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Skin cancer is the most common cancer in the USA, and it is a leading cause of death

worldwide. Every year, more than five million patients are newly diagnosed in the USA.

The deadliest and most serious form of skin cancer is called melanoma. Skin cancer can

affect anyone, regardless of skin color, race, gender, and age. The diagnosis of melanoma

has been done by visual examination and manual techniques by skilled doctors. It is

a time-consuming process and highly prone to error. The skin images captured by

dermoscopy eliminate the surface reflection of skin and give a better visualization of

deeper levels of the skin. However, the existence of many artifacts and noise such

as hair, veins, and water residue make the lesion images very complex. Due to the

complexity of images, the border detection, feature extraction, and classification process

are challenging. Without a proper mechanism, it is hard to identify and predict melanoma

at an early stage. Therefore, there is a need to provide precise details, identify early skin

cancer, and classify skin cancer with appropriate sensitivity and precision. This article

aims to review and analyze two deep neural network-based classification algorithms

(convolutional neural network, CNN; recurrent neural network, RNN) and a decision

tree-based algorithm (XG-Boost) on skin lesion images (ISIC dataset) and find which

of these provides the best classification performance metric. Also, the performance of

algorithms is compared using six different metrics—loss, accuracy, precision, recall, F1

score, and ROC.
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1. INTRODUCTION

In the United States, skin cancer is the most common form of cancer. In particular, melanoma is the
most common and specific form of skin cancer that is malignant. It starts when melanocyte cells
(which give skin the tan color) begin to overgrow, and skin color changes darker. Melanoma may
occur on normal skin or may appear as a mole or other region of the skin experiencing changes. A
few moles can turn into melanoma when they emerge during childbirth. Cancer cells begin to grow
because the skin cells’ DNA is damaged from ultraviolet rays, and that causes mutations or triggers
genetic mutations. This damage leads to multiplying of skin cells multiplying or growing at a much
faster pace and causing malignant tumors also grow (Milton, 2018; Poongodi et al., 2021; Sharma
et al., 2021).

Melanoma type of cancer may spread to the other parts of the body (eyes, ears, gingival of the
upper jaw, tongue, lips, etc.) if it is not treated as soon as identified (early stage). Melanoma spots
can develop anywhere on someone’s body, but for men, they are common on the chest and back,
and then for women, it is more common on the legs (Milton, 2018). The prevalence of melanoma
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has dramatically increased in the past 50 years, and the
incidence of melanoma has risen by 4–6% in predominantly
fair-skinned populations in North America, New Zealand,
Australia, and Northern Europe (Kosary et al., 2014). Melanoma
may be characterized by its common phenotypes like multi-
color (usually a combination of a few hues). It has an
unpredictable asymmetrical shape (cannot be divided in half)
and is intermittent. Also, its width is more prominent than 6 mm
in diameter, and it may enlarge or develop moles that eventually
change shape and size and will typically advance toward being a
melanoma (Gurung and Gao, 2020).

The images listed in Figure 1A shows the malignant and
benign (non-cancerous images) lesions.

The primary five skin lesion groups constitute about 90%
of the lesions contained in routine skin examination: actinic
keratosis [intraepithelial carcinoma / Bowen’s disease (Class
A)], basal cell carcinoma (Class B), benign keratosis including
seborrheic keratosis, solar lentigo, and lichen planus-like
keratosis (Class K), melanocytic nevi (Class N), and melanoma
(Class M) (Esteva et al., 2017; Haenssle et al., 2018).

Figure 1B shows the sample of eight phenotypes - Nevus,
Melanoma, Seborrheic Keratosis, Lentigos, Lichenoid Keratosis,
Solar Lentigo, Cafe Au Lait Macules, and Atypical Melanocytic
Proliferation. Nevus is generally used to describe benign clusters
of skin cells or moles. Lentigo NOS, also known as Nevoid
Lentigo, is a benign skin lesion that can appear on any part
of the body. Melanoma is the most dangerous form of skin
cancer. Seborrheic Keratosis is also a benign skin growth. A
Lichenoid Keratosis is a benign macula that can appear on the
skin. Solar Lentigo, also known as liver spots, is a Lentigo that
occurs due to excess exposure to the sun. Cafe au Lait Macules
are common birthmarks that present as hyperpigmented skin
patches with defined borders. Atypical Melanocytic Proliferation
is histopathological samples with no defined diagnosis (Esteva
et al., 2017; Haenssle et al., 2018; Sahu et al., 2018, 2019).

