).

3http://labs.ece.uw.edu/pstca/pf118/pg_tca118bus.htm
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In this study we are particularly interested in how the human
responds to and relies on (or not) ACAT recommendations. We
only evaluate ACAT recommendations to the extent that it can
provide insight for what the human operator does in a given
scenario. In cases where ACAT’s recommendations were not
perceived as appropriate by the participant, we attempt to capture
the human’s perception of ACAT rather than explaining ACAT’s
technical process.

4.4. Scenarios
For this evaluation, we constructed a collection of scenarios based
on the IEEE 118 Bus network. Some of these scenarios were
set aside for use only in the training session. Seven scenarios
were used in the experimental trials, which we judge to have
three levels of difficulty based on expert power system engineer
feedback. Readers less familiar with power systems should take
away that scenarios were designed with varying difficulties to
resolve contingencies without an aid. We include the technical
aspects for the interested reader. The scenario numbers are
included in the sections that follow for easy reference to the
difficulty of each scenario.

E1. NOA LIGHTLOAD-HIGHVOLT: An easy scenario that
is initialized with light load throughout the grid, but the
loss of a 138kV line between substations4 WMVERN-1
and N.NEWA-1 begins to cause high voltages in the North
region because of reactive power injected into the system by
shunt capacitors.

E2. WOA LIGHTLOAD-HIGHVOLT: An easy scenario that is
initialized with light load throughout the grid, but the loss
of a 345kV line between BEQUIN-1 and BREED-1 begins
to cause high voltages in the West region because of an
open-ended line.

E3. WOA TANNRS-SORENS: An easy scenario centered
around the large interchange between the North and West
regions. The loss of a 345kV line between TANNRS-1 and
SORENS-1 causes power imported by the West region to
now come exclusively through long 138kV tie lines, with
some lines encountering thermal limits.

M4. SOA KANAWH-CABINC: A medium scenario beginning
with low generation in the southeastern portion of the South
region. The loss of a 345kV-138kV transformer between
KANAWH-1 and CABINC causes an overload in the South
region.

M5. NOA EASTLI-MUSKNG: A medium scenario centered
around the large interchange between the North and West
regions. The loss of a 345kV line between EASTLI-1 and
MUSKNG-1 risks voltage collapse due to power imported
by the West region now coming exclusively through long
138kV tie lines.

M6. WOA OLIVE IROL 2: A medium scenario centered
around the large interchange between the North and West
regions. The loss of a 345kV-138kV transfomer from

4The capitalized names within each scenario description refer to substations in the

IEEE 118 Bus grid. The scenario names are then formed from combinations of

these substation names and conditions associated with the contingencies.

OLIVE-1 toOLIVE-2 causes voltage collapse throughout the
West region.

H7. SOA CA SOLUTION FAILURE: A hard scenario centered
around the large interchange between the North and South
regions. The loss of a 345kV line between EASTLI-1 and
MUSKNG-1 could lead to a possible system blackout due to
angle instability along the tie lines connecting the West and
South regions.

4.5. Example Scenario Approach and
Resolution
The experiment was designed to replicate the naturalistic
decision making processes used by power system operators
first documented by Greitzer et al. (2010) and Greitzer and
Podmore (2008). The approach used by operators to resolve
CA violations is based on their familiarity with the particular
power system, their real-time situational awareness, and their
knowledge of historical events and usual causes of common
problems in the network. Within a control room, operators
synthesize numerous inputs from multiple computer displays
regarding system frequency, local voltage, power flow direction,
breaker statuses, and whether various power plants are online
or offline. They use this information in real time to assess
impacts of various contingencies, notably verifying that no
thermal limits or stability limits will be violated as a result of a
particular contingency.

Operators will refer to the guidelines in their operations
manual to evaluate the severity of a particular violation, and the
required timeline for which the contingency must be mitigated.
Table 3 presents one of the tables regarding voltage violation
guidelines from the operations manual given to the participant
during the experiment.

To resolve CA violations, operators use a sequential decision
process that involves projecting the impact of a particular
contingency, tracing the root cause of the violation, and
identifying available equipment near source of the problem. The
decision process typically follows a series of yes/no questions that
operators ask themselves while resolving the CA violation.

The typical process used by operators for resolving
undervoltage violations can be illustrated by tracing a decision
tree for a sample violation. A snapshot of the PowerWorld
interface for the particular scenario is shown in Figure 2. An
operator resolving the particular scenario will observe that
the CA results in the right pane of PowerWorld indicates that
loss of the LOGAN-SPRIGG transmission line (“Contingency
Location” in Figure 2) will result in voltages collapsing to 0.80
per unit (“Worst Violation Location” in Figure 2), which is far
below the Load Dump Low threshold given in Table 3. To resolve
this contingency, action up to and including load shedding must
be taken within 15 min.

The operator will examine the system and identify the source
of the problem is the large load at HOLSTO substation without
any voltage support (“Root Cause Location” in Figure 2). They
will then sequentially ask themselves the questions:

1. Q: Under 0.92 per unit (pu)? A: Yes.
2. Q: Nearby capacitor or reactors? A: No.
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TABLE 3 | Acceptable actions and timeline for simulated post-contingency voltage violations.

Voltage limit violated Voltage limit value Acceptable control action Time to correct

Emergency high 1.10 pu / 110% All effective non-cost actions Within 30 min

Normal high 1.05 pu / 105% All effective non-cost actions N/A

Normal low 0.95 pu / 95% All effective non-cost actions N/A

Emergency low 0.92 pu / 92% All effective non-cost actions except load shedding Within 15 min

Load dump low 0.90 pu / 90% All effective non-cost actions including load shedding if voltage collapse possible Within 15 min

Post-contingency IROL transfer limit All effective non-cost actions including load shedding if voltage collapse possible Within 15 min

FIGURE 2 | An annotated view of PowerWorld, demonstrating the observations made by an operator seeking to resolve the undervoltage violation described in

Section 4.5.

3. Q: Nearby generators? A: The closest is at GLEN L substation
(“Nearest Generator” in Figure 2).

4. Q: Generators online? A: No.
5. Q: Nearby generators available? A: Yes. Request GLEN L

generator to start.
6. Q: Under 0.92 pu? A: Yes.
7. Q: Nearby generators: A: No.
8. Q: Load shedding required? A: Yes. Initiate emergency load

shed at HOLSTO-1 (“Root Cause Location” in Figure 2).

After completing this decision process in the simulator, the
operator will ensure that no new CA violations were created by

the solution, and will then proceed to communicate, coordinate,
and execute the mitigation actions selected.

In cases where ACAT recommendations are provided to

the participant, this process of tracing through the decision

flowchart and consulting operation manuals is supplemented by

the availability of a proposed solution. The participant was not

required to follow this sequence of mitigation steps and can freely

choose to ignore the system recommendation. Alternatively,
they can explore the recommendation and possibly choose to

further refine the solution based on their personal tendencies and

knowledge of the system.
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5. RESULTS

Mirroring the structure of our methodology presented in
Section 3, we structure the overarching results of our evaluation
of ACAT by first reporting the objective HRV and cognitive load
findings in Section 5.1, followed by the performance analysis in
Section 5.2. These are followed by our evaluation of the subjective
trust data acquired via our surveys (Section 5.3) and a summary
of the qualitative feedback collected about ACAT (Section 5.4).
In Section 6, we explore the details of individual scenarios and
trials to better understand how interactions with ACAT change
over time.

