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Over the past several years, multiple different methods to measure the causal fairness of

machine learning models have been proposed. However, despite the growing number

of publications and implementations, there is still a critical lack of literature that explains

the interplay of causality-based fairness notions with the social sciences of philosophy,

sociology, and law. We hope to remedy this issue by accumulating and expounding

upon the thoughts and discussions of causality-based fairness notions produced by

both social and formal (specifically machine learning) sciences in this field guide. In

addition to giving the mathematical backgrounds of several popular causality-based fair

machine learning notions, we explain their connection to and interplay with the fields

of philosophy and law. Further, we explore several criticisms of the current approaches

to causality-based fair machine learning from a sociological viewpoint as well as from a

technical standpoint. It is our hope that this field guide will help fair machine learning

practitioners better understand how their causality-based fairness notions align with

important humanistic values (such as fairness) and how we can, as a field, design

methods and metrics to better serve oppressed and marginalized populaces.

Keywords: causal modeling, fair machine learning, philosophy, sociology, law

1. INTRODUCTION

Due to the increasing use of machine learning in sensitive domains such as healthcare, policing, and
well-fair programs, analyzing machine learning models from the lens of fairness has come into the
spotlight. The majority of research efforts in fair machine learning have been focused on statistical-
based measures—those that try to provide equality between different groups based on an error
metric such as true positive rate. Statistical-based methods are favored since they are relatively easy
to calculate and enforce. But, since statistical-based measures rely on correlation and not causation,
they can only tell if an algorithm is fair based on the metric at hand. In addition, in order to take
action to remedy a found fairness disparity not only would we need an explanation for how the
statistic was generated, but we would also need to know how to assign responsibility and find a path
to remedy the unfairness. Causality-based fairness notions allow for the analysis of the dependence
between the marginalization1 attribute and the final decision for any cause of unfairness, which
allows us to perform the tasks not possible with statistical-based measures. This fact is changing the
tides of fair machine learning research, and more and more publications feature causality-based
fairness notions as their focus.

1What we call the marginalization attribute (or marginalized class) is often called the sensitive or protected attribute/class in

fair machine learning literature. See our extended version on ArXiv for the specifics of why we do so.
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Defining, implementing, and enforcing causality-based
fairness in machine learning is, above all else, a sociotechnical2

challenge. Without viewing causality-based machine learning
fairness notions from lenses of philosophy, sociology, and law,
choosing and implementing a notion stays firmly technical,
and does not consider societal impacts that could arise after
deployment. To solve this problem, and to help fair machine
learning practitioners choose correct causality-based fairness
notions in an informed, societal-aware, manner, we develop
the following field guide that depicts popular causality-based
machine learning fairness notions through lenses of philosophy,
sociology, and the law.

We note that our work is not the first to discuss the interplay
of fair machine learning with the social sciences. Many works
have been published over the last few years on fair machine
learning (not specifically causality-based), including a handful of
survey papers and textbooks that are closely aligned with this field
guide (Barocas et al., 2019; Caton and Haas, 2020; Mehrabi et al.,
2022). While these survey papers present mathematical aspects
of mitigating bias and achieving fairness, they often only have
sparse discussion (or totally omit the discussion) of philosophical
and legal groundings that are important to make a sociotechnical
system rather than just a technical one. Additionally, while works
exist that align philosophical (Binns, 2018; Heidari et al., 2019;
Khan et al., 2021; Lee et al., 2021) and legal (Barocas and Selbst,
2016; Corbett-Davies et al., 2017; Grgic-Hlaca et al., 2018; Xiang
and Raji, 2019) notions with proposed fairness metrics, they often
center on statistical-based fairness measures and do not speak to
the emerging trend of causality-based fairness notions. Our work
resolves this issue by producing a survey that presents both the
social and formal discussion of causality-based fairness metrics
to allow for fair machine learning practitioners to understand
not only how specific fairness metrics function, but their social
science groundings as well.

The rest of the field guide is as follows. We begin Section
2 by explaining the basics of causal inference followed by the
introduction of two important causal frameworks that will be
used throughout the rest of the field guide. In Section 3, we first
present our analysis on popular causality-based fairness notions
and then state their main technical pitfalls. Section 4 describes the
important philosophical perspectives that serve as a foundation
for many of the proposed causal fairness metrics. Next, in Section
5, we depict popular legal ideals that have a strong connection to
causal fairness. In Section 6, we give critiques from a sociological

Abbreviations: ATE, Average Treatment Effect; ATT, Average Treatment

effect on the Treated; CATE, Conditional Average Treatment Effect; CDE,

Controlled Direct Effect; CE, Counterfactual Effect; Ctf-DE/IE/SE, Counterfactual

Direct/Indirect/Spurious Effect; DI, Disparate Impact; DT, Disparate Treatment;

ER/EO, Error Rate Balance; ERd/i/s, Counterfactual Direct/Indirect/Spurious

Error Rate; ETT, Effect of Treatment on the Treated; FACE, Fair on Average

Causal Effect; FACT, Fair on Average Causal Effect on the Treated; ITE, Individual

Treatment Effect; NDE, Natural Direct Effect; NIE, Natural Indirect Effect; PCE,

Path-specific Counterfactual Effect; PE, Path-specific Effect; SCM, Structural

Causal Models; SUTVA, Stable Unit Treatment Value Assumption; TCE, Total

Causal Effect; TV, Total Variation.
2The field of Science and Technology Studies (STS) describes systems that consist

of a combination of technical and social components as “sociotechnical systems”

(Selbst et al., 2019).

viewpoint of causality-based fair machine learning. Finally, in
Section 7, we present our major conclusions.

2. CAUSAL INFERENCE

The goal of standard statistical analysis is to find associations
among variables in order to estimate and update probabilities
of past and future events in light of new information. Causal
inference analysis, on the other hand, aims to infer probabilities
under conditions that are changing due to outside interventions
(Pearl, 2010). Causal inference analysis (or simply causal
inference) presents a formal language that allows us to draw
conclusions that a specific intervention caused the observed
outcome. For example, that the rain caused the grass to be wet
or that taking Claritin caused your seasonal allergies to go away.

There are many different theories for understanding causality,
such as regularity theories, mechanistic theories, probabilistic
approaches, counterfactual reasoning, and the manipulationist
approaches that house the interventionalist theories of which
Pearl’s structural causal model and Rubin’s potential outcome
frameworks belong to. In this work, we will mainly focus on
the interventionalist approaches of both Pearl and Rubin as they
are the most widely used frameworks for causal inference. But,
we will explain the main differences between the five theories in
relation to their philosophical foundations in Section 4.

2.1. A Primer on Causal Inference
As the title suggests, this article focuses on causal inference
based machine learning fairness notions. But, to give newcomers
to the field of causal inference a solid foundation for the rest
of the article, we begin by giving a short introduction of the
terminology and concepts of the field. Throughout this section
we will use the running example of determining whether a patient
will survive a specific sickness (D) based on the initial severity
of the disease (S) and the treatment administered (T). Three
different causal diagrams showing this scenario can be seen in
Figure 1. Additionally, since the discussion of causal inference
here will be constrained to what is needed to understand the rest
of the article, we direct interested readers to (Barocas et al., 2019;
Guo et al., 2020; Yao et al., 2021) for more in-depth discussions
of the topic.

There are multiple different variable types in causal inference,
where each variable represents the occurrence (or non-
occurrence) of an event, a property of an individual or of a
population of individuals, or a quantitative value. The output
variable is the particular variable that we want to affect by
administering interventions, or treatments, on specific treatment
variables. When administering the treatment on the treatment
variable, we hold all other variable values unchanged. A variable
is considered a confounder if it affects both the input and
the outcome variables since it causes a spurious association3

between the two variables. When performing causal analysis,
confounding variables must be controlled for since they can
incorrectly imply that one variable caused another. An example

3A spurious association is a relationship where two or more variables are

associated, but not causally related.
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FIGURE 1 | Example causal models showing T as a confounder, mediator, and collider. T, treatment; S, severeness; D, survival. In (A), T is a confounder since it

impacts both the input variable S and the output variable D. In (B), T is a mediator since it lies between the input variable S and the output variable D in one possible

path. In (C), T is a collider since it is influenced by both S and D. An example of a direct path is shown in (A) by the arrow highlighted in green going from S to D. An

example of an indirect path is shown in (B) by the arrows highlighted in blue traveling from S to D through T.

of a confounder can be seen in Figure 1A. When a path such
as S → T → D exists, we call T the mediator variable since
it contributes to the overall effect of S on D. An example of
this can be seen in Figure 1B. Finally, a collider is a variable
that is causally influenced by two or more variables, and it
is named as such since it appears that the arrow heads from
the incoming variables “collide” at the node. This can be seen
in Figure 1C. It is important to mention that “colliders aren’t
confounders” and that we should not condition on a collider since
it can create a correlation between two previously uncorrelated
variables (Barocas et al., 2019).

In addition to there being different types of variables, there are
two main ways that one variable can cause an effect on another.
The first way is a direct effect, where one variable directly affects
the output variable. In order to measure the direct effect of a
variable on the output variable all other possible paths (besides
the direct path) need to be “disabled” or controlled. For example,
in Figure 1A, we can measure the direct effect S has on D by
making the treatment T be the same for all individuals. The other
type of effect is called an indirect effect. This occurs when the
effect of a variable on the output variable is transmitted through
a mediator along an indirect path. An example of this can be seen
in Figure 1B by the arrows highlighted in blue. In this setting, the
path from S to D is mediated by the variable T.

Using the foundation of causal inference formed above, we
can now introduce the two frameworks that are fundamental
to causality-based machine learning fairness notions. The first
framework is the structural causal model (SCM) framework
proposed by Pearl (2009), and the second is the potential
outcome (PO) framework proposed by Imbens and Rubin (2015).
While we will discuss the two frameworks separately since
they have different assumptions of the amount of information
available, they are logically equivalent. However, we can derive
a PO from a SCM, but we cannot derive a SCM from a
PO alone because SCMs make more assumptions about the
relationships between the variables that cannot be derived from a
PO (Barocas et al., 2019).