Melanoma can be easily treated by resecting the skin lesion
if it has been caught in an early stage. However, in a later
stage, melanoma becomes more challenging to treat. Therefore,
self-examination and early diagnosis are crucial in the effective

FIGURE 1 | Images from the dataset, (A) samples of benign and malignant images, (B) the five major stages of skin cancer (Esteva et al., 2017; Haenssle et al., 2018).

treatment of melanoma (Voss et al., 2015). However, the
confirmation of melanoma is done by images that have been
taken by dermoscopy. For dermatologists, the sensitivity rate
in the unaided diagnosis of dermoscopic images is less than
80% (Psaty and Halpern, 2009). Thus, computer-aided diagnosis
of melanoma provides promise in increasing the sensitivity of
melanoma diagnosis.

In the USA, melanoma represents a small portion (∼ 1%) of
annual skin cancer diagnoses but accounts for more than 65%
of the deaths attributed to skin cancer (Cancer-Society, 2021;
WHO-Cancer, 2021). As described in an observational study,
the melanoma growth rate increases at a rate of 0.13 ± 0.16
mm/month (Betti et al., 2016). In turn, at depths greater than 0.3
mm, melanoma is at risk of metastasizing. However, melanomas
can be treated on early detection, which is the optimal strategy
(Betti et al., 2016).

Magnetic resonance imaging (MRI) or nuclear magnetic
resonance (NMR) imaging is also a popular method to find
cancer in the body. In addition, it helps doctors to plan cancer
treatments such as surgery or radiation. MRI takes cross-section
images by using strong magnets – not radiation. It scans the
cross-sectional image frommany angles to understand the insight
of the image. However, MRI is primarily suitable for brain and
spinal cord tumors or other soft tissue parts of the body (Cancer-
Society, 2021; WHO-Cancer, 2021).

The first phase in a dermatologist’s diagnosis of a malignant
lesion is a visual inspection of a suspicious skin area. A correct
diagnosis is critical because of the similarity of certain types of
lesions; besides, diagnostic precision is strongly linked to the
doctor’s expert experience. This will benefit both physicians and
non-experts by saving time by automating the first diagnostic
phase. Thus, the implementation of computer-aided diagnosis
seeks to assist healthcare providers in allowing for more frequent
screening with better diagnoses. After that, the classical machine
learning workflow was used, which includes preprocessing,
segmentation, extraction of data, and classification
of images.

Nonetheless, the classification process of the dermoscopy
images is still confusing because of the presence of artifacts,

Frontiers in Big Data | www.frontiersin.org 2 March 2022 | Volume 5 | Article 848614

https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org
https://www.frontiersin.org/journals/big-data#articles


Kumar and Vatsa Image Classification of Melanoma

noises, the complexity, and the changeability of the skin lesion
structures. Also, the variation of illumination during the image
capturing process, dense hairs, air bubbles, and a low level of
contrast between the normal skin and lesion, that cannotmeet the
requirements of the lesions’ border detection, feature extraction,
and classification processes (Codella et al., 2018; Tschandl et al.,
2018; Guo and Ashour, 2019). It has been observed that if even a
single pixel of melanoma was present in non-malignant lesions,
the whole lesion was classified into melanoma. Even spectral
distributions of lesions are overlapping to each other, so explicit
mastery of an abnormal state of use is required, particularly for
extraction of features, and the choice of satisfactory feature is very
tedious (Pölönen et al., 2019; Ratul et al., 2019).

Moreover, in order to classify skin images among benign or
malignant or other types of skin cancer, the skin images are used
for accurate testing and predicting by trained machine (Moolayil,
2021; Saha, 2021). Therefore, data-centric-based deep learning
methods may detect skin cancer accurately and in the early
stages and delineate them properly from healthy tissue. These
methods use numerous layers of nonlinear data processing to
extract, recognize patterns, and characterize features. A model
in deep learning describes how to characterize from pictures,
text, or sound. Similarly, when a machine is prepared to use
significant quantities of information collections, and after that,
the pixel estimate of a picture is modified to an internal portrait
or vector highlight where classifiers may identify or group design
in the information. Therefore, there is a need to untangle the
deep learning-based classificationmethods (convolutional neural
network, CNN; recurrent neural network, RNN; and XG-Boost)
for skin lesions. The classification methods facilitate two major
help to provide precise details and treatment options for a lesion
and to identify early skin cancer with appropriate sensitivity and
precision (Esteva et al., 2017; Haenssle et al., 2018).