5.1. Heart Rate Variability
ECGdata wasmeasured to assess cognitive workload experienced
by the participant. We included a training session to allow
for learning effects and familiarity of working with ACAT to
stabilize. Given this training, we assume that cognitive load is
a measure of both scenario difficulty and additional burden (or
not) of working with ACAT, and not changing over the course
of the experiment. As shown in Figure 3, the participant had
higher workload when ACAT is present for the scenarios NOA
EASTLI-MUSKNG (M5), SOA CA SOLUTION FAILURE (H7),
and WOA LIGHTLOAD-HIGHVOLT (E2). Both the time and
frequency domain metrics provide evidence in these scenarios.
The WOA OLIVE IROL 2 (M6) scenario also provides evidence
for higher workload when working with ACAT but only for the
time domainmetrics. SOAKANAWH-CABINC (M4) represents
the only scenario where there is evidence from all metrics that
workload increases without ACAT. The remaining scenario,
WOA TANNRS-SORENS (E3), has mixed results across the
metrics. NOA LIGHTLOAD-HIGHVOLT (E1) was excluded
from this analysis because the participant resolved the scenario
based on memory and did not allow time to collect enough data
for analysis.

FIGURE 3 | HRV metrics computed for each trial. Descriptions of each metric

are provided in Section 3.1.

Two metrics were most expressive across the scenarios,
SDNN and LF/HF. A manual clustering was performed on
the scatter plot of absolute metric values with respect to
SDNN (standard deviation of the N-N interval) against LF/HF
(ratio of low-frequency power to high-frequency power) to
understand where there was corroborating evidence for higher
workload among the metrics. Here we included both no
ACAT and ACAT trials together. When SDNN is low and
LF/HF is high then there is evidence from both metrics
that workload is high. We found four clusters in this
analysis (Figure 4):

1. (High SDNN, Low LF/HF): WOA OLIVE IROL 2 (M6, No-
ACAT), NOA LIGHTLOAD-HIGHVOLT (E1, No-ACAT),
SOA KANAWH-CABINC (M4, both conditions)

2. (Medium SDNN, Low LF/HF): SOA CA SOLUTION
FAILURE (H7, No-ACAT), WOA OLIVE IROL 2 (M6,
ACAT), NOA EASTLI-MUSKNG (M5, No-ACAT)

3. (Low SDNN,Middle-Low LF/HF): WOA TANNRS-SORENS
(E3, ACAT), NOA EASTLI-MUSKNG (M5, ACAT), WOA
LIGHTLOAD-HIGHVOLT (E2, ACAT)

4. (Low SDNN, High LF/HF): WOA TANNRS-SORENS (E3,
No-ACAT), SOA CA SOLUTION FAILURE (H7, ACAT)

The third and fourth clusters indicate higher cognitive load
trials than the first two clusters. Noticeably, Cluster 3 only
contains ACAT trials and Cluster 4 contains the hard scenario
in the ACAT condition. This scatter plot also highlights that
trials where ACAT was used (marked with an ‘x’ in the
figure), corresponding in most cases to either lower SDNN or
higher LF/HF.

5.2. Performance Scoring
5.2.1. Completion Times
As a measure of performance, we note that completion times
tended to decrease throughout the experiment despite changes
in difficulty and counter balanced ACAT/No-ACAT trials. This
may be an indicator that the participant was still optimizing
a strategy for resolving contingencies generally. We note
that the participant did not have previous exposure to the
118 bus system, the ACAT tool, or the procedures manual

FIGURE 4 | HRV clusters identified in a scatter plot of SDNN vs. LF/HF.
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TABLE 4 | Completion times for each scenario.

ACAT status Off On

Scenario Original Rerun Original

NOA EASTLI-MUSKNG 605.0 - 721.0

NOA LIGHTLOAD-HIGHVOLT 591.0 194.0 0.0

SOA CA SOLUTION FAILURE 560.0 - 746.0

SOA KANAWH-CABINC 468.0 150.0 918.0

WOA LIGHTLOAD-HIGHVOLT 462.0 190.0 103.0

WOA OLIVE IROL 2 289.0 - 148.0

WOA TANNRS-SORENS 417.0 - 630.0

TABLE 5 | Two Way ANOVA to predict completion time from ACAT and difficulty.

Sum sq df F PR(> F)

ACAT 7683.16 1.00 0.16 0.69

Scenario difficulty 334146.65 2.00 3.53 0.06

ACAT: Scenario difficulty 241179.76 2.00 2.54 0.12

Residual 568795.30 12.00 - -

prior to the experiment. The participant did complete a 1-
day training session during the first day of the experiment,
where he familiarized himself with the ACAT algorithm and
118 bus system.

Completion times cannot be completely explained by learning
effects. The scenario, WOA OLIVE IROL 2 (M6), is a scenario
where the participant was faster with ACAT although ACAT
was used first. In a second scenario, SOA KANAWH-CABINC
(M4), the participant was slower with ACAT with this trial
being the second time the participant was in this scenario.
When scenarios are separated out by difficulty and by ACAT
use, there is an ordering where more difficult scenarios required
longer completion times (see Table 4). Generally, however, when
working with ACAT, our participant was slower at resolving
contingencies. A two-way ANOVA did not reveal that neither
ACAT nor difficulty was a significant predictor of completion
times (see Table 5).

5.2.2. Action Penalty
Action penalties were computed according to the formula
provided in Anderson et al. (2022). This metric is a coarse
measure of the amount of change the operator inflicts on the
system in order to resolve the contingency. This measure is
formulated as a penalty function since there is often a direct
financial cost associated with re-dispatching generation and
inherent risk of equipment failure when opening and closing
high voltage circuit breakers. There are two types of data to
which action penalties are applied. The first are study-mode
data and the second are SCADA console data (see Table 6).
As difficulty increases, action penalties also increase. This is
true for both the study-mode and SCADA data, with a larger
increase from medium to hard in study-mode. Across the
two modes, SCADA action penalties are less than study-mode
action penalties. Considering ACAT assistance, in four of the

TABLE 6 | Action penalties for each scenario.

Action type Study-mode actions SCADA actions

ACAT status Off On Off On

Scenario Original Rerun Original Original Rerun Original

NOA EASTLI-MUSKNG 394.08 - 646.84 447.54 - 592.28

NOA LIGHTLOAD-HIGHVOLT 2.29 3.45 1.15 2.29 1.15 1.20

SOA CA SOLUTION FAILURE 809.19 - 947.71 565.31 - 876.23

SOA KANAWH-CABINC 368.90 285.24 200.84 368.93 285.30 182.30

WOA LIGHTLOAD-HIGHVOLT 97.62 296.57 296.57 77.09 295.57 295.57

WOA OLIVE IROL 2 203.43 - 527.92 203.43 - 370.45

WOA TANNRS-SORENS 757.91 - 528.40 567.80 - 491.35

scenarios, action penalties increase when ACAT is used. The
three exceptions are NOA LIGHTLOAD-HIGHVOLT (E1), SOA
KANAWH-CABINC (M4), and WOA TANNRS-SORENS (E3),
where in the first, the difference is negligible and in the latter two
action penalties decrease (Figure 5).

5.2.3. System Penalty
For most of the scenarios, system penalties (Anderson et al.,
2022) were zero, which indicates that all contingency violations
were resolved and that the operator did not create new
violations in a different part of the system. The three
scenarios where non-zero values were computed were NOA
LIGHTLOAD-HIGHVOLT (E1), WOA OLIVE IROL 2 (M6),
and SOA CA SOLUTION FAILURE (H7) (see Table 7). For
NOA LIGHTLOAD-HIGHVOLT (E1), SCADA penalty and
study-mode penalty without ACAT for the first run matched
at 112.69. Similarly the SCADA penalty and study-mode
penalty match at 8.41 in the final run with ACAT. However,
during the second run (without ACAT), the operator’s study-
mode system penalty is higher than the SCADA system
penalty. The solution on the SCADA console was, in fact,
different from the solution on the study-mode console. The
participant discovered a solution during this run and rather than
implementing on the study-mode console, moved directly to
the SCADA console for implementation. The solution of this
second run was implemented on the third run where ACAT
was available.