Throughout the following discussion, and in Section 3 (which
details the causality-based machine learning fairness notions),
we use the following notation conventions. An uppercase letter
denotes a variable, e.g., X; a bold uppercase letter denotes a set

of variables, e.g., X; a lowercase letter denotes a value or a set of
values of the corresponding variables, e.g., x and x; PAX denotes
the set of variables that directly determine the value of a variable
X (often times called the parents of X); and paX denotes the
values of X’s parents. We also note that we will use the terms
“factors” and “variables” interchangeably throughout the rest of
the article.

2.2. Structural Causal Model
The structural causal model (SCM) was first proposed by Judea
Pearl in Pearl (2009). Pearl believed that by understanding the
logic behind causal thinking, we would be able to emulate it on a
computer to form more realistic artificial intelligence (Pearl and
Mackenzie, 2018). He proposed that causal models would give the
ability to “anchor the elusive notions of science, knowledge, and
data in a concrete and meaningful setting, and will enable us to
see how the three work together to produce answers to difficult
scientific questions,” (Pearl and Mackenzie, 2018). We recount
the important details of SCMs below.

Definition 2.1 [Structural Causal Model (Pearl, 2009)]. A
structural causal model M is represented by a quadruple
〈U,V, F, P(U)〉 where:

1. U is a set of exogenous (external) variables that are determined
by factors outside the model.

2. V is a set of endogenous (internal) variables that are determined
by variables in U ∪ V, i.e., V’s values are determined by factors
within the model.

3. F is a set of structural equations from U ∪ V → V, i.e.,
vi = fvi (pavi , ui) for each vi ∈ V where uV is a random
disturbance distributed according to P(U). In other words,
fvi (·) is a structural equation that expresses the value of each
endogenous variable as a function of the values of the other
variables in U and V.

4. P(U) is a joint probability distribution defined over U.

In general, fvi (·) can be any type of equation. But, we will
discuss fvi (·) as a non-linear, non-parametric generalization of the
standard linear equation vi =

∑
k∈PAi

αikvk + ui, i = 1, . . . , n,
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FIGURE 2 | Example of a structural causal model depicting the relationships between variables that determine the survival of some disease. G, gender; A, age; S,

severeness; T, treatment; D, survival. In (A), we include the exogenous variable gender and in (B) we show it removed by adding a bi-directional dashed line between

S and D since this is a semi-Markovian model. In (C), we perform an intervention on variable T by setting it equal to t.

where α is a coefficient4. If all exogenous variables in U are
assumed to be mutually independent, meaning that each variable
in U is independent of any combination of other variables in U,
then the causal model is called a Markovian model; otherwise, it
is called a semi-Markovian model.

The causal model M is associated with a causal graph G =

〈V, E〉 where V is a set of nodes (otherwise known as vertices)
and E is a set of edges. Each node of V corresponds to an
endogenous variable of V in M. Each edge in E, denoted by
a directed arrow →, points from a node X ∈ U ∪ V to a
different node Y ∈ V if fY uses values of X as input. A causal
path from X to Y is a directed path from X to Y . For example,
in Figure 2A, Age(A) → Severeness(S) → Survival(D) is a
causal path fromAge to Survival. Tomake the causal graph easier
to analyze, the exogenous variables are normally removed from
the graph. In a Markovian model, exogenous variables can be
directly removed without losing any vital information. In a semi-
Markovian model, after removing exogenous variables, we also
need to add dashed bi-directional edges between the children
of correlated exogenous variables to indicate the existence of
an unobserved common cause, i.e., a hidden confounder. For
instance, if in Figure 2A, we treated gender as an exogenous
variable, we could remove it from the graph by adding a bi-
directional dashed line, as shown in Figure 2B.

Quantitatively measuring causal effects in a causal model is
made possible by using the do-operator (Pearl, 2009) which forces
some variable X to take on a certain value x. The do-operator
can be formally denoted by do(X = x) or do(x). By substituting
a value for another using the do-operator, we break the natural
course of action that our model captures (Barocas et al., 2019).
In a causal model M, the intervention do(x) is defined as the
substituting of the structural equation X = fX(PaX,UX) with
X = x. This change corresponds to a modified causal graph that
has removed all edges coming into X and in turn sets X to x.
An example of this can be seen in Figure 2C. For an observed
variable Y which is affected by the intervention, its interventional
variant is denoted by Yx. The distribution of Yx, also referred to
as the post-intervention distribution of Y under do(x), is denoted
by P(Yx = y) or simply P(yx).

4To learn more about structural equation modeling (SEM), see Pearl, 2009.

Similarly, the intervention that sets the value of a set of
variables X to x is denoted by do(X = x). The post-intervention
distribution of all other attributes Y = V\X, i.e., P(Y = y |

do(X = x)), or simply P(y | do(x)), can be computed by the
truncated factorization formula (Pearl, 2009):

P(y | do(x)) =
∏

Y∈Y

P(y | PA(Y))δX=x, (1)

where δX=x assigns attributes in X involved in the term with
the corresponding values in x. Specifically, the post-intervention
distribution of a single attribute Y given an intervention on a
single attribute X is given by:

P(y | do(x)) =
∑

V\{X,Y},Y=y

∏

V∈V\{X}

P(v | PA(V))δX=x, (2)

where the summation is a marginalization5 that traverses
all value combinations of V\{X,Y}. Note that P(y|do(x))
and P(y|x) are not equal. In other words, the probability
distribution representing the statistical association (P(y|x)) is not
equivalent to the interventional distribution (P(y|do(x))). We
refer interested readers to Guo et al. (2020) for a discussion of this
difference in relation to confounding bias, back-door criterion,
and causal identification.

Above we mentioned that there were only two types of
effects: direct and indirect. This is a slight relaxation of what
can be measured in a SCM. By using the do-operator, we
can measure multiple types of effects that one variable has
on another, including: total causal effect, controlled direct
effect, natural direct/indirect effect, path-specific effect, effect of
treatment on the treated, counterfactual effect, and path-specific
counterfactual effect. We detail their definitions below.

Definition 2.2 [Total Causal Effect (Pearl, 2009)]. The total
causal effect (TCE) of the value change of X from x0 to x1 on Y = y
is given by:

TCE(x1, x0) = P(yx1 )− P(yx0 ). (3)

5Here, marginalization refers to marginal distributions in probability, not a

“sensitive” variable.

Frontiers in Big Data | www.frontiersin.org 4 April 2022 | Volume 5 | Article 892837

https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org
https://www.frontiersin.org/journals/big-data#articles


Carey and Wu The Causal Fairness Field Guide

The total causal effect is defined as the effect of X on Y where
the intervention is transferred along all causal paths from X
to Y . In contrast with the TCE, the controlled direct effect
(CDE) measures the effect of X on Y while holding all the other
variables fixed.

Definition 2.3 [Controlled Direct Effect]. The controlled direct
effect (CDE) of the value change of X from x0 to x1 on Y = y is
given by:

CDE(x1, x0) = P(yx1,z)− P(yx0,z) (4)

where Z is the set of all other variables.

In Pearl (2013), Pearl introduced the causal mediation formula
which allowed the decomposition of total causal effect into
natural direct effect (NDE) and natural indirect effect (NIE).

Definition 2.4 [Natural Direct Effect]. The natural direct effect
(NDE) of the value change of X from x0 to x1 on Y = y is given by:

NDE(x1, x0) = P(yx1,Zx0
)− P(yx0 ) (5)

where Z is the set of mediator variables and P(yx1,Zx0
) is the

probability of Y = y had X been x1 and had Z been the value it
would naturally take if X = x0. In the causal graph, X is set to x1
in the direct path X→ Y and is set to x0 in all other indirect paths.

Definition 2.5 [Natural Indirect Effect]. The natural indirect
effect (NIE) of the value change of X from x0 to x1 on Y = y is
given by:

NIE(x1, x0) = P(yx0,Zx1
)− P(yx0 ). (6)

NDE measures the direct effect of X on Y while NIE measures
the indirect effect of X on Y . NDE differs from CDE since the
mediators Z are set to Zx0 in NDE and not in CDE. In other
words, the mediators are set to the value that they would have
naturally attained under the reference condition X = x0.

One main problem with NIE is that it does not enable the
separation of “fair” (explainable discrimination) and “unfair”
(indirect discrimination) effects (we will expound on the
definitions of discrimination in the following sections). Path-
specific effect (Pearl, 2009), which is an extension of TCE in the
sense that the effect of the intervention is transmitted only along
a subset of the causal paths from X to Y , fixes this issue. Let π

denote a subset of the possible causal paths. The π-specific effect
considers a counterfactual situation where the effect of X on Y
with the intervention is transmitted along π , while the effect of
X on Y without the intervention is transmitted along paths not
in π .

Definition 2.6 [Path-specific Effect (Avin et al., 2005)]. Given a
causal path set π , the π-specific effect (PEπ ) of the value change of
X from x0 to x1 on Y = y through π (with reference x0) is given by:

PEπ (x1, x0) = P(yx1|π ,x0|π )− P(yx0), (7)

where P(Yx1|π ,x0|π ) represents the post-intervention distribution of
Y where the effect of intervention do(x1) is transmitted only along
π while the effect of reference intervention do(x0) is transmitted
along the other paths.

In addition to PEπ being an extension of TCE, they are further
connected in that : 1) if π contains all causal paths from X to
Y , then PEπ (x1, x0) = TCE(x1, x0), and 2) for any π , we have
PEπ (x1, x0)+ (−PEπ (x0, x1)) = TCE(x1, x0) where π represents
the paths not in π .

Definitions 2.2 and 2.6 for TCE and PEπ consider the average
causal effect over the entire population without using any prior
observations. In contrast, the effect of treatment on the treated
considers the effect on a sub-population of the treated group.