In this article, the experiment was carried out by determining
many networks, optimization methods, and an appropriate
number of epochs to measure six different performance
parameters – loss, accuracy, precision, recall, F1 score, and
ROC. These performance parameters are compared among three
algorithms – CNN, RNN, and XG-Boost. Also, all models
resulted from the training by 28,157 (total) dermoscopic images
and were tested with 4,969 images.

The rest of this article is organized as follows. This section
explains the introduction, and Section 2 includes the background
and related work. The material and methods used are included
in Section 3, whereas Section 4 describes the result and
discussion based on the considered dataset. Finally, Section 5
includes a conclusion.

2. BACKGROUND

In recent years, the rise of Deep Neural Networks (DNN)
and their application have been seen in various fields,
including medical image classification. The DNN provides
a promising method for rapid melanoma identification and
classification. Consequently, many researchers have applied
some deep learning-based classification methods - CNN, RNN,

and XG-Boost - for medical image classification (Codella
et al., 2018; Tschandl et al., 2018; Guo and Ashour, 2019;
Moolayil, 2021; Saha, 2021). These algorithms are coupled
with increased algorithmic sophistication and computing power.
These algorithms make melanoma skin cancer detection better
since the deep learning algorithms leverage biological structure
and a data-centric decision approach (Lakshmanaprabu et al.,
2018; Swain et al., 2020).

The convolutional neural network is a derivative of a
feedforward neural network and uses a series of convolutional,
pooling, and fully connected layers. These layers find the
main features from the images to be accurately classified. The
convolution layer uses a convolutional product using the vertical
edge filter. However, the edges’ information of images is thrown
away since the pixels on the corner of the image are not much-
used w.r.to. the pixels in the middle of the picture. Thus,
CNN adds zeros as the padding bits around the image. The
convolutional product between tensor and filter may be defined
after the definition of stride (to shrink the size of output and vice-
versa) and padding. The pooling layer down samples the image’s
features by summing up the information. This operation needs
to be carried out through each channel. We may apply either
the average pooling or max-pooling process (Corizzo et al., 2021;
ÜNLÜ and ÇINAR, 2021).

Additionally, the CNN is a Multilayer Perceptron (MLP)
advancement, and it is designed to process two-dimensional
information. Because of the high network density and many
applications to image information, CNN integrated into DNN.
Also, CNN uses images to learn functions to differentiate from
one pattern to another. The pre-processing steps for CNN are
more manageable, and there are fewer steps than other types of
classification algorithms (Saha, 2021).

Convolutional neural network also shows great success in
different pattern-finding tasks, including classifying melanomas
and other skin cancers from dermatoscopy and regular color
images. In order to transfer the learning, most of the
models are initialized based on a pre-trained CNN mode like
VGG16, Densenet121, Xception, InceptionV3, EfficentNetB0,
ResNet50V2, and Custom. CNN’s first stage, the training dataset,
is used to train a model with an appropriate number of iterations.
The second stage identifies the samples whose classification
results have poor performance for further use to train the next
model repeatedly. All procedures will be finished iteratively when
they are all trained. Next, the results from the first two stages are
going to be tested to evaluate the performance score of different
models. Finally, the samples are predicted by using the trained
models with the high-performance score (Pölönen et al., 2019;
Ratul et al., 2019).

Moreover, an experiment was carried out on the RNN
algorithm. It is derived from feed-forward networks and works
similarly to the human brain. Also, it helps in predictive
results on sequential data since RNN can remember essential
information about the input they received. Therefore, it is
also known as a feed-forward-based neural network where
information moves in only one direction: from the input layer,
through the hidden layers, to the output layer. It also acts based
on current inputs and it has not much memory about the past
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except training. Additionally, RNN cycles information through a
loop. It copies the outputs, loops them back into the network, and
finally decides. Its final decisions are based on current inputs and
whatever it learned from input in the past. Therefore, we may say
that RNN adds its immediate past to the present in its decision.