Similarly, in the SOA CA SOLUTION FAILURE (H7)
scenario, the participant implemented a better solution on the
SCADA console than the study-mode console for the run without
ACAT. However, with ACAT the system penalties (SCADA and
study-mode) were both zero.

Unexpected penalty results are seen in scenario WOA
OLIVE IROL 2 (M6). While the penalties for trials without
ACAT are comparable across study-mode and SCADA,
the trials with ACAT exhibit a higher penalty for the
SCADA solution than the study-mode. In study-mode, the
participant resolves the contingency with a penalty of zero,
but when switching to the SCADA console, the system
penalty increases to 78.99. Upon further examination, the
participant did not implement the study-mode solution
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FIGURE 5 | Performance measures computed for each trial.

and instead believed fewer actions (not switching a
reactor) would resolve the contingency. The participant
had high confidence this single action would resolve
the contingency.

5.3. Survey Outcomes
The researchers compared trust in ACAT to the participant’s
Operations Procedures in seven scenarios. In five of these
scenarios, operator trust in ACAT was lower than their trust in
Operations Procedures for all constructs. Average trust in ACAT
ratings in these five scenarios ranged from M = 1.73 (SD = 0.31)
to M = 2.29 (SD = 0.48), one point lower than their in Operations
Procedures that ranged from M = 3.00 (SD = 1.77) to M = 3.33
(SD = 0.00) (Figure 6).

The only scenarios tested that did not reveal consistently
lower trust in ACAT across constructs were NOA EASTLI-
MUSKNG (M5) and WOA OLIVE IROL 2 (M6). For the
NOA EASTLI-MUSKNG (M5) scenario, Cognitive-Based Trust
(i.e., Reliability, Technical Competence, Understandability) in
ACAT was comparable to Cognitive-Based Trust in Operations
Procedures. In contrast, Emotion-Based Trust (i.e., Faith,

Personal Attachment) was considerably lower for ACAT when
compared to operations procedures (Figure 6A). When rating
trust in ACAT, the construct Understandability showed the
greatest variability across all scenarios. A major source of
this variability was due to the item “I understand how
ACAT will assist me with decisions I have to make” which
was consistently rated lower than the other Understandability
items. See Table 8 for each Understandability item and its
mean rating.

For the WOA OLIVE IROL 2 (M6) scenario, trust in the
Operation Procedures was higher for all constructs except Faith.
Faith in both ACAT and Operation Procedures was low (M
= 2.00) for this scenario (Figure 6C). Faith in ACAT was
comparable to other scenarios. However, Faith in Operation
Procedures for was lower for WOA OLIVE IROL 2 (M = 2.00)
when compared to the average Faith rating across all other
scenarios (M = 3.00). Survey data did not provide any additional
insights into the participant’s lack of faith in the procedures
during the WOA OLIVE IROL 2 (M6) scenario. The participant
did not identify any portions of the procedures that led to a lack
of faith during this scenario.
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FIGURE 6 | Participant trust levels in both operational procedures (blue) and ACAT (red) for each of the seven scenarios (A) NOA EASTLI-MUSKNG, (B) SOA CA

SOLUTION FAILURE, (C) WOA OLIVE IROL 2, (D) WOA TANNERS-SORENS, (E) SOA KANAWH-CABINC, (F) NOA LIGHTLOAD-HIGHVOLT, and (G) WOA

LIGHTLOAD-HIGHVOLT.
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TABLE 7 | System penalties for each scenario.

System type Study-mode system SCADA system

ACAT status Off On Off On

Run Original Rerun Original Original Rerun Original

Scenario

NOA EASTLI-MUSKNG 0.00 - 0.00 0.00 - 0.00

NOA LIGHTLOAD-HIGHVOLT 112.69 112.06 8.41 112.69 8.41 8.41

SOA CA SOLUTION FAILURE 82.46 - 0.00 0.88 - 0.00

SOA KANAWH-CABINC 0.00 0.00 0.00 0.00 0.00 0.00

WOA LIGHTLOAD-HIGHVOLT 0.00 0.00 0.00 0.00 0.00 0.00

WOA OLIVE IROL 2 45.63 - 0.00 45.63 - 78.99

WOA TANNRS-SORENS 0.00 - 0.00 0.00 - 0.00

Perceived workload was measured using the NASA TLX.
Results revealed very little effect of tool use on workload. The
average ratings for Mental Demand, Temporal Demand, Effort
and Frustration across all scenarios were lower than average on a
0 to 5 point Likert scale (M = 1.29 toM = 1.86). Physical demand
was non-existent (M = 0.00) and perceived performance received
the highest possible rating for all scenarios (M = 5.00). On average
we found very little difference in perceived workload between
conditions (Figure 6D). The scenario that showed the greatest
difference in perceived workload between the two conditions
was SOAKANAWH-CABINC (M4). Mental Demand, Temporal
Demand, and Effort were all rated higher when working with
ACAT when compared to the No ACAT condition in this
scenario (Figure 6E).

5.4. Qualitative Feedback
Our debrief captured participant feedback about both the
current state of ACAT and the struggles that the participant
encountered when evaluating the system recommendations
during the experiment trials. Overall, the participant reported
that it took more time to interpret ACAT results than it did
to implement the solution without ACAT. The participant
also identified several usability issues that were not considered
by the developers of the tool. Most notably, ACAT used
bus numbers rather than substation names when delivering
recommendations. Because operators are more familiar
with the names, they would encounter additional work in
converting the ACAT recommendation into an actionable
recommendation. This is not something that operators would
have time to do in emergency situations with regulator
time constraints.

The recommendations generated by ACAT also differed from
common operational practices, in particular recommending
shedding load too often (a last resort step for operators) and
not increasing power generation often enough. The participant
was able to resolve all scenarios without load shedding, despite
the ACAT recommendations. The load shedding steps also were
not accompanied with other information that an operator would
need to know, such as reactive power output. Other common
mitigation steps such as line switching and bringing offline power
plant units into service were not provided as recommended
actions by ACAT.

6. SCENARIO INSIGHTS

In this section, we explore some of the individual scenarios,
obtaining insights regarding participant interactions with the
system under varying scenario conditions and difficulties.

6.1. SOA KANAWH-CABINC Scenario (M4)
The SOA KANAWH-CABINC scenario serves as a
representative example for a case where the positives of the
ACAT recommender outweigh the negatives. In this medium-
difficulty scenario, the loss of a transformer has led to some
line overloads, low power generation in a substantial region
of the grid, and low voltages in some distant buses. Mitigating
this contingency requires a participant to redispatch multiple
generation units which keeping line thermal lines in mind. This
scenario was encountered near the middle of both trial days,
and the trial without access to the ACAT recommender was
encountered prior to the trial with ACAT assistance.

The HRV data indicate that the participant had approximately
the same cognitive workload in both trials, with slightly
higher workload during the first trial without ACAT assistance.
Although ACAT assistance was provided after the participant
had already seen this scenario, the similar cognitive workload
in the ACAT condition is backed up in the survey data. The
participant showed consistently lower trust in ACAT than in
the operational procedures, and the TLX ratings were higher
when the participant was working with ACAT. The participant
also had a higher completion time in the ACAT condition,
and also performed more system checks to confirm the ACAT
recommendation. Despite this higher workload, higher effort,
and lack of trust in ACAT, the performance results showed that
ACAT was helpful, with lower penalties in both study mode and
in the SCADA console solution during the ACAT condition.

Overall, this shows that ACAT objectively helped the
participant to mitigate the contingency, supporting the technical

TABLE 8 | Understandability items and their associated rating averaged across all scenarios.