Definition 2.7 [Effect of Treatment on the Treated]. The effect
of treatment on the treated (ETT) of intervention X = x1 on Y = y
(with baseline x0) is given by:

ETTx1 ,x0 = P(yx1|x0 )− P(y | x0), (8)

where P(yx1|x0 ) represents the counterfactual quantity that read as
“the probability of Y would be y had X been x1, given that in the
actual world, X = x0.”

If we have certain observations about a subset of attributesO = o

and use them as conditions when inferring the causal effect, then
the causal inference problem becomes a counterfactual inference
problem. This means that the causal inference is performed on
the sub-population specified by O = o only. Symbolically,
conditioning the distribution of Yx on factual observation O =

o is denoted by P(yx|o). The counterfactual effect is defined
as follows.

Definition 2.8 [Counterfactual Effect (Shpitser and Pearl,

2008)]. Given a factual condition O = o, the counterfactual effect
(CE) of the value change of X from x0 to x1 on Y = y is given by:

CE(x1, x0 | o) = P(yx1 | o)− P(yx0 | o). (9)

In Wu et al. (2019), the authors present a general representation
of causal effects, called path-specific counterfactual effect, which
considers an intervention on X transmitted along a subset of
causal paths π to Y , conditioning on observationO = o.

Definition 2.9 [Path-specific Counterfactual Effect]. Given a
factual condition O = o and a causal path set π , the path-specific
counterfactual effect (PCE) of the value change of X from x0 to x1
on Y = y through π (with reference x0) is given by:

PCEπ (x1, x0 | o) = P(yx1|π ,x0|π | o)− P(yx0 | o). (10)

We not that in Malinsky et al. (2019), the conditional path-
specific effect is written slightly different from Definition 2.9 in
that, for the former, the condition is on the post-intervention
distribution, and for the latter, the condition is on the pre-
intervention distribution.

2.3. Potential Outcome Framework
The potential outcome framework (Imbens and Rubin, 2015),
also known as Neyman-Rubin potential outcomes or the Rubin
causal model, has been widely used in many research areas
to perform causal inference since it is often easier to apply
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than SCM. This is because SCMs, in general, encode more
assumptions about the relationships between variables and
formulating a valid SCM can require domain knowledge that is
not available (Barocas et al., 2019). The PO model, in contrast, is
generally easier to apply since there is a broad set of statistical
estimators of causal effects that can be readily applied to pure
observational data.

PO refers to the outcomes one would see under each possible
treatment option for a variable. Let Y be the outcome variable,
T be the binary or multiple valued treatment variable, and X be
the pre-treatment variables (covariates). Note that pre-treatment
variables are the ones that are not affected by the treatment.
On the other hand, the post-treatment variables, such as the
intermediate outcome, are affected by the treatment.

Definition 2.10 [Potential Outcome]. Given the treatment T = t
and outcome Y = y, the potential outcome of the individual i,
Yi(t), represents the outcome that would have been observed if the
individual i had received treatment t.

The potential outcome framework relies on three
main assumptions:

1. Stable Unit Treatment Value Assumption (SUTVA):
requires the potential outcome observation on one unit
be unaffected by the particular assignment of treatments to
other units.

2. Consistency Assumption: requires that the value of the
potential outcomes would not change no matter how the
treatment is observed or assigned through an intervention.

3. Strong Ignorability (unconfoundedness) Assumption: is equal
to the assumption that there are no unobserved confounders.

Under these assumptions, causal inference methods can be
applied to estimate the potential outcome and treatment
effect given the information of the treatment variable and
the pre-treatment variables. We refer interested readers to
the survey (Yao et al., 2021) for various causal inference
methods, including re-weighting, stratification, matching based,
and representation based methods. In practice, only one
potential outcome can be observed for each individual, while
in theory, all of the different possible outcomes still exist.
The observed outcome is called the factual outcome and the
remaining unobserved potential outcomes are the counterfactual
outcomes. The potential outcome framework aims to estimate
potential outcomes under different treatment options and then
calculate the treatment effect. The treatment effect can be
measured at the population, treated group, subgroup, and
individual levels.

As we did above for SCM, we will now recount popular ways
to measure the treatment effect in PO. In addition, without loss
of generality, in the following discussion we assume that the
treatment variable is binary.

Definition 2.11 [Average Treatment Effect].Given the treatment
T = t and outcome Y = y, the average treatment effect (ATE) is
defined as:

ATE = E[Y(t′)− Y(t)] (11)

where Y(t′) and Y(t) are the potential outcome and the observed
control outcome of the whole population, respectively.

Definition 2.12 [Average Treatment Effect on the Treated].

Given the treatment T = t and outcome Y = y, the average
treatment effect on the treated group (ATT) is defined as:

ATT = E[Y(t′)− Y(t) | T = t]. (12)

The ATE answers the question of how, on average, the outcome of
interest Y would change if everyone in the population of interest
had been assigned to a particular treatment t′ relative to if they
had received another treatment t. The ATT, on the other hand,
details how the average outcome would change if everyone who
received one particular treatment t had instead received another
treatment t′.

Definition 2.13 [Conditional Average Treatment Effect]. Given
the treatment T = t and outcome Y = y, the conditional average
treatment effect (CATE) is defined as:

CATE = E[Y(t′)− Y(t) |W = w] (13)

whereW is a subset of variables defining the subgroup.

Definition 2.14 [Individual Treatment Effect]. Given the
treatment T = t and outcome Y = y, the individual treatment
effect (ITE) is defined as:

ITE = E[Yi(t
′)− Yi(t)] (14)

where Yi(t
′) and Yi(t) are the potential outcome and the observed

control outcome of individual i, respectively.

3. CAUSALITY-BASED FAIRNESS NOTIONS

Most recent fairness notions are causality-based and reflect the
now widely accepted idea that using causality is necessary to
appropriately address the problem of fairness. Causality-based
fairness notions differ from the statistical ones in that they are
not totally based on data6, but consider additional knowledge
about the structure of the world, in the form of a causal model.
Causality-based fairness notions are developed mainly under two
causal frameworks: the structural causal model (SCMs) and the
potential outcome. SCMs assume that we know the complete
causal graph, and hence, we are able to study the causal effect of
any variable along many different paths. The potential outcome
framework does not assume the availability of the causal graph
and instead focuses on estimating the causal effects of treatment
variables. In Table 1, we present the causal framework to which
each causality-based fairness notion discussed in this section
belongs. In this section, we begin by giving a short insight
and overview of causality-based fairness notions, followed by a
brief intermission to introduce two important statistical-fairness

6“Data is profoundly dumb. Data can tell you that people who took a medicine

recovered faster than those who did not take it, but they can’t tell you why.” - Judea

Pearl (Pearl and Mackenzie, 2018).
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TABLE 1 | Classification of causality-based fairness notions.

Notion Association SCM PO Intervention Counterfactual Y and Ŷ

Total variation X

Total causal fairness X X

Natural direct effect X X

Natural indirect effect X X

Path-specific causal fairness X X

Direct causal fairness X X

Indirect causal fairness X X

Counterfactual fairness X X

Counterfactual direct effect X X

Counterfactual indirect effect X X

Path-specific counterfactual fairness X X

Proxy fairness X X

Justifiable fairness X X

Counterfactual direct error rate X X X

Counterfactual indirect error rate X X X

Individual equalized counterfactual odds X X X

Fair on average causal effect X X

Fair on average causal effect on the treated X X

Equal effort fairness X X

SCM, structure causal model; PO, potential outcome. The last column describes whether the fairness notion involves both Y and Ŷ in their counterfactual quantity. A checkmark means

that the causality-based fairness notion falls within the given category. For example, total causal fairness belongs to both the SCM framework and the intervention rung of Pearl’s ladder

of causation.

FIGURE 3 | Pearl’s Ladder of Causation. The first rung, associations, only allows predictions based on passive observations. The second rung, interventions, not only

relies on seeing, but also changing what is. Rung three, counterfactuals, deals with the imaginary, or what might have been.

definitions, and then we spend the remainder of the section
introducing the casual-based fairness notions, minus the last
section where we state the main technical pitfalls experienced by
these types of metrics.

In Pearl (2019), Pearl presented the causal hierarchy through
the Ladder of Causation, as shown in Figure 3. The Ladder
of Causation has the 3 rungs: association, intervention, and
counterfactual. The first rung, associations, can be inferred
directly from the observed data using conditional probabilities
and conditional expectations (i.e., a probabilistic theory, see
Section 4). The intervention rung involves not only seeing what

is, but also changing what we see. Interventional questions
deal with P(y|do(x), z) which stands for “the probability of
Y = y, given that we intervene and set the values of X to x
and subsequently observe event Z= z.” Interventional questions
cannot be answered from pure observational data alone. They
can be estimated experimentally from randomized trials or
analytically using causal Bayesian networks. The top rung
invokes counterfactuals and deals with P(yx|x

′, y′) which stands
for “the probability that event Y = y would be observed had X
been x, given that we actually observed X to be x′ and Y to
be y′.” Such questions can be computed only when the model
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FIGURE 4 | Causal graph of the college admission example used throughout

this section. Let gender be the marginalization attribute and Female be the

marginalized class. For simplicity, we consider gender to be binary, but we

recognize that this is not the case in real life.

is based on functional relations or is structural. In Table 1, we
also show the causal hierarchical level that each causality-based
fairness notion aligns with.