Finally, an experiment was also carried out on XG-Boost.
It is an efficient, gradient-boosting-based tree algorithm. The
training was iterative by introducing new trees that predicted
the previous tree’s error, which was then connected to the
earlier trees to generate a final classification. This article includes
the result of XGBoost’s models for each image set to get the
broadest possible overall test range. The XGBoost algorithm’s
hyperparameters were balanced by randomized search. The
“RandomizedSearchCV” function available in sci-kit learn was
used for this purpose which uses cross-validation. Therefore, the
respective test set was not used to optimize the hyperparameter
of the algorithm (Esteva et al., 2017; Haenssle et al., 2018; Milton,
2018). XG-Boost learned the relationship between the true class
mark, the aforementioned CNN probability distributions, and
the dermatologists (Liu et al., 2019; Petrovska et al., 2021).

3. MATERIALS AND METHODS

Every year, International Skin Imaging Collaboration (ISIC)
announces challenges and an annual competition geared toward
developing new algorithmic techniques for the detection of skin
cancer. In this experiment, the images were used from the public
repository of ISIC (ISIC-Archive, 2021). We considered 33, 061
dermoscopic images to measure the performance parameters of
three algorithms – CNN, RNN, and XG-Boost. The descriptive
statistics of this dataset are illustrated in the next section. We
created models against which we ran our datasets for each of
these algorithms – training, test, and validation. Each of these
models was based on a different underlying architecture with its
pre-trained base model. To these base models, we added specific
individual layers to further fine-tune the results. Also, the loss
values and learning rate have been optimized by varying the
number of epochs.

The CNN models are initialized by seven CNN architectures,
VGG16, Densenet121, Xception, InceptionV3, EfficentNetB0,
ResNet50V2, and Custom, in order that the transfer learning
rate may maximize. Also, we tested three different kinds of
feature learning structures, 1D, 2D, and 3D convolutions. We
used Stochastic Gradient Descent (SGD) based optimization to
reach the lowest cost value faster than other optimizers. In this
process, the classifier model is trained by an appropriate number
of epochs for each image. We also guaranteed that the training
data set does not include data samples from the image, which
are currently under test and validation dataset (Pölönen et al.,
2019; Ratul et al., 2019). After that, we processed the following
four stages. The first network is trained using all training set
for limited iterations to speed up training. The second stage
is also in the training process, identifying the samples whose
classification results have poor performance to train the next
model repeatedly. All procedures will be finished iteratively when
they are all trained. Next, the results from the above stage are
going to be tested to evaluate the performance score of different

models. Finally, predict the samples using satisfied models with a
high-performance score.

We use VGG16 as the basemodel for the classifier. VGG16 has
good scores with a 0.9 accuracy when tested on ImageNet and a
fast prediction time of 4 ms along with 138, 357, 544 parameters.
We resize our images to uniform 128 ∗ 128 pixels. We are using
the pre-trained weights from ImageNet to get a good starting
point prior to the training. We use dense and pooling layers
with the activation functions: rectified linear unit (ReLU) and
sigmoid. After that, we use the SGD optimizer to control the
learning rate. For the top layers, we use the default, but we later
switch to 0.0001, which is much lower for the remaining layers
of the model. We use binary cross-entropy loss as we only have
benign or malignant classes. We also have used the early stopping
callback, which monitors the F1 score every 50 epochs to ensure
the model is still learning and improving. Lastly, we train the
model using these parameters and evaluate them for results using
the Keras model.fit() and model.evaluate() functions.

The RNN models’ architectures are initialized by
Bidirectional, GRU, LSTM, and SimpleRNN networks. The
images fed to these models use three channels and are 128 ∗ 128
pixels. We use the pre-trained weight from ImageNet for transfer
learning of these base models. Various layers like pooling and
dense layers are then added to the base model. Activation
functions used for these layers are primarily ReLU and Sigmoid.
For the model, we use the SGD optimizer with the default
learning rate for the initial training of the top layers in our first
iteration. The model has then trained again with a much lower
learning rate (0.0001) for the remaining layers of the model.
We use the binary cross-entropy as our loss function since we
have only two classes in our problem. Finally, the model is
fit by providing a class weight to manage the data imbalance
between the two classes. The weight corresponds to the ratio of
the instances of both the classes in the given dataset.