Item # Description ACAT condition mean

1 I know what will happen the next time I use ACAT because I understand how it behaves. M = 2.57

2 I understand how ACAT will assist me with decisions I have to make. M = 1.86

3 Although I may now know exactly how the AI/ML algorithm works, I know how to use ACAT to make decisions about the problem. M = 2.57

4 It is easy to follow what ACAT does. M = 2.43

Frontiers in Big Data | www.frontiersin.org 14 June 2022 | Volume 5 | Article 897295

https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org
https://www.frontiersin.org/journals/big-data#articles


Wenskovitch et al. Evaluating ML Assistance for Operators

correctness of the tool. However, the lower trust and higher
workload outcomes in the ACAT condition demonstrates the
lack of human readiness of the tool. The participant’s opinion of
the tool had already stabilized in both cognitive and emotional
trust constructs, and the assistance of the tool did not affect
those opinions.

6.2. NOA EASTLI-MUSKNG Scenario (M5)
Following the training sessions, the first scenario encountered by
the participant is NOA EASTLI-MUSKNG, a medium-difficulty
scenario in which there is a risk of voltage collapse at multiple
substations because of power flow across very long tie lines.
Mitigating this contingency requires a participant to redispatch
multiple generation units while also keeping in mind transfer
path limits and power balance. This trial is also performed with
access to the ACAT recommender in the first condition, with
the second condition run on the next day with only procedures
available. This setup provides an opportunity to understand early
participant trust in the system.

Indeed, the survey results showed this scenario to be a trust
outlier when compared to the other scenarios. The cognitive
components of trust were nearly equal between the ACAT and
No-ACAT trials (with the values representing trust in ACAT and
trust in procedures, respectively), which stands in contrast to the
other scenarios in which the No-ACAT trials were consistently
higher that the ACAT trials. The emotional components of trust
displayed the opposite pattern; these values were minimal in this
scenario, with a wide difference between the ACAT and No-
ACAT trials. In the other scenarios, the emotional components
of trust were still consistently lower for the ACAT trials, but the
gap between ACAT and No-ACAT was smaller.

These results show the evolution of trust in the ACAT system,
where the cognitive components of trust (reliability, technical
competence, understandability) decreased whereas the emotional
components of trust (faith, personal attachment) increased across
the early trials. Both evolution trends were rapid, with both
cognitive and emotional trust in ACAT stabilizing across the later
trials (Figure 6).

6.3. WOA TANNRS-SORENS Scenario (E3)
WOA TANNRS-SORENS was another of the early scenarios
encountered, appearing as the third scenario. This also represents
another scenario in which the participant has access to the
ACAT recommender first, with the No-ACAT trial encountered
on the next day. This scenario is judged to be easy in
difficulty, recovering from a loss of a 345 kV line which
causes a few line thermal overloads elsewhere in the grid.
Mitigating this contingency also requires a small number of
redispatched generation units while also keeping in mind the line
thermal limits.

The performance results of this scenario show that the action
penalties were substantially lower in the ACAT condition than
in the No-ACAT condition (Figure 5). This stands in contrast to
the other scenarios, in which the gap between ACAT and No-
ACAT was either smaller or the No-ACAT condition showed
better performance. Despite the better performance with ACAT,
the trust levels in the system had already begun to stabilize by

this point, with participant trust in the procedures higher than in
the ACAT recommendations. This shows that the tool objectively
helps the operator to perform better, yet the participant still does
not have trust in the ACAT recommendations.

Some indications of this lack of trust are seen in
the performance results. While the HRV data shows
comparable cognitive load, the participant spent more time
mitigating the contingency in the ACAT condition and also
performed more system checks to evaluate the quality of the
recommendation. The ACAT solution also required more steps
to implement, resulting in a higher discrete action penalty score
in this condition.

6.4. SOA CA SOLUTION FAILURE Scenario
(H7)
The SOA CA SOLUTION FAILURE scenario is unique in this
collection of experimental trials, both because of its overall
difficulty and because the PowerWorld solver was unable
to converge to a contingency analysis solution, leaving the
participant without that system and therefore fully dependent on
the operational procedures and on ACAT when it was available.
In this scenario, the loss of a 345 kV line has lead to angle
instability in the tie lines connecting the WOA and SOA regions,
and the power system is possibly one contingency away from total
blackout. Should similar circumstances occur in the real power
grid rather than in a simulation, the looming blackout and lack
of a contingency analysis tool solution can easily lead to operator
panic as they respond to a time-sensitive issue.

The participant encountered the experimental condition with
ACAT assistance first and was able to mitigate the contingency.
The performance values were roughly the same, with the ACAT
trial demonstrating slightly higher action penalties and equal
system penalties, but with more system checks performed in the
No-ACAT trial. The HRV data was also similar between the two
experimental conditions, indicative of the high cognitive load
required when exploring and solving this challenge. The TLX
survey results were also approximately identical, with only the
Effort dimension differing (one point higher for ACAT).

Despite these similarities in workload and performance, the
participant rated their trust in the operational procedures much
higher than their trust in ACAT across all trust components
(Figure 6B). This result is similar to what we detected in other
scenarios, with ACAT demonstrating technical assistance but a
lack of user trust. It is particularly noteworthy that the ACAT
condition of this scenario was the second trial encountered by
the participant, immediately after the ACAT NOA EASTLI-
MUSKNG (M5) scenario described in Section 6.2. The trust
survey results show that the participant’s cognitive trust in the
ACAT tool dropped quickly, though their emotional trust rose
slightly as they had slightly more experience with ACAT.

7. DISCUSSION

While ACAT is a low TRL algorithm, there is value in early
stage engagement from end users, in this case, from control room
operators and engineers. By studying the performance of ACAT
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with a representative user, we can identify shortcomings in both
the technical reliability and human usability of the tool. Overall,
we found ACAT to be underperformant across our testing
scenarios. In many cases, this underperformance fell in the
usability category (as seen in the trust survey results), but there
were also technical limitations of ACAT identified in the debrief.
Because it required more time to interpret ACAT results than to
implement the solution without ACAT, the participant avoided
using the system in many of the scenarios where the system
recommendations were available. Both technical and usability
issues led to participant disuse of the tool in multiple scenarios,
where personal expertise and formal operational procedures were
preferred for decision-making.

As noted in the overarching results in Section 5, system
penalties were typically low in both the ACAT and No-
ACAT conditions, indicating contingency mitigation solutions
of similar quality in both conditions. This was true regardless
of whether the participant encountered the ACAT or No-
ACAT trial first. Action penalties presented somewhat more
variability in scale, with some trials showing better performance
with ACAT and others showing better performance without
the recommender.

Results suggest it may not be enough to simply improve
system transparency as a technique for building trust. Two
key points that the participant identified for improvement are
the quality of ACAT recommendations and the interpretability
of those recommendations. Because ACAT recommendations
did not match common operational procedures and were too
aggressive in load shedding, the operator was hesitant to
implement those recommendations. Similarly, the challenge of
interpreting bus numbers rather than substation names added
unnecessary cognitive load to the trials. The identification of
these challenges with the system provides actionable feedback for
developers working on the next version of ACAT.

The lower initial ACAT emotional trust ratings seen in the
NOA EASTLI-MUSKNG (M5) scenario are likely related to
its position as the first scenario encountered in the overall
experiment. There is some empirical evidence and theoretical
support for this explanation. Lowery et al. found the construct
Faith lagged behind other constructs as trust in a new system
increased with exposure Lowry et al. (2018). In addition, one
classic model of trust suggests that Faith is the last component
of trust to develop in a relationship (Rempel et al., 1985).