In the context of fair machine learning, we use S ∈ {s+, s−} to
denote the marginalization attribute, Y ∈ {y+, y−} to denote the
decision, and X to denote a set of non-marginalization attributes.
The underlying mechanism of the population over the space
S×X×Y is represented by a causal modelM, which is associated
with a causal graph G. Figure 4 shows a causal graph that will
be used to illustrate fairness notions throughout this section.
With M, we want to reason about counterfactual queries, e.g.,
“what would the prediction have been for this individual if their
marginalization attribute value changed?” A historical dataset
D is drawn from the population, which is used to construct a
predictor h :X, S→ Ŷ . Note that the input of the predictor can be
a subset of X, S and we use P̂A to denote the set of input features
of the predictor when introducing counterfactual error rate in
Section 3.9. The causal model for the population over space S ×
X× Ŷ can be considered the same asM, except that the function
fY is replaced with a predictor h. Most fairness notions involve
either Y or Ŷ in their counterfactual quantity and, roughly
speaking, they correspond to statistical parity (a statistical-
based notion introduced below). A few fairness notions, e.g.,
counterfactual direct error rate (Zhang and Bareinboim, 2018a),
correspond to the concept of equalized odds (also explained
below) and involve both Y and Ŷ in their counterfactual quantity.
We also mark if a notion uses Y and/or Ŷ in Table 1. We note
that for all of the fairness notions presented here, there actually
exists two versions—strict and relaxed. The strict version means
there is absolutely no discrimination effect (i.e., no wiggle room),
whereas the relaxed version often compares the causal effect
with τ , a user-defined threshold for discrimination (i.e., wiggle
room). Despite having two approaches, for simplicity, we adhere
to the strict version when introducing each fairness notion in the
discussion below.

3.1. Statistical-Based Fairness Notions
Despite the claims we have made against using statistical-based
fairness notions so far, we do wish to introduce two popular

metrics: statistical parity and equalized odds. Our reasoning of
doing so is two-fold: (1) these two statistical notions are closely
tied to several causality-based fairness notions, and (2) they
present a clear picture of why causality-based machine learning
fairness notions are preferred over statistical ones.

We will begin by describing statistical parity, which also
goes by the names demographic parity and group fairness. As
the name implies, it requires that there is an equal probability
for both individuals in the marginalized and non-marginalized
groups to be assigned to the positive class (Dwork et al.,
2011; Kusner et al., 2017). Notationally, group fairness can be
written as:

P(Ŷ = 1 | S = 0) = P(Ŷ = 1 | S = 1) (15)

where Ŷ is the predicted outcome and S is the
marginalization variable.

Barocas, Hardt, and Narayanan note that while statistical
parity aligns well with how humans reason about fairness, several
draw-backs exists (Barocas et al., 2019). Namely, that it ignores
any correlation between the marginalization attributes and the
target variable Y which constrains the construction of a perfect
prediction model. Additionally, it enables laziness. In other
words, it allows situations where qualified people are carefully
selected for one group (e.g., non-marginalized), while random
people are selected for the other (marginalized). Further, it allows
the trade of false negatives for false positives, meaning that
neither of these rates are considered more important, which is
false in many circumstances (Barocas and Hardt, 2017).

The fairness metric of equalized odds is also known
as conditional procedure accuracy equality and disparate
mistreatment. Whereas, statistical parity requires that the
probability of being classified as positive is the same for all
groups, equalized odds requires that true and false positive rates
are similar across different groups (Moritz et al., 2016). In other
words, equalized odds enforces equality among individuals who
have similar outcomes. It can be written as:

P(Ŷ = 1 | Y = y ∩ S = 0)

= P(Ŷ = 1 | Y = y ∩ S = 1) for y ∈ {0, 1} (16)

where Ŷ is the predicted outcome, Y is the actual outcome, and S
is the marginalization attribute.

3.2. Total, Natural Direct, and Natural
Indirect Causal Fairness
We now move into our main discussion of the causality-based
fairness notions, starting with a discussion of total, natural
direct, and natural indirect causal fairness. Discrimination can
be viewed as the causal effect of S on Y . Total causal fairness
answers the question of if the marginalization attribute S changed
(e.g., changing from marginalized group s− to non-marginalized
group s+), how would the outcome Y change on average? A
straightforward strategy to answer this question is to measure the
average causal effect of S on Y when S changes from s− to s+, an
approach called total causal fairness.
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Definition 3.1 [Total Causal Fairness]. Given the
marginalization attribute S and decision Y, we achieve total
causal fairness if:

TCE(s1, s0) = P(ys1 )− P(ys0 ) = 0 (17)

where s1, s0 ∈ {s
+, s−}.

For instance, based on Figure 4, TCE would report the average
causal effect that being Female had on a student’s outcome of
admission.

Additionally, the causal effect of S on Y does not only include
the direct discriminatory effect, but it also includes the indirect
discriminatory effect and the explainable effect. In Pearl (2013),
Pearl proposed the use of NDE and NIE to measure the direct
and indirect discrimination. Recall from Definitions 2.4, 2.5 that
NDE(s1, s0) = P(ys1,Zs0

) − P(ys0 ) and NIE(s1, s0) = P(ys0 ,Zs1
) −

P(ys0 ) where Z is the set of mediator variables. When applied
to the example in Figure 4, the mediator variable could be the
major. P(ys1 ,Zs0

) in NDE is the probability of Y = y had S been
s1 and had Z been the value it would naturally take if S = s0.
In other words, based on the example, P(ys1,Zs0

) would be the
probability of being admitted when changing the gender to be
Male while keeping the major the same. Similarly, NIE measures
the indirect effect of S on Y . However, NIE does not distinguish
between explainable and indirect discrimination.

3.3. Path-Specific Causal Fairness
In Zhang et al. (2017), Zhang et al. introduced path-specific
causal fairness based on the path-specific causal effect (Pearl,
2009) notion presented in Definition 2.9. Different from total,
natural direct, and natural indirect causal effects, the path-
specific causal effect is based on graph properties of the causal
graph (where the others were based on probabilities), and
characterizes the causal effect in term of specific paths.

Definition 3.2 [Path-Specific Causal Fairness]. Given the
marginalization attribute S, decision Y, and redlining attributes
R (i.e., a set of attributes inX that cannot be legally justified if used
in decision-making), define πd as the path set that contains some
paths from S to Y. We achieve path-specific causal fairness if:

PEπ (s1, s0) = P(ys1|π ,s0|π )− P(sx0 ) = 0 (18)

where s1, s0 ∈ {s
+, s−}. Specifically, define πd as the path set that

contains only S → Y and define πi as the path set that contains
all the causal paths from S to Y which pass through some redlining
attributes of R. We achieve direct causal fairness if PEπd

(s1, s0) =
0, and indirect causal fairness if PEπi (s1, s0) = 0.

Direct discrimination considers the causal effect transmitted
along the direct path from S to Y , i.e., S → Y . The physical
meaning of PEπd

(s1, s0) can be explained as the expected change
in decisions of individuals from marginalized group s0, if the
decision makers are told that these individuals were from the
non-marginalized group s1. When applied to the example in
Figure 4, it means that the expected change in admission of
applicants is actually from the marginalized group (e.g., Female),

when the admission office is instructed to treat the applicants as
from the non-marginalized group (e.g., Male).

Indirect discrimination considers the causal effect transmitted
along all the indirect paths from S to Y that contain the redlining
attributes. The physical meaning of PEπi (s1, s0) is the expected
change in decisions of individuals from marginalized group
s0, if the values of the redlining attributes in the profiles of
these individuals were changed as if they were from the non-
marginalized group s1. When applied to the example in Figure 4,
it means the expected change in admission of the marginalized
group if they had the same gender makeups shown in the major
as the non-marginalized group.

The following propositions (Zhang et al., 2017) further show
two properties of the path-specific effect metrics.

Proposition 3.1. If path set π contains all causal paths from S to
Y and S has no parent in G, then we have:

PEπ (s1, s0) = TCE(s1, s0) = P(y+ | s1)− P(y+ | s0). (19)

P(y+|s1) − P(y+|s0) is known as the risk difference (a measure of
statistical parity). Therefore, the path-specific effect metrics can
be considered as an extension to the risk difference (and statistical
parity) for explicitly distinguishing the discriminatory effects of
direct and indirect discrimination from the total causal effect.

Proposition 3.2. For any path sets πd and πi, we do not
necessarily have:

PEπd
(s1, s0)+ PEπi (s1, s0) = PEπd∪πi (s1, s0). (20)

This implies that there might not be a linear connection between
direct and indirect discrimination.

3.4. Counterfactual Fairness
In Sections 3.2 and 3.3, the intervention is performed on the
whole population. These metrics deal with effects on an entire
population, or on the average individual from a population.
But, up to this point we have not talked about “personalized
causation”—or causation at the level of particular events of
individuals (Pearl and Mackenzie, 2018). Counterfactuals will
allow us to do so. If we infer the post-intervention distribution
while conditioning on certain individuals, or groups specified by
a subset of observed variables, the inferred quantity will involve
two worlds simultaneously: the real world represented by causal
model M, as well as the counterfactual world Mx. Such causal
inference problems are called counterfactual inference, and the
distribution of Yx conditioning on the real world observation
O = o is denoted by P(yx | o).

In Kusner et al. (2017), Kusner et al. defined counterfactual
fairness to be the case where the outcome would have remained
the same had the marginalization attribute of an individual or a
group been different, and all other attributes been equal.

Definition 3.3 [Counterfactual Fairness]. Given a factual
condition O = o where O ⊆ {S,X,Y}, we achieve counterfactual
fairness if:

CE(s1, s0 | o) = P(ys1 | o)− P(ys0 | o) = 0 (21)
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where s1, s0 ∈ {s
+, s−}.

Note that we can simply define a classifier as counterfactually
fair by replacing outcome Y with the predictor Ŷ in the
above equation. The meaning of counterfactual fairness can be
interpreted as follows when applied to the example in Figure 4.
Applicants are applying for admission and a predictive model
is used to make the decision Ŷ . We concern ourselves with
an individual from marginalized group s0 who is specified by
a profile o. The probability of the individual to get a positive
decision is P(ŷ | s0, o), which is equivalent to P(ŷs0 | s0, o) since
the intervention makes no change to S’s value of that individual.
Now assume the value of S for the individual had been changed
from s0 to s1. The probability of the individual to get a positive
decision after the hypothetical change is given by P(ŷs1 | s0, o).
Therefore, if the two probabilities P(ŷs0 | s0, o) and P(ŷs1 | s0, o)
are identical, we can claim the individual is treated fairly as if they
had been from the other group.

3.5. Counterfactual Effects
In Zhang and Bareinboim (2018b), Zhang and Bareinboim
introduced three fine-grained measures of the transmission of
change from stimulus to effect called the counterfactual direct,
indirect, and spurious effects. Throughout Section 3.5, we useW
to denote all the observed intermediate variables between S and Y
and use the group with S = s0 as the baseline to measure changes
of the outcome.

Definition 3.4 [Counterfactual Direct Effect]. Given a SCM, the
counterfactual direct effect (Ctf-DE) of intervention S = s1 on Y
(with baseline s0) conditioned on S = s is defined as:

Ctf-DEs0 ,s1 (y | s) = P(ys1 ,Ws0
| s)− P(ys0 | s). (22)

Ys1 ,Ws0
= y | S = s is a more involved counterfactual compared

to NDE and can be read as “the value Y would be had S been
s1, while W is kept at the same value that it would have attained
had S been s0, given that S was actually equal to s.” In terms of
Figure 4, Ys1 ,Ws0

= y | S = s means the admission decision for
a Female student if they had actually been Male, while keeping
all intermediate variables the same, when given that the student’s
gender is actually s (meaning Male or Female).

Definition 3.5 [Counterfactual Indirect Effect]. Given a SCM,
the counterfactual indirect effect (Ctf-IE) of intervention S = s1 on
Y (with baseline s0) conditioned on S = s is defined as:

Ctf-IEs0 ,s1 (y | s) = P(ys0,Ws1
| s)− P(ys0 | s). (23)

Ctf-IE measures changes in the probability of the outcome Y
being y had S been s0, while changing W to whatever level it
would have naturally obtained had S been s1, in particular, for
the individuals in which S = s0. In terms of Figure 4, this means
the probability of admission for a Female student based on the
intermediate variable values that would be obtained if they were
Male (e.g., ratio of Males applying to the major).

Definition 3.6 [Counterfactual Spurious Effect ]. Given a SCM,
the counterfactual spurious effect (Ctf-SE) of S = s1 on Y = y
(with baseline s0) is defined as:

Ctf-SEs0 ,s1 (y) = P(ys0 | s1)− P(y | s0). (24)

Ctf-SEs0 ,s1 (y) measures the difference in the outcome Y = y had
S been s0 for the individuals that would naturally choose S to be s0
vs. s1. In other words, it measures the difference in the admission
decision had the marginalization attribute been set to Female for
the students that were actually Female vs. Male.

Proposition 3.3. For a SCM, if S has no direct (indirect) causal
path connecting Y in the causal graph, then Ctf-DEs0 ,s1 (y | s) = 0

(Ctf-IEs0 ,s1 (y | s) = 0) for any s, y; if S has no back-door7 path
connecting Y in the causal graph, then Ctf-SEs0 ,s1 (y) = 0 for any y.

Building on these measures, Zhang and Bareinboim derived
the causal explanation formula for the disparities observed in
the total variation. Recall that the total variation is simply
the difference between the conditional distributions of Y when
observing S changing from s0 to s1.

Definition 3.7 [Total Variation]. The total variation (TV) of
S = s1 on Y = y (with baseline s0) is given by:

TVs0 ,s1 (y) = P(y | s1)− P(y | s0). (25)

In regard to Figure 4, the TV would be the probability of the
outcome given that the student was Male minus the probability
of the outcome given that the student was Female., i.e., the
difference in their overall probabilities of being admitted.

Theorem 3.1 [Causal Explanation Formula]. For any s0, s1, y,
the total variation, counterfactual spurious, direct, and indirect
effects obey the following relationship:

TVs0 ,s1 (y) = Ctf-SEs0 ,s1 (y)+Ctf-IEs0 ,s1 (y | s1)−Ctf-DEs1 ,s0 (y | s1),
(26)

TVs0 ,s1 (y) = Ctf-DEs0 ,s1 (y | s0)−Ctf-SEs1 ,s0 (y)−Ctf-IEs1 ,s0 (y | s0).
(27)

Theorem 3.1 allows the machine learning designer to
quantitatively evaluate fairness and explain the total observed
disparity of a decision through different discriminatory
mechanisms. For example, the first formula shows that the total
disparity experienced by the individuals who have naturally
attained s1 (relative to s0, in other words, students who were
naturally Male over Female) is equal to the disparity associated
with spurious discrimination, plus the advantage it lost due
to indirect discrimination, minus the advantage it would have
gained without direct discrimination.

7A backdoor path from X to Y is any path starting at X with a backward edge←

into X such as: X ← A → B ← C → Y . Backdoor paths allow information to

flow from X to Y in a way that is not causal.
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TABLE 2 | Connection between Path-specific Counterfactual Fairness (PC

Fairness) and other fairness notions.

Description Relating to PC fairness

Total causal fairness O = ∅ and π = 5

Direct causal fairness O = ∅ and π = πd = {S→ Ŷ}

Indirect causal fairness O = ∅ and π = πi ⊂ 5

Counterfactual fairness O = {S,X} and π = 5

Counterfactual direct effect (Ctf-DE) O = {S,Y} and π = πd

Counterfactual indirect effect (Ctf-IE) O = {S,Y} and πi

3.6. Path-Specific Counterfactual Fairness
In Wu et al. (2019), Wu et al. proposed path-specific
counterfactual fairness (PC fairness) that covers the previously
mentioned fairness notions. Letting 5 be all causal paths from S
to Y in the causal graph and π be a subset of 5, the path-specific
counterfactual fairness metric is defined as follows.

Definition 3.8 [Path-specific Counterfactual Fairness (PC

Fairness)]. Given a factual condition O = o where O ⊆ {S,X,Y}
and a causal path set π , we achieve the PC fairness if:

PCEπ (s1, s0 | o) = P(ys1|π ,s0|π | o)− P(ys0 | o) = 0 (28)

where s1, s0 ∈ {s
+, s−}.

In order to achieve path-specific counterfactual fairness in the
running example, the application decision system needs to be able
to discern the causal effect of the applicants gender being Female
along the fair and unfair pathways, and to disregard the effect
along the pathways that are unfair.

We point out that we can simply define the PC Fairness on
a classifier by replacing outcome Y with the predictor Ŷ in the
above equation. Previous causality-based fairness notions can be
expressed as special cases of the PC fairness based on the value
of O (e.g., ∅ or S,X) and the value of π (e.g., 5 or πd). Their
connections are summarized in Table 2, where πd contains the
direct edge from S to Ŷ , and πi is a path set that contains all
causal paths passing through any redlining attributes. The notion
of PC fairness also resolves new types of fairness, e.g., individual
indirect fairness, which means discrimination along the indirect
paths for a particular individual. Formally, individual indirect
fairness can be directly defined and analyzed using PC fairness
by lettingO = {S,X} and π = πi.

3.7. Proxy Fairness
In Kilbertus et al. (2017), Kilbertus et al. proposed proxy fairness.
A proxy is a descendant of S in the causal graph whose observable
quantity is significantly correlated with S, but should not affect
the prediction. An example of a proxy variable in our running
admission case can be seen in Figure 5.

Definition 3.9 [ProxyDiscrimination].A predictor Ŷ exhibits no
proxy discrimination based on a proxy P if for all p, p′ we have:

P(ŷ | do(P = p)) = P(Ŷ | do(P = p′)) (29)

FIGURE 5 | Extension of Figure 4 in which we add a proxy variable: name.

Name is significantly correlated with the marginalization attribute gender since

a person’s name is often chosen based on their gender.

Intuitively, a predictor satisfies proxy fairness if the distribution
of Ŷ under two interventional regimes in which P set to p and p′

is the same. Kilbertus et al. (2017) presented the conditions and
developed procedures to remove proxy discrimination given the
structural equation model.

3.8. Justifiable Fairness
In Salimi et al. (2019), Salimi et al. presented a pre-processing
approach for removing the effect of any discriminatory causal
relationship between the marginalization attribute and classifier
predictions by manipulating the training data to be non-
discriminatory. The repaired training data can be seen as a
sample from a hypothetical fair world.

Definition 3.10 [K-fair]. For a give set of variables K, a decision
function is said to be K-fair with regards to S if, for any context
K = k and any outcome Y = y, P(ys0 ,k) = P(ys1 ,k).

Note that the notion of K-fair intervenes on both the
marginalization attribute S and variables K. It is more fine-
grained than proxy fairness, but it does not attempt to
capture fairness at the individual level. The authors further
introduced justifiable fairness for applications where the user can
specify admissible (deconfounding) variables through which it
is permissible for the marginalization attribute to influence the
outcome. In our example from Figure 4, the admissible variable
is the major.

Definition 3.11 [Justifiable Fairness]. A fairness application is
justifiable fair if it is K-fair with regarding to all supersets K ⊇ A

where A is the set of admissible variables.

Different from previous causality-based fairness notions, which
require the presence of the underlying causal model, the
justifiable fairness notion is based solely on the notion of
intervention. The user only requires specification of a set of
admissible variables and does not need to have a causal graph.
The authors also introduced a sufficient condition for testing
justifiable fairness that does not require access to the causal graph.
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However, with the presence of the causal graph, if all directed
paths from S to Y go through an admissible attribute in A, then
the algorithm is justifiably fair. If the probability distribution is
faithful to the causal graph, the converse also holds. This means
that our running example is not justifiably fair since the paths
from gender to admission has two paths: gender → major →
admission and gender→ admission.

3.9. Counterfactual Error Rate
Zhang and Bareinboim (2018a) developed a causal framework
to link the disparities realized through equalized odds (EO) and
the causal mechanisms by which the marginalization attribute
S affects change in the prediction Ŷ . EO, also referred to as
error rate balance, considers both the ground truth outcome
Y and predicted outcome Ŷ . EO achieves fairness through
the balance of the misclassification rates (false positive and
negative) across different demographic groups. They introduced
a family of counterfactual measures that allows one to explain
the misclassification disparities in terms of the direct, indirect,
and spurious paths from S to Ŷ on a structural causal model.
Different from all previously discussed causality-based fairness
notions, counterfactual error rate considers both Y and Ŷ in their
counterfactual quantity.