Lastly, the construct Understandability showed the greatest
variability across all scenarios. A potential explanation for the
lower ACAT conditionmean for this itemmay be the focus on the
utility of ACAT in the prompt provided during the experiment.
Perhaps the participant is distinguishing between understanding
the system (Items 1, 3, and 4) and understanding how the system
can provide value to the decision-making task (Item 2).

7.1. Limitations
One concern with the design of this study is the introduction
of learning effects, in which the participant recalls a previous
solution or a previous sequence of operations that are unique
to a scenario, therefore enabling a more rapid solution in the

second trial with that scenario. Our results showed that while
completion times did generally decrease over the course of
the experiment, there is no correlation between penalty scores
and trial order. Further, we found that many scenarios exhibit
different penalty scores, indicative of different strategies being
pursued and different solutions being generated in the ACAT and
No-ACAT trials.

The participant also reported not feeling comfortable
with trusting ACAT recommendations because he did not
have sufficient exposure to the system in advance, and
so did not have a good understanding of its reliability.
Without that comfort, operators will have a tendency
to avoid using the tool regardless of its quality. The
participant also noted a lack of familiarity with the
operational procedures. Since many contingency violations
are resolved based on operator knowledge, additional
training with both the grid and ACAT are both necessary
in future experiments.

8. CONCLUSION

This work presents an evaluation of ACAT, an early TRL
recommendation system designed to aid power system operators
in their decision-making process for contingency analysis
and maintaining an operational power grid. To perform this
evaluation, we apply a methodology that captures objective,
subjective, and qualitative measures of both technical accuracy
and the readiness of human operators to employ the system
regularly. These measures enable us to quickly evaluate the
impacts of including machine learning into an operator’s existing
workflow on several dimensions simultaneously. The method
supports diagnosing and identifying key areas during the
development process for successful integration when deployed
into the field. We measure performance and workload in two
experimental conditions, one in which the ACAT recommender
is available and another in which the operator only has access to
fixed procedures.

In addition to compiling overall performance results
across all trials, we performed a detailed exploration of
individual scenarios to better understand the nuances of how
the participant interacted with ACAT. In our experiment,
we identified several key issues with the ACAT system,
ranging from usability concerns (e.g., recommendations using
bus numbers rather than substation names) to mismatches
between the system recommendations and current operational
procedures (e.g., the frequent occurrence of load shedding
in the recommendations). Communicating these technical
and usability challenges to developers will further enhance
both the TRL and HRL of ACAT in the next release of
the tool.

DATA AVAILABILITY STATEMENT

The raw data supporting the conclusions of this article will be
made available by the authors, without undue reservation.

Frontiers in Big Data | www.frontiersin.org 16 June 2022 | Volume 5 | Article 897295

https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org
https://www.frontiersin.org/journals/big-data#articles


Wenskovitch et al. Evaluating ML Assistance for Operators

ETHICS STATEMENT

The studies involving human participants were reviewed
and approved by Institutional Review Board (IRB) at
Pacific Northwest National Laboratory (PNNL). The
patients/participants provided their written informed consent to
participate in this study.

AUTHOR CONTRIBUTIONS

JW, BJ, AA, DC, andCF contributed to the conception and design
of the study. AA was on-site during the study and handled much
of the data collection. All authors contributed to data analysis,
and interpretation, writing to the manuscript, and approved the
submitted version.

FUNDING

The research described in this paper is part of the MARS
Initiative at Pacific Northwest National Laboratory. It
was conducted under the Laboratory Directed Research
and Development Program at PNNL, a Multiprogram
National Laboratory operated by Battelle Memorial
Institute for the U.S. Department of Energy under Contract
DE-AC05-76RL01830.

ACKNOWLEDGMENTS

The authors would like to acknowledge Dr. Yousu Chen, Ms.
Lyndsey Franklin, Dr. Slaven Kincic, and Mr. Blaine Mcgary for
their contributions to this project.

REFERENCES

Aasman, J., Mulder, G., and Mulder, L. J. (1987). Operator effort and

the measurement of heart-rate variability. Hum. Factors 29, 161–170.

doi: 10.1177/001872088702900204

Agalgaonkar, Y. P.,Marinovici, M. C., Vadari, S. V., Schneider, K. P., andMelton, R.

B. (2016). Adms state of the industry and gap analysis. Technical report, Pacific

Northwest National Lab (PNNL), Richland, WA.

Al Farsi, M., andWest, D. J. (2006). Use of electronic medical records in oman and

physician satisfaction. J. Med. Syst. 30, 17–22. doi: 10.1007/s10916-006-7399-7

Almalaq, A., and Edwards, G. (2017). “A review of deep learning methods applied

on load forecasting,” in 2017 16th IEEE International Conference on Machine

Learning and Applications (ICMLA) (Cancun: IEEE), 511–516.

Amershi, S., Weld, D., Vorvoreanu, M., Fourney, A., Nushi, B., Collisson, P., et al.

(2019). “Guidelines for human-ai interaction,” in Proceedings of the 2019 CHI

Conference on Human Factors in Computing Systems (New York, NY), 1–13.

Anderson, A., Chen, Y., Kincic, S., Jefferson, B., Fallon, C., and Wenskovitch, J.

(2022). Performance and trust indices for evaluation of ai-based contingency

analysis tools. IEEE Access. under review.

BenMessaoud, C., Kharrazi, H., and MacDorman, K. F. (2011). Facilitators

and barriers to adopting robotic-assisted surgery: contextualizing the unified

theory of acceptance and use of technology. PLoS ONE 6, e16395.

doi: 10.1371/journal.pone.0016395

Butler, D. L., and Sellbom, M. (2002). Barriers to adopting technology. Educ. Q. 2,

22–28.

Casali, J. G., andWierwille,W.W. (1983). A comparison of rating scale, secondary-

task, physiological, and primary-task workload estimation techniques in a

simulated flight task emphasizing communications load. Hum. Factors 25,

623–641. doi: 10.1177/001872088302500602

Castillo, V. H., Martínez-García, A. I., and Pulido, J. (2010). A knowledge-based

taxonomy of critical factors for adopting electronic health record systems by

physicians: a systematic literature review. BMC Med. Inform. Decis. Mak. 10,

1–17. doi: 10.1186/1472-6947-10-60

Chen, Y., Etingov, P., Ren, H., Hou, Z., Rice, M., and Makarov, Y. V. (2016). “A

look-ahead probabilistic contingency analysis framework incorporating smart

sampling techniques,” in 2016 IEEE Power and Energy Society General Meeting

(PESGM) (New York, NY: IEEE), 1–5.

Chen, Y., Yin, T., Huang, R., Fan, X., and Huang, Q. (2019). “Big data analytic for

cascading failure analysis,” in 2019 IEEE International Conference on Big Data

(Big Data) (New York, NY: IEEE), 1625–1630.

Cinaz, B., Arnrich, B., La Marca, R., and Tröster, G. (2013). Monitoring

of mental workload levels during an everyday life office-work scenario.

Pers. Ubiquitous Comput. 17, 229–239. doi: 10.1007/s00779-011-

0466-1

Damacharla, P., Javaid, A. Y., Gallimore, J. J., and Devabhaktuni, V. K. (2018).

Common metrics to benchmark human-machine teams (hmt): a review. IEEE

Access 6:38637–38655. doi: 10.1109/ACCESS.2018.2853560

Dedrick, J., Venkatesh, M., Stanton, J. M., Zheng, Y., and Ramnarine-Rieks,

A. (2015). Adoption of smart grid technologies by electric utilities: factors

influencing organizational innovation in a regulated environment. Electron.