Definition 3.12 [Counterfactual Direct Error Rate]. Given a
SCM and a classifier ŷ = f (p̂a) where P̂A is a set of input features
of the predictor, the counterfactual direct error rate (ERd) for a
sub-population s, y (with prediction ŷ 6= y) is defined as:

ERds0 ,s1 (ŷ | s, y) = P(ŷs1 ,y,(P̂A\S)s0,y
| s, y)− P(ŷs0 ,y | s, y). (30)

For an individual with the marginalization attribute S = s
and the true outcome Y = y, the counterfactual direct error
rate calculates the difference of two terms. The first term is the
prediction Ŷ had S been s1, while keeping all the other features
P̂A\S at the level that they would attain had S = s0 and Y = y,
whereas the second term is the prediction Ŷ the individual would
receive had S been s0 and Y been y.

Definition 3.13 [Counterfactual Indirect Error Rate]. Given a
SCM and a classifier ŷ = f (p̂a), the counterfactual indirect error
rate (ERi) for a sub-population s, y (with prediction ŷ 6= y) is
defined as:

ERis0 ,s1 (ŷ | s, y) = P(ŷs0 ,y,(P̂A\S)s1,y
| s, y)− P(ŷs0,y | s, y). (31)

Definition 3.14 [Counterfactual Spurious Error Rate]. Given
a SCM and a classifier ŷ = f (p̂a), the counterfactual spurious
error rate (ERs) for a sub-population s, y (with prediction ŷ 6= y) is
defined as:

ERss0 ,s1 (ŷ | y) = P(ŷs0,y | s1, y)− P(ŷs0,y | s0, y). (32)

The counterfactual spurious error rate can be read as “for two
demographics s0, s1 with the same true outcome Y = y, how
would the prediction Ŷ differ had they both been s0, y?” For a
graphical depiction of these measures, we refer interested reader
to the tutorial by Bareinboim et al.

Building on these measures, Zhang and Bareinboim (2018a)
derived the causal explanation formula for the error rate balance.
The equalized odds notion constrains the classification algorithm
such that its disparate error rate is equal to zero across
different demographics.

Definition 3.15 [Error Rate Balance]. The error rate (ER)
balance is given by:

ERs0 ,s1 (ŷ | y) = P(ŷ | s1, y)− P(ŷ | s0, y). (33)

Theorem 3.2 [Causal Explanation Formula of Equalized

Odds]. For any s0, s1, ŷ, y, we have the following relationship:

ERs0 ,s1 (ŷ | y) = ERds0 ,s1 (ŷ | s0, y)−ER
i
s1 ,s0

(ŷ | s0, y)−ER
s
s1 ,s0

(ŷ | y).
(34)

The above theorem shows that the total disparate error rate can
be decomposed into terms, each of which estimates the adverse
impact of its corresponding discriminatory mechanism.

3.10. Individual Equalized Counterfactual
Odds
In Pfohl et al. (2019), Pfohl et al. proposed the notion of
individual equalized counterfactual odds that is an extension
of counterfactual fairness and equalized odds. The notion is
motivated by clinical risk prediction and aims to achieve equal
benefit across different demographic groups.

Definition 3.16 [Individual Equalized Counterfactual Odds].

Given a factual condition O = o where O ⊆ {X,Y}, predictor Ŷ
achieves the individual equalized counterfactual odds if:

P(ŷs1 | o, ys1 , s0)− P(ŷs0 | o, ys0 , s0) = 0 (35)

where s1, s0 ∈ {s
+, s−}.

The notion implies that the predictor must be counterfactually
fair given the outcome Y matching the counterfactual outcome
ys0 . This is different than the normal counterfactual fairness
calculation in Definition 3.3, which requires the prediction
to be equal across the factual/counterfactual pairs, without
caring if those pairs have the same outcome prediction.
Therefore, in addition to requiring predictions to be equal across
factual/counterfactual samples, those samples must also share
the same value of the actual outcome Y . In other words, it
considers the desiderata from both counterfactual fairness and
equalized odds. For our running example, this is an extension of
the discussion under Definition 3.3 in which we now require that
ŷs0 = ŷs1 .

3.11. Fair on Average Causal Effect
In Khademi et al. (2019), Khademi et al. introduced two
definitions of group fairness: fair on average causal effect (FACE),
and fair on average causal effect on the treated (FACT) based on
the Rubin-Neyman potential outcomes framework. Let Yi(s) be
the potential outcome of an individual data point i had S been s.
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Definition 3.17 [Fair on Average Causal Effect (FACE)]. A
decision function is said to be fair, on average over all individuals
in the population, with respect to S, if E[Yi(s1)− Yi(s0)] = 0.

FACE considers the average causal effect of the marginalization
attribute S on the outcome Y at the population level and
is equivalent to the expected value of the TCE(s1, s0) in the
structural causal model.

Definition 3.18 [Fair on Average Causal Effect on the Treated

(FACT)]. A decision function is said to be fair with respect to S, on
average over individuals with the same value of s1, if E[Yi(s1) −
Yi(s0) | Si = s1] = 0.

FACT focuses on the same effect at the group level. This is
equivalent to the expected value of ETTs1 ,s0 (Y). The authors used
inverse probability weighting to estimate FACE and use matching
methods to estimate FACT.

3.12. Equality of Effort
In Huang et al. (2020), Huang et al. developed a fairness
notation called equality of effort. When applied to the example
in Figure 4, we have a dataset with N individuals with attributes
(S,T,X,Y) where S denotes the marginalization attribute gender
with domain values {s+, s−}, Y denotes a decision attribute
admission with domain values {y+, y−}, T denotes a legitimate
attribute such as test score, and X denotes a set of covariates. For
an individual i in the dataset with profile (si, ti, xi, yi), they may
ask the counterfactual question, how much they should improve
their test score such that the probability of their admission is
above a threshold γ (e.g., 80%).

Definition 3.19 [γ -MinimumEffort]. For individual i with value
(si, ti, xi, yi), the minimum value of the treatment variable to
achieve γ -level outcome is defined as:

9i(γ ) = argmin
t∈T

{
E[Yi(t)] ≥ γ )} (36)

and the minimum effort to achieve γ -level outcome is 9i(γ )− ti.

If the minimal change for individual i has no difference from
that of counterparts (individuals with similar profiles except the
marginalization attribute), individual i achieves fairness in terms
of equality of effort. As Yi(t) cannot be directly observed, we can
find a subset of users, denoted as I, each of whom has the same
(or similar) characteristics (x and t) as individual i. I∗ denotes the
subgroup of users in I with the marginalization attribute value s∗

where ∗ ∈ {+,−} and E[YI∗ (t)] denotes the expected outcome
under treatment t for the subgroup I∗.

Definition 3.20 [γ -Equal Effort Fairness]. For a certain outcome
level γ , the equality of effort for individual i is defined as:

9I+ (γ ) = 9I− (γ ). (37)

where 9I∗ (γ ) = argmint∈T{E[YI∗ (t)] ≥ γ } is the minimal effort
needed to achieve γ level of outcome variable within the subgroup
∗ ∈ {+,−}.

Equal effort fairness can be straightforwardly extended to the
system (group) level by replacing I with the whole datasetD (or a
particular group). Different from previous fairness notations that
mainly focus on the effect of the marginalization attribute S on
the decision attribute Y , the equality of effort instead focuses on
to what extend the treatment variable T should change to make
the individual achieve a certain outcome level. This notation
addresses the concerns whether the efforts that would need to
make to achieve the same outcome level for individuals from the
marginalized group and the efforts from the non-marginalized
group are different. For instance, if we have two students with the
same credentials minus their gender, and the Female student was
required to raise their test score significantly more than the Male,
then we do not achieve equal effort fairness.

3.13. Technical Pitfalls of Causality-Based
Fairness
Causality provides a conceptual and technical framework for
measuring and mitigating unfairness by using the causal effect
on a decision from hypothetical interventions onmarginalization
attributes such as gender. Despite the benefits of causality-
based notions over statistical-based ones, there have been
technical challenges in applying causality for fair machine
learning in practice. One common challenge is the validity of
the assumptions in causal modeling. As discussed in Section
3, the majority of research on causal fairness is based on
SCM which represents the causal relationships between variables
via structural equations and a directed acyclic graph (DAG).
In practice, learning structural equations and constructing the
DAG model from observational data is a challenging task
and often relies on strong assumptions such as the Markov
property, faithfulness, and sufficiency (Glymour et al., 2019).
Simply speaking, the Markov property requires that all nodes
are independent of their non-descendants when conditioned on
their parents; faithfulness requires all conditional independent
relationships in the true underlying distribution are represented
in the DAG; and sufficiency requires any pair of nodes in
the DAG has one common external cause (confounder). These
assumptions help narrow down the model space, however, they
may not hold in the causal process or the sampling process that
generates the observed data.

Another common challenge of causality-based fairness
notions based on SCMs is identifiability, i.e., whether they can
be uniquely measured from observational data. As causality-
based fairness notions are defined based on different types of
causal effects, such as total effect on interventions, direct/indirect
discrimination on path-specific effects, and counterfactual
fairness on counterfactual effects, their identifiability depends
on the identifiability of these causal effects. Unfortunately, in
many situations these causal effects are unidentifiable. Hence
identifiability is a critical barrier for causality-based fairness to
be applied to real applications. In the causal inference field,
researchers have studied the reasons for unidentifiability and
identified the corresponding structural patterns such as the
existence of the “kite graph”, the “w graph”, or the “hedge graph”.
We refer readers who are interested in learning the specifics
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of identifiability theory and criteria, and how they can be used
to decide the applicability of causality-based fairness metrics to
Makhlouf et al. (2022). We also refer readers to Wu et al. (2019)
for a summary of unidentifiable situations and approximation
techniques to derive bounds of causal effects.

The potential outcome framework does not require the causal
graph. However, as discussed in Section 2.3, it relies on three
assumptions. SUTVA is a non-interference assumption which
may not hold in many real world applications. For example,
a loan officer’s decision to proceed with one application may
be influenced by previous applications. In this case, SUTVA
is violated. When the strong ignorability assumption does not
hold, there exist hidden confounders. Although we can leverage
mediating features or proxies to estimate treatment effects
(Miao et al., 2018), the lack of accuracy guarantee hinders the
applicability of causal fairness.

4. PHILOSOPHY OF CAUSALITY

The first formal investigation into causality was done by the
Greek philosopher Aristotle, who in 350 BC, published his
two famous treatise, Physics and Metaphysics. In these treatise,
Aristotle not only opposed the previously proposed notions of
causality for not being grounded in any solid theory (Falcon,
2019), but he also constructed a taxonomy of causation which
he termed “the four causes.” In order to have proper knowledge,
he deemed that we must have grasped its cause, and that giving a
relevant cause is necessary and sufficient in offering a scientific
explanation. His four causes can be seen as the four types of
answers possible when asked a question of “why.”

1. The material cause: “that out of which” (something is made).
E.g., the marble of a statue.

2. The formal cause: “the form”, “the account of what-it-is-to-
be.” E.g., the shape of the statue.

3. The efficient cause: “the primary source of the change or rest.”
E.g., the artist/sculptor of the marble statue.

4. The final cause: “the end, that for the sake of which a thing is
done.” E.g., the creation of a work of art.

Despite giving four causes, Aristotle was not committed to the
idea that every explanation had to have all four. Rather, he
reasoned that any scientific explanation required up to four kinds
of cause (Falcon, 2019).

Another important philosopher who worked on causality
was the 18th century Scottish philosopher David Hume. Hume
rejected Aristotle’s taxonomy and instead insisted on a single
definition of cause. This is despite the fact that he himself
could not choose between two different, and later found to be
incompatible, definitions (Pearl and Mackenzie, 2018). In his
Treatise of Human Nature, Hume states that “several occasions of
everyday life, as well as the observations carried out for scientific
purposes, in which we speak of a condition A as a cause and
a condition B as its effect, bear no justification on the facts,
but are simply based on our habit of observing B after having
observed A” (Frosini, 2006). In other words, Hume believed that
the cause-effect relationship was a sole product of our memory

and experience (Pearl and Mackenzie, 2018). Later, in 1739,
Hume published An Enquiry Concerning Human Understanding
in which he framed causation as a type of correlation: “we may
define a cause to be an object followed by another, and where all
the objects, similar to the first, are followed by objects similar to
the second. Or in other words, where, if the first object had not
been, the second never had existed.” While he tried to pass these
two definitions off as one by using “in other words,” David Lewis
pointed out that the second statement is contradictory to the
first as it explicitly invokes the notion of a counterfactual which,
cannot be observed, only imagined (Pearl and Mackenzie, 2018).

It is also important to note that Hume changed how
philosophers approached causality by changing the question
from “What is causality” to “What does our concept of causality
mean?” In other words, he took a metaphysical question and
turned it into an epistemological one8 (Broadbent, 2020). This
change allowed philosophers to take different approaches to
answering the new question such as those based on semantic
analyses, ontological stances, skepticism, and Kantian stances.
Each of these approaches in turn garnered several theories of how
to formulate an answer. A breakdown of all the approaches and
theories can be seen in Figure 6.

Since this publication is focused on the SCM and PO
frameworks, we will mainly constrain our analysis to the
interventionalist theories as well as a brief discussion of the
counterfactual theory by David Lewis since they are closely
related. Additionally, we will give a short overview of each theory
type to answering “What does our concept of causality mean”
from a semantic approach to give insight into why the theories of
Pearl and Rubin from an interventionalist approach are popular
in causality-based machine learning fairness notions.

4.1. Regularity
The regularity theory implies that causes and effects do not
usually happen just once, rather they happen as part of a regular
sequence of events. For instance, today it rained causing the grass
to be wet, but rain, no matter the day, produces this effect. This
theory claims that in order to firmly say that one event causes
another it must be that the cause is followed by the effect and that
this cause-effect pair happens a lot. In other words, the cause and
effect must be constantly conjoined (Broadbent, 2020). Hume’s
definition of causality from An Enquiry Concerning Human
Understanding is a well-regarded regularity theory.

4.2. Mechanistic
The mechanistic theory of causality says that explanations
proceed in a downward direction: given an event to be explained,
its mechanism (cause) is the structure of reality that is responsible
for it (Williamson, 2011). I.e., two events are causally connected
if and only if they are connected by an underlying physical
mechanism. This is in contrast to causal explanations which
often operate in a backwards direction: given an event to be
explained, its causes are the events that helped produce it. There

8Metaphysics is the study of reality, while epistemology is the study of knowledge.

Epistemology looks at how we know what the truth is and whether there are limits

to this knowledge, while metaphysics seeks to understand the nature of reality and

existence.
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FIGURE 6 | The multiple different approaches to causality. The first level indicates the types of questions that can be asked about causality and the rows below are

answers to the questions. For example, probabilistic approaches are an answer to semantic questions. The shadow-boxed items are elements discussed in this

publication: interventionalist approaches of Pearl and Rubin as well as the counterfactual groundings of both based on Lewis’ work. Additionally, we map where two

different types of U.S. legal cases fall within the causal framework. We refer interested readers to Broadbent (2020) for details on the approaches not covered.

are two main kinds of mechanistic theory: 1) process theory
which says thatA causes B if and only if there is a physical process
(something that transmits a mark or transmits a conserved
physical quantity like energy-mass) that links A and B; and
complex-system theory which says that A and B are causally
related if and only if they both occur in the same complex-
system mechanism (a complex arrangement of events that are
responsible for some final event or phenomenon because of how
the events occur).

4.3. Probabilistic
Probabilistic theories operate under the assumption that a cause
occurring raises the probability of their corresponding effects.
For example, “striking a match may not always be followed by its
lighting, but certainly makes it more likely; whereas coincidental
antecedents, such as my scratching my nose, do not” (Broadbent,
2020). Probabilistic theories of causality are motivated by two
main notions: 1) changing a cause makes a difference to its
effects; and 2) this difference shows up in the probabilistic
dependencies between the cause and effect (Williamson, 2009).
Additionally, many probabilistic theorists go further and say
that probabilistic dependencies provide necessary and sufficient
conditions for causal connections. Further, many go one step
farther and say that probabilistic dependencies give an analysis
of a causal relation. I.e., that C causes E simply means that the
corresponding probabilistic dependencies occur.

4.4. Counterfactual
David Lewis’s counterfactual theory of causation (Lewis, 1973)
starts with the observation that if a cause had not happened,

the corresponding effect would not have happened either. A
cause, according to Lewis in his 1973 article “Causation”, was
“something that makes a difference, and the difference it makes
must be a difference from what would have happened without
it” (Hidalgo and Sekhon, 2011). He defined causal inference to
be the process of comparing the world as it is with the closest
counterfactual world. If C occurs both in the actual and the
closest counterfactual world without A, then it must be that A
is not the cause of C. Many note that since he provided sparse
practical guidance on how to construct counterfactual worlds, his
theories when used alone have limited use to empirical research
(Hidalgo and Sekhon, 2011).

Additionally, it may seem odd that counterfactuals
constitute a whole separate theory and is not combined
with the manipulation or interventionalist theories. But this is
because interventionalist theories shift the approach from pure
conceptual analysis to something more closely related to causal
reasoning and focused on investigating and understanding
causation than producing a complete theory (Broadbent,
2020). This point additionally highlights why interventionalist
approaches to both causal frameworks and causality-based
machine learning fairness metrics are popular. The PO and SCM
frameworks of Rubin and Pearl have risen to the forefront since
their treatment of causality is no longer purely theoretical. They
give tools and methods to actually implement causality-based
notions rather than just speak to “what does our concept of
causality mean.” One might say that the probabilistic theories
technically gave a mathematical framework for a possible
implementation, but in reality, they did not produce any new
computational tools or suggest methods for finding causal
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relationships and so were abandoned for using interventionalist
approaches instead (Hitchcock, 2021).

4.5. Manipulation and Interventionalist
Manipulability theories equate causality with manipulability. In
these cases, X causes Y only when you can change X in order
to change Y . This idea makes intuitive sense with how we
think about causation since we often ask causal questions in
order to change some aspect of our world. For instance, asking
what causes kids to drop out of school so that we might try to
increase retention rates. But, most philosophical discussion on
manipulability theories have been harsh. Two complaints have
been that manipulability theories are circular in nature and that
they produce theories that are not valid since it depends on being
able to actually manipulate the variable at hand to cause an effect,
i.e., changing the race of a person to observe if the final effect
differed (Woodward, 2016). The interventionist framework was
proposed to overcome these issues and to present a plausible
version of a manipulability theory.

Interventionalist approaches attempt to perform a surgical
change in A which is of such a character that if any change
occurs in B, it occurs only as a result of its causal connection
to A. In other words, the change in B, that is produced by
the surgical change of A should be produced only via a causal
path that goes through A (Woodward, 2016). Both Judea Pearl
and Donald Rubin have interventional theories - Rubin in the
PO framework and Pearl in the SCM framework. Pearl noted
that causal events can be formally represented in a graph which
enabled the display of the counterfactual dependencies between
the variables (Pearl, 2009; Pearl and Mackenzie, 2018). The
counterfactual dependencies are then analyzed against what
would happen if there was an (hypothetical) intervention to
alter the value of only a specified variable (or variables). Pearl
suggested that formulating causal hypotheses in this manner
offered the mathematical tools for analyzing empirical data
(Broadbent, 2020).