Mark. 25, 17–29. doi: 10.1007/s12525-014-0166-6

DeLeeuw, K. E., and Mayer, R. E. (2008). A comparison of three measures of

cognitive load: evidence for separable measures of intrinsic, extraneous, and

germane load. J. Educ. Psychol. 100, 223. doi: 10.1037/0022-0663.100.1.223

DePhillips, H. A. (2007). Initiatives and barriers to adopting health

information technology. Dis. Manag. Health Outcomes 15, 1–6.

doi: 10.2165/00115677-200715010-00001

Greitzer, F. L., and Podmore, R. (2008). Naturalistic decision making in power grid

operations: Implications for dispatcher training and usability testing. Technical

report, Pacific Northwest National Lab (PNNL), Richland, WA.

Greitzer, F. L., Podmore, R., Robinson, M., and Ey, P. (2010). Naturalistic decision

making for power system operators. Intl. J. Hum. Comput. Interact. 26,

278–291. doi: 10.1080/10447310903499070

Hancock, P. A., Billings, D. R., Schaefer, K. E., Chen, J. Y., De Visser, E. J., and

Parasuraman, R. (2011). A meta-analysis of factors affecting trust in human-

robot interaction. Hum. Factors 53, 517–527. doi: 10.1177/0018720811417254

Harris Sr, R. L., Bonadies, G. A., and Comstock Jr, J. R. (1990). “Usefulness of heart

measures in flight simulation,” inNASA, Lyndon B. Johnson Space Center, Third

Annual Workshop on Space Operations Automation and Robotics (SOAR 1989)

(Houston, TX).

Hart, S. G., and Staveland, L. E. (1988). Development of nasa-tlx (task load

index): results of empirical and theoretical research. Adv. Psychol. 52, 139–183.

doi: 10.1016/S0166-4115(08)62386-9

Ho, N., Sadler, G. G., Hoffmann, L. C., Zemlicka, K., Lyons, J., Fergueson, W.,

et al. (2017). A longitudinal field study of auto-gcas acceptance and trust:

first-year results and implications. J. Cogn. Eng. Decis. Mak. 11, 239–251.

doi: 10.1177/1555343417701019

Hoff, K. A., and Bashir, M. (2015). Trust in automation: Integrating empirical

evidence on factors that influence trust. Hum. Factors 57, 407–434.

doi: 10.1177/0018720814547570

Holden, R. J. (2011). What stands in the way of technology-mediated

patient safety improvements? a study of facilitators and barriers to

physicians’ use of electronic health records. J. Patient Safety 7, 193.

doi: 10.1097/PTS.0b013e3182388cfa

Huang, Z., Chen, Y., and Nieplocha, J. (2009). “Massive contingency analysis with

high performance computing,” in 2009 IEEE Power and Energy Society General

Meeting (Calgary, AB: IEEE), 1–80.

Kemper, A. R., Uren, R. L., and Clark, S. J. (2006). Adoption of electronic

health records in primary care pediatric practices. Pediatrics 118, e20-e24.

doi: 10.1542/peds.2005-3000

Kennedy, T. (1995). A system operator’s view of evolving applications. IEEE

Comput. Appl. Power 8, 25–29. doi: 10.1109/67.372672

Kramer, A. F. (2020). “Physiological metrics of mental workload: a review of recent

progress,” inMultiple-Task Performance (Washington, DC), 279–328.

Frontiers in Big Data | www.frontiersin.org 17 June 2022 | Volume 5 | Article 897295

https://doi.org/10.1177/001872088702900204
https://doi.org/10.1007/s10916-006-7399-7
https://doi.org/10.1371/journal.pone.0016395
https://doi.org/10.1177/001872088302500602
https://doi.org/10.1186/1472-6947-10-60
https://doi.org/10.1007/s00779-011-0466-1
https://doi.org/10.1109/ACCESS.2018.2853560
https://doi.org/10.1007/s12525-014-0166-6
https://doi.org/10.1037/0022-0663.100.1.223
https://doi.org/10.2165/00115677-200715010-00001
https://doi.org/10.1080/10447310903499070
https://doi.org/10.1177/0018720811417254
https://doi.org/10.1016/S0166-4115(08)62386-9
https://doi.org/10.1177/1555343417701019
https://doi.org/10.1177/0018720814547570
https://doi.org/10.1097/PTS.0b013e3182388cfa
https://doi.org/10.1542/peds.2005-3000
https://doi.org/10.1109/67.372672
https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org
https://www.frontiersin.org/journals/big-data#articles


Wenskovitch et al. Evaluating ML Assistance for Operators

Lærum, H., Ellingsen, G., and Faxvaag, A. (2001). Doctors’ use of electronic

medical records systems in hospitals: cross sectional survey. BMJ 323,

1344–1348. doi: 10.1136/bmj.323.7325.1344

Lai, J.-P., Chang, Y.-M., Chen, C.-H., and Pai, P.-F. (2020). A survey of

machine learning models in renewable energy predictions. Appl. Sci. 10, 5975.

doi: 10.3390/app10175975

Lee, J. D., and See, K. A. (2004). Trust in automation: designing for appropriate

reliance. Hum. Factors 46, 50–80. doi: 10.1518/hfes.46.1.50.30392

Lei, M., Shiyan, L., Chuanwen, J., Hongling, L., and Yan, Z. (2009).

A review on the forecasting of wind speed and generated power.

Renew. Sustain. Energy Rev. 13, 915–920. doi: 10.1016/j.rser.2008.

02.002

Lowry, K. M., Kamp, E., Fallon, C. K., and McGhee, R. (2018). I “nvestigating

attorney trust in machine-enabled legal research: a mixed methods approach,”

in Proceedings of the Human Factors and Ergonomics Society Annual Meeting,

Vol. 62 (Los Angeles, CA: SAGE Publications Sage CA), 1997–2002.

Ludwick, D. A., and Doucette, J. (2009). Adopting electronic medical

records in primary care: lessons learned from health information systems

implementation experience in seven countries. Int. J. Med. Inform. 78, 22–31.

doi: 10.1016/j.ijmedinf.2008.06.005

Lycett, K., Wittert, G., Gunn, J., Hutton, C., Clifford, S. A., and Wake, M.

(2014). The challenges of real-world implementation of web-based shared

care software: The hopscotch shared-care obesity trial in children. BMC Med.

Inform. Decis. Mak. 14, 1–8. doi: 10.1186/1472-6947-14-61

Lyons, J. B. (2013). “Being transparent about transparency: a model for human-

robot interaction,” in 2013 AAAI Spring Symposium Series (Palo Alto, CA).

Lyons, J. B., Ho, N. T., Fergueson, W. E., Sadler, G. G., Cals, S. D.,

Richardson, C. E., et al. (2016a). Trust of an automatic ground collision

avoidance technology: a fighter pilot perspective.Military Psychol. 28, 271–277.

doi: 10.1037/mil0000124

Lyons, J. B., Koltai, K. S., Ho, N. T., Johnson, W. B., Smith, D. E., and Shively, R.

J. (2016b). Engineering trust in complex automated systems. Ergon. Design 24,

13–17. doi: 10.1177/1064804615611272

Lyons, J. B., and Stokes, C. K. (2012). Human-human reliance in the context of

automation. Hum. Factors 54, 112–121. doi: 10.1177/0018720811427034

Madsen, M., and Gregor, S. (2000). “Measuring human-computer trust,” in 11th

Australasian Conference on Information Systems, Vol. 53 (Brisbane, QLD), 6–8.

Makarov, Y. V., Etingov, P. V., Ma, J., Huang, Z., and Subbarao, K. (2011).

Incorporating uncertainty of wind power generation forecast into power system

operation, dispatch, and unit commitment procedures. IEEE Trans. Sustain.

Energy 2, 433–442. doi: 10.1109/TSTE.2011.2159254

Makowski, D., Pham, T., Lau, Z. J., Brammer, J. C., Lespinasse, F., Pham, H., et al.

(2021). NeuroKit2: A python toolbox for neurophysiological signal processing.

Behav. Res. Methods 53, 1689–1696. doi: 10.3758/s13428-020-01516-y

Mankins, J. C. (1995, April 6). Technology readiness levels.White Paper.

May, C. R., Finch, T. L., Cornford, J., Exley, C., Gately, C., Kirk, S.,

et al. (2011). Integrating telecare for chronic disease management in the

community: what needs to be done? BMC Health Serv. Res. 11, 1–11.

doi: 10.1186/1472-6963-11-131

McDermott, P., Dominguez, C., Kasdaglis, N., Ryan, M., Trhan, I., and Nelson, A.

(2018). Human-machine teaming systems engineering guide. Technical report,

MITRE Corp, Bedford MA, United States.

Meade, B., Buckley, D., and Boland, M. (2009). What factors affect the use of

electronic patient records by irish gps? Int. J. Med. Inform. 78, 551–558.

doi: 10.1016/j.ijmedinf.2009.03.004

Meinert, D. B. (2005). Resistance to electronic medical records (emrs): a barrier to

improved quality of care. Inform. Sci. 2:493–504. doi: 10.28945/846

Mercado, J. E., Rupp, M. A., Chen, J. Y., Barnes, M. J., Barber, D., and Procci, K.

(2016). Intelligent agent transparency in human-agent teaming for multi-uxv

management. Hum. Factors 58, 401–415. doi: 10.1177/0018720815621206

Miller, R. H., and Sim, I. (2004). Physicians’ use of electronic medical records:

Barriers and solutions.Health Affairs 23, 116–126. doi: 10.1377/hlthaff.23.2.116

Mulder, L. J. (1992). Measurement and analysis methods of heart rate and

respiration for use in applied environments. Biol. Psychol. 34, 205–236.

doi: 10.1016/0301-0511(92)90016-N

Nisar, A., Ruiz, F., and Palacios, M. (2013). Organisational learning, strategic

rigidity and technology adoption: Implications for electric utilities

and renewable energy firms. Renew. Sustain. Energy Rev. 22:438–445.

doi: 10.1016/j.rser.2013.01.039

Nushi, B., Amershi, S., Kamar, E., Bansal, G., Weld, D., Vorvoreanu, M.,

et al. (2020). How to Build Effective Human-ai Interaction: Considerations

for Machine Learning and Software Engineering. Available online at:

https://www.microsoft.com/en-us/research/project/guidelines-for-human-

ai-interaction/articles/how-to-build-effective-human-ai-interaction-

considerations-for-machine-learning-and-software-engineering/ (accessed

February 1, 2021).

Onnasch, L., Wickens, C. D., Li, H., and Manzey, D. (2014). Human performance

consequences of stages and levels of automation: an integrated meta-analysis.

Hum. Factors 56, 476–488. doi: 10.1177/0018720813501549

Paul, C. L., Blaha, L. M., Fallon, C. K., Gonzalez, C., and Gutzwiller, R. S. (2019).

“Opportunities and challenges for human-machine teaming in cybersecurity

operations,” in Proceedings of the Human Factors and Ergonomics Society

Annual Meeting, volume 63 (Los Angeles, CA: SAGE Publications Sage CA),

442–446.

Plaete, J., Crombez, G., DeSmet, A., Deveugele, M., Verloigne, M., and De

Bourdeaudhuij, I. (2015). What do general practitioners think about an online

self-regulation programme for health promotion? focus group interviews. BMC

Family Pract. 16, 1–11. doi: 10.1186/s12875-014-0214-5

Poon, E. G., Blumenthal, D., Jaggi, T., Honour, M. M., Bates, D. W., and Kaushal,

R. (2004). Overcoming barriers to adopting and implementing computerized

physician order entry systems in us hospitals. Health Affairs 23, 184–190.

doi: 10.1377/hlthaff.23.4.184

Porges, S. W. (1992). “Autonomic regulation and attention,” in Attention and

Information Processing in Infants and Adults (Hillsdale, NJ), 201–223.

Randeree, E. (2007). Exploring physician adoption of emrs: a multi-case analysis.

J. Med. Syst. 31, 489–496. doi: 10.1007/s10916-007-9089-5

Rao, S. R., DesRoches, C. M., Donelan, K., Campbell, E. G., Miralles, P. D.,

and Jha, A. K. (2011). Electronic health records in small physician practices:

availability, use, and perceived benefits. J. Am. Med. Inform. Assoc. 18, 271–275.

doi: 10.1136/amiajnl-2010-000010

Reardon, J. L., and Davidson, E. (2007). An organizational learning perspective on

the assimilation of electronic medical records among small physician practices.

Eur. J. Inform. Syst. 16, 681–694. doi: 10.1057/palgrave.ejis.3000714

Rempel, J. K., Holmes, J. G., and Zanna, M. P. (1985). Trust in close relationships.

J. Pers. Soc. Psychol. 49, 95. doi: 10.1037/0022-3514.49.1.95

Rogers, E. M. (1962).Diffusion of Innovations. New York, NY: Simon and Schuster.

Ross, S. (2009). Results of a survey of an online physician community regarding

use of electronic medical records in office practices. J. Med. Pract. Manag. 24,

254.

Rubio, S., Díaz, E., Martín, J., and Puente, J. M. (2004). Evaluation of subjective

mental workload: a comparison of swat, nasa-tlx, and workload profile

methods. Appl. Psychol. 53, 61–86. doi: 10.1111/j.1464-0597.2004.00161.x

Sadler, G., Battiste, H., Ho, N., Hoffmann, L., Johnson, W., Shively, R., et al.

(2016). “Effects of transparency on pilot trust and agreement in the autonomous

constrained flight planner,” in 2016 IEEE/AIAA 35th Digital Avionics Systems

Conference (DASC) (Sacramento, CA: IEEE), 1–9.

Schaeffer, B. A., Schaeffer, K. G., Keith, D., Lunetta, R. S., Conmy, R.,

and Gould, R. W. (2013). Barriers to adopting satellite remote sensing

for water quality management. Int. J. Remote Sens. 34, 7534–7544.

doi: 10.1080/01431161.2013.823524

Schoenmakers, F. A. (2013). Perspectives on Control System Security: Assessing

security risks resulting from contradicting values between Operational and

Information Technology. Masters Thesis, TU Delft. Available online at:

https://repository.tudelft.nl/islandora/object/uuid:5b2e19c4-c493-4575-972d-

d91825d4ef67

See, J. E., Craft, R. L., and Morris, J. D. (2019). Human Readiness Levels in the

Systems Engineering Process at Sandia National Laboratories. Technical report

Sandia National Lab (SNL-NM), Albuquerque, NM.