In contrast with Pearl, Rubin advocated for the treatment of
causation in terms of more manipulation-based ideas, meaning
that causal claims involving causes that are un-manipulable in the
principle are defective (Woodward, 2016). Un-manipulable does
not mean variables that cannot be manipulated due to practical
reasons, but rather variables that do not have a clear conception
of what it would take to manipulate them, such as race, species,
and gender.

5. CAUSALITY AND THE LAW

As we briefly showed in Figure 6, both U.S. discrimination law
and criminal law can be mapped to frameworks that belong
to the interventionalist theories of Pearl and Rubin. Below
we will discuss each of these types of case law in relation to
causality-based fair machine learning in more detail in order
to show how the research on causal framework, and more
importantly, causality-based fair machine learning, is put to work
in practical scenarios.

5.1. Discrimination Law
In discrimination law, there are two main types of cases: 1)
disparate impact (DI) cases in which there is unintentional
or indirect discrimination; and 2) disparate treatment (DT) in
which an individual is intentionally treated different based on
their membership in a marginalized class. In this publication we
will center our focus on DT since DI is often associated with
statistical parity. Causation, in the legal sense of the word, is
the element of a legal claim that connects a defendant’s actions
to a plaintiff ’s (i.e., victim’s) injury or wrongdoing. In both
types of cases, the most prevalent ‘standard’ of causation is the
“but-for” standard.

The but-for test says that a defendant’s action is a but-for
cause of the plaintiff ’s harm if, were it the case that the defendant
didn’t carry out the action, then the harm would not have
occurred. While the but-for test is a straightforward test that
aligns with our notion of common sense, it has been found
that in many disparate treatment cases the but-for case is an
inadequate measure of causation. This is because the majority of
discrimination cases are amixed-motive claims—claims in which
there are at least two possible motives that lead to the action
where one motive is discriminatory and one is not (Bavli, 2021).
The mixed-motive claims make it difficult to find the defendant’s
true motive, and, therefore, the defendant can easily win the case
by presenting evidence of a legitimate purpose for the action
(Bavli, 2021).

Resulting from issues with the but-for test in DT cases, the
“motivating-factor” test was created. The motivating-factor test
has one simple requirement: the ruling will be in favor of the
plaintiff if and only if they can show that a discriminatory reason
was a motivating factor in the decision. Unfortunately, this test
strays away from actual cause and effect, its meaning is vague
even to judges and court since ‘motivating factor’ is not defined,
and it allows the jury to rely on simple intuition to decide if
the defendant’s action was based on the presented evidence of
discrimination (Bavli, 2021).

Since historically there has been an inconsistent use of the
two tests, and each test has steep downfalls, many call for a
total overhaul of the notion of causality in the legal field. More
specifically, many propose to use the PO framework to determine
if the defendant’s actions caused the plaintiff ’s harm (Foster, 2004;
Greiner, 2008; Bavli, 2021). This is because the PO framework
allows for an understanding and application of causation that
is broader than the ‘causation’ of the but-for tests, but it still
retains the use of a necessity condition (see Pearl, 2009 for more
information on necessary and sufficient causes) (Bavli, 2021).
Not only would utilizing the PO framework clear the confusion
present in the two tests, but it would also allow the courts,
litigators, and jury to better understand the causal problem at
hand to determine if the defendant is to blame or not. Another
reason why a focus on using the PO framework is emerging is
because statistical-based fairness metrics do not align well with
DT cases since discrimination claims usually require plaintiffs to
demonstrate a causal connection between the challenged decision
and the marginalization attribute.
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FIGURE 7 | Graphical model displaying the causal relationships between the

defendant’s actions, the victim’s result, along with intervening and superceding

factors.

Continued research in causality-based fair machine learning
notions will only strengthen the support of use of PO in DT
cases. This is because these notions, without having to construct
a complex causal graph, focus on estimating the causal effects
of treatment (marginalization) variables on the outcome in a
consistentmanner. For example FACE and FACT (see Definitions
3.17 and 3.18) measure the effect of the marginalization variable
on the outcome at both population and group levels which
gives a clear measure if discrimination exists in a certain setting
or not.

5.2. Criminal Law
While DT cases connected with the PO framework, criminal law
cases can be mapped to the SCM framework. When proving
guilt in a criminal court case, the prosecution is required to
prove that the defendant’s action was the legal cause of the
result. Establishing this causal relationship is a two-step process
in which the prosecution first establishes factual (“but-for”)
causation and then determines if there is proximate causation
(Kaplan et al., 2012).

To prove factual causation, the prosecutor does not have
to prove that the defendant’s actions were the sole cause of
the result (such as in DT), as their actions may have been
combined with those of another person, or another circumstance,
that all contributed to the final result. An exception to factual
causation is when the chain of events caused by the defendant’s
actions is effectively broken. These intervening factors must
be unforseeable. For instance, if the defendant’s actions put
the victim in the hospital (in a non-critical condition), but
by the effect of gross medical malpractice, they die, then,
the defendant would most likely be charged for assault, but
not homicide.

After proving factual causation, the prosecution must then
prove proximate causation, which is a cause that is legally
sufficient to result in liability. Typically, proximate cause issues
arise when the final result occurs through an unexpectedmanner.
For instance, if the defendant shot the victim in the arm, who then

while running away from the defendant, fell on the sidewalk and
cracked their skull which resulted in their death a few moments
later, then the defendant’s actions were the proximate cause of
the victims death. The general rule is that the defendant’s actions
will be regarded as the proximate cause of a result if the result
occurred as a “natural and probable consequence” of the acts,
and there was no intervening factor sufficient enough to break
the chain of causation (People v. Geiger, 1968; LawShelf, 2021).

Using the SCM framework, we can display the relationship
of causation in the law as shown in Figure 7. When relating
to casual-based fairness metrics, the legal notion of causality
closely aligns with the idea of path-specific causal effect. In this
case, instead of computing the direct and indirect effects, path-
specific causal effect isolates the contribution of the effect along a
specific group of paths (Chiappa, 2019). This is similar to (but not
actually) how lawyers and judges make decisions on if a certain
action caused a certain effect. For instance, they reason if the
intervening factor (if there is one) played a role in the victim’s
result and if this intervening factor “broke the chain” of the
defendants actions in a way that no longer holds them liable. This
would result in turningDefendant’s Actions→ Intervening Factor
→ Victim’s Result to simply be Intervening Factor → Victim’s
Result as shown in Figure 7.

We note that, despite our example in the above paragraph,
there is currently no formal use of SCMs (or PO) in the
legal field. Additionally, while several rulings from various
judges seem to invoke counterfactual language (Carson vs
Bethlehem Steel Corp., 1996; Univ. of Tex. Sw. Med. Ctr.
v. Nassar, 2013), there is no directive or standard that ties
causality in the legal realm to causality in the causality-based
machine learning realm (Barocas et al., 2019). But we hope
that our discussion above spurs further conversations about
combining work in causality-based fair machine learning with
research in the legal field. Additionally, we hope it gives
perspective on how the notions we produce could be used into
practical situations.

6. SOCIOLOGICAL CRITICISM OF
CAUSALITY-BASED FAIRNESS NOTIONS

One point about causality that we have not mentioned previously
is that it has a property, called modularity, that allows it to make
causal connections. Modularity is what allows us to change the
connection between any two variables while leaving the other
causal relationships untouched (often in the form of the do-
operator). For instance, changing the gender of an applicant
while keeping the major the same. Modularity is a cornerstone
of causal inference, but many believe it is also its downfall
(Kohler-Hausmann, 2017).

To see why this is the case, we will first explain another
issue critics of causal inference raise—that in order to talk
about the causal effect of social categories, and to be able to
manipulate them, we first need to concretely define what a
social category is (Kasirzadeh and Smart, 2021). Many in the
social science field, while not agreeing on one set definition
of “group”, believe that social categories and groups extend

Frontiers in Big Data | www.frontiersin.org 17 April 2022 | Volume 5 | Article 892837

https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org
https://www.frontiersin.org/journals/big-data#articles


Carey and Wu The Causal Fairness Field Guide

beyond being purely genetic and rather are social constructs
that depend on the experiences lived by those in it. For
example, applying to a humanities department partly defines
what it means to belong to the social group of Female, as
does birthing a child or being more prone to injuries in a
car accident (Bakalar, 2022). These critics believe that the role
social categories play in structuring life experiences makes it
illogical to say two individuals are exactly the same, save for their
gender or race (Kohler-Hausmann, 2017), and that causality-
based fairness approaches suffer from the fundamental error of
thinking membership in a group is separable from the social
experiences lived by those in it. In other words, the modularity
property is unusable, which effectively breaks all of causal
inference theory.

One solution to the above problems with causal models has
been proposed by Hu and Kohler-Hausmann—an approach they
termed constitutive models (Hu and Kohler-Hausmann, 2020).
They suggest that formal diagrams of constitutive relations would
allow a new line of reasoning about discrimination as they
offer a model of how the meaning of a social group is formed
from its constitutive features. Constitutive relations show how
societal practices, beliefs, regularities, and relations make up a
category (Hu and Kohler-Hausmann, 2020). They also note that
causal diagrams can simply be reformatted to be constitutive
ones, and that because a constitutive model provides a model
of what makes a category, it presents entirely the information
needed to debate about what practices are discriminatory (Hu
and Kohler-Hausmann, 2020).

7. CONCLUSION

We have attempted to remedy a long standing problem in the fair
machine learning field, namely, the abstraction of the technical
aspects of fairness notions from their philosophical, sociological,
and legal connections. By explaining the details of popular
causality-based fair machine learning notions in both formal
and social science terminology, ultimately, we recenter the fair
machine learning discussion as one of a sociotechnical nature,
rather than simply a technical one. We hope that this field guide
not only helps fair machine learning practitioners understand
how specific causality-based fairness notions align with long-
held humanistic values, but also that it will spark conversation
and collaboration with the social science field to construct better
fairness notions.
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