Shaffer, F., and Ginsberg, J. P. (2017). An overview of heart rate variability metrics

and norms. Front. Public Health 5, 258. doi: 10.3389/fpubh.2017.00258

Simon, S. R., Kaushal, R., Cleary, P. D., Jenter, C. A., Volk, L. A., Poon,

E. G., et al. (2007). Correlates of electronic health record adoption in

office practices: a statewide survey. J. Am. Med. Inform. Assoc. 14, 110–117.

doi: 10.1197/jamia.M2187

Frontiers in Big Data | www.frontiersin.org 18 June 2022 | Volume 5 | Article 897295

https://doi.org/10.1136/bmj.323.7325.1344
https://doi.org/10.3390/app10175975
https://doi.org/10.1518/hfes.46.1.50.30392
https://doi.org/10.1016/j.rser.2008.02.002
https://doi.org/10.1016/j.ijmedinf.2008.06.005
https://doi.org/10.1186/1472-6947-14-61
https://doi.org/10.1037/mil0000124
https://doi.org/10.1177/1064804615611272
https://doi.org/10.1177/0018720811427034
https://doi.org/10.1109/TSTE.2011.2159254
https://doi.org/10.3758/s13428-020-01516-y
https://doi.org/10.1186/1472-6963-11-131
https://doi.org/10.1016/j.ijmedinf.2009.03.004
https://doi.org/10.28945/846
https://doi.org/10.1177/0018720815621206
https://doi.org/10.1377/hlthaff.23.2.116
https://doi.org/10.1016/0301-0511(92)90016-N
https://doi.org/10.1016/j.rser.2013.01.039
https://doi.org/10.1177/0018720813501549
https://doi.org/10.1186/s12875-014-0214-5
https://doi.org/10.1377/hlthaff.23.4.184
https://doi.org/10.1007/s10916-007-9089-5
https://doi.org/10.1136/amiajnl-2010-000010
https://doi.org/10.1057/palgrave.ejis.3000714
https://doi.org/10.1037/0022-3514.49.1.95
https://doi.org/10.1111/j.1464-0597.2004.00161.x
https://doi.org/10.1080/01431161.2013.823524
https://repository.tudelft.nl/islandora/object/uuid:5b2e19c4-c493-4575-972d-d91825d4ef67
https://repository.tudelft.nl/islandora/object/uuid:5b2e19c4-c493-4575-972d-d91825d4ef67
https://doi.org/10.3389/fpubh.2017.00258
https://doi.org/10.1197/jamia.M2187
https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org
https://www.frontiersin.org/journals/big-data#articles


Wenskovitch et al. Evaluating ML Assistance for Operators

Smith, C. J. (2019).Designing trustworthy ai: A human-machine teaming framework

to guide development. Technical report, Carnegie Mellon University, Software

Engineering Institute, Pittsburgh, United States.

Snoeyink, R., and Ertmer, P. A. (2001). Thrust into technology:

how veteran teachers respond. J. Educ. Technol. Syst. 30, 85–111.

doi: 10.2190/YDL7-XH09-RLJ6-MTP1

Stuiver, A., and Mulder, B. (2014). Cardiovascular state changes in simulated work

environments. Front. Neurosci. 8, 399. doi: 10.3389/fnins.2014.00399

Sweller, J., Van Merrienboer, J. J., and Paas, F. G. (1998). Cognitive

architecture and instructional design. Educ. Psychol. Rev. 10, 251–296.

doi: 10.1023/A:1022193728205

Vanting, N. B., Ma, Z., and Jørgensen, B. N. (2021). A scoping review of

deep neural networks for electric load forecasting. Energy Inform. 4, 1–13.

doi: 10.1186/s42162-021-00148-6

Veltman, J., and Gaillard, A. (1996). Physiological indices of

workload in a simulated flight task. Biol. Psychol. 42, 323–342.

doi: 10.1016/0301-0511(95)05165-1

Venkatesh, V. (2000). Determinants of perceived ease of use: Integrating control,

intrinsic motivation, and emotion into the technology acceptance model. Inf.

Syst. Res. 11, 342–365. doi: 10.1287/isre.11.4.342.11872

Von Meier, A. (1999). Occupational cultures as a challenge to technological

innovation. IEEE Trans. Eng. Manag. 46, 101–114. doi: 10.1109/17.740041

Wang, H., Lei, Z., Zhang, X., Zhou, B., and Peng, J. (2019). A review of deep

learning for renewable energy forecasting. Energy Convers. Manag. 198, 111799.

doi: 10.1016/j.enconman.2019.111799

Wang, M., Wenskovitch, J., House, L., Polys, N., and North, C. (2021). Bridging

cognitive gaps between user and model in interactive dimension reduction.

Visual Inform. 5, 13–25. doi: 10.1016/j.visinf.2021.03.002

Wenskovitch, J., Fallon, C., Miller, K., and Dasgupta, A. (2021). “Beyond visual

analytics: Human-teaming teaming for ai-driven sensemaking,” in Proceedings

of the IEEE VIS Workshop on Trust and Expertise in Visual Analytics (TREX),

TREX’21 (New Orleans, LA: IEEE).

Wenskovitch, J., and North, C. (2020). Interactive artificial intelligence:

designing for the "two black boxes" problem. Computer 53, 29–39.

doi: 10.1109/MC.2020.2996416

Wilson, G. F. (1993). Air-to-ground training missions: a psychophysiological

workload analysis. Ergonomics 36, 1071–1087. doi: 10.1080/00140139308

967979

Zhang, S., Pandey, A., Luo, X., Powell, M., Banerji, R., Fan,

L., et al. (2021). Practical adoption of cloud computing in

power systems: drivers, challenges, guidance, and real-world use

cases. arXiv preprint arXiv:2108.00303. doi: 10.1109/TSG.2022.

3148978

Conflict of Interest: The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be construed as a

potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those

of the authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the reviewers.

Any product that may be evaluated in this article, or claim that may

be made by its manufacturer, is not guaranteed or endorsed by the

publisher.

Copyright © 2022 Wenskovitch, Jefferson, Anderson, Baweja, Ciesielski and

Fallon. This is an open-access article distributed under the terms of the

Creative Commons Attribution License (CC BY). The use, distribution or

reproduction in other forums is permitted, provided the original author(s)

and the copyright owner(s) are credited and that the original publication in

this journal is cited, in accordance with accepted academic practice. No use,

distribution or reproduction is permitted which does not comply with these

terms.

Frontiers in Big Data | www.frontiersin.org 19 June 2022 | Volume 5 | Article 897295

https://doi.org/10.2190/YDL7-XH09-RLJ6-MTP1
https://doi.org/10.3389/fnins.2014.00399
https://doi.org/10.1023/A:1022193728205
https://doi.org/10.1186/s42162-021-00148-6
https://doi.org/10.1016/0301-0511(95)05165-1
https://doi.org/10.1287/isre.11.4.342.11872
https://doi.org/10.1109/17.740041
https://doi.org/10.1016/j.enconman.2019.111799
https://doi.org/10.1016/j.visinf.2021.03.002
https://doi.org/10.1109/MC.2020.2996416
https://doi.org/10.1080/00140139308967979
https://doi.org/10.1109/TSG.2022.3148978
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org
https://www.frontiersin.org/journals/big-data#articles

	A Methodology for Evaluating Operator Usage of Machine Learning Recommendations for Power Grid Contingency Analysis
	1. Introduction
	2. Related Work
	2.1. Barriers to Technology Adoption
	2.2. Human-Machine Trust
	2.3. Cognitive Load and Heart Rate Variability

	3. Methodology Components
	3.1. Heart Rate Variability
	3.2. Performance Scoring
	3.3. Surveys
	3.4. Semi-structured Interview Feedback

	4. Experimental Design
	4.1. Control Room
	4.2. Software
	4.2.1. PowerWorld
	4.2.2. ACAT

	4.3. Experiment Procedures
	4.4. Scenarios
	4.5. Example Scenario Approach and Resolution

	5. Results
	5.1. Heart Rate Variability
	5.2. Performance Scoring
	5.2.1. Completion Times
	5.2.2. Action Penalty
	5.2.3. System Penalty

	5.3. Survey Outcomes
	5.4. Qualitative Feedback

	6. Scenario Insights
	6.1. SOA KANAWH-CABINC Scenario (M4)
	6.2. NOA EASTLI-MUSKNG Scenario (M5)
	6.3. WOA TANNRS-SORENS Scenario (E3)
	6.4. SOA CA SOLUTION FAILURE Scenario (H7)

	7. Discussion
	7.1. Limitations

	8. Conclusion
	Data Availability Statement
	Ethics Statement
	Author Contributions
	Funding
	Acknowledgments
	References