The XG-Boost models’ setup is slightly different. Images
were initially fed to a CNN VGG16 model but only extracted
the features. We simply used the pre-trained weights for the
purpose without actually going through the VGG16 training. The
predicted features from this model were then reshaped to fit as an
input to the XGB classifier model. The XGB classifier we used as a
booster was gbtree, which is meant for classification. The default
learning rate was 0.3 here but was reduced to 0.1 to get better
results. This uses cross-entropy as the loss function. Here, too,
we used class weight (scale_pos_weight) to manage the huge data
imbalance. We trained the models for 150 epochs in this case.

3.1. Experiment and Dataset
The dataset used for this article consists primarily of images of
skin lesions that could potentially be melanoma. It was generated
by the ISIC, which gathered these images from various hospitals
worldwide. The images were provided in multiple formats
(DICOM, JPEG, and TFRecord). The training data consisted of
33,061 images and had all the attributes for each image, including
the classification. There were also 10,000+ images without the
actual classification, but we did not use that. Instead, we split
the training data into three sets – 70% for training, 15% for
validation, and the remaining 15% for testing.
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FIGURE 2 | The distribution of images, (A) number of images corresponding to age, (B) the number of images of malignant and benign corresponding to gender.

Moreover, the images also came with a bunch of metadata
which included the age, sex, and the location of the lesion.
Another interesting bit about this data is that multiple images
from the same person. All these images come from less than 2,000
individuals. While we have not leveraged this data yet, we plan to
incorporate them in the next iteration to have better prediction
with these additional features.

The experiments ran and tested on Kaggle, which is a
customizable GPU processing environment, and it uses Jupiter
notebook (ISIC, 2021). In order to set up the experimental
environment on Kaggle, we used a high-level API of TensorFlow
called Keras framework (Abadi, 2015; Chollet et al., 2015). Also,
we imported packages from Keras, TensorFlow, NumPy, Pandas,
Scikit-learn, etc., for data preprocessing and evaluating these
models. Before building the model, images from the ISIC dataset
are to first be preprocessed. Specifically, the images will be
turned into NumPy arrays using their Red, Green, and Blue
(RGB) color intensity values. Due to resizing them before the
implementation, the NumPy array should be created without
issues. Labels for the images were created, merged, and shuffled.
Finally, the labels were turned into one-hot encoding, and the
images were normalized by linear normalization.

In the CNNmodel building process, the Keras Sequential API
will be used where one layer is added at a time, starting from the
input. Multiple layers will be used in this model building process:
Conv2D layer, MaxPool2D layer, combination layer, flatten layer,
and fully-connected (Dense) layer. Finally, the model will be
cross-validated and tested (Milton, 2018).

Recurrent neural network model will also be based on the
Sequential model, where different types of RNN layers will
be added to the base model. We will leverage LSTM, GRU,
SimpleRNN, and bidirectional RNN layers surrounded by the
input and output layers.

For the XGBoost, we will start with a pre-trained VGG16
model. This will be used to predict our images, and those
predictions will be used as input of the actual XGBoost model.
XGBClassifier will act as a base for this model.

3.2. Labeling of Images
The images were preprocessed before they were fed to the various
models. Since we used TensorFlow/Keras API framework, we

TABLE 1 | Performance metrics values of convolutional neural network (CNN)

with one epoch.

CNN architecture Loss Accuracy Recall ROC Precision F1 Score

VGG16 0.2407 0.8958 0.5010 0.8835 0.1270 0.1926

Densenet121 0.1000 0.9758 0.1875 0.7938 0.2031 0.1880

Xception 0.1002 0.9766 0.1719 0.7488 0.2148 0.1734

InceptionV3 0.0938 0.9768 0.1646 0.7853 0.2031 0.1709

EfficentNetB0 0.3087 0.8459 0.5375 0.8612 0.0891 0.1475

Resnet50V2 0.1078 0.9705 0.1406 0.8015 0.1589 0.1406

Custom 0.5678 0.6733 0.6062 0.8066 0.0477 0.0867

need to arrange and split the training images based on their
classification such that each image can be tagged with the
correct label while loading into Keras. Once loaded, these images
were converted to floating-point values so as to provide greater
accuracy and wide range, although it increases the memory
requirement. After that, the dataset is split into three sets -
training, validation, and testing, as mentioned earlier.

4. RESULTS AND DISCUSSION

The descriptive statistics of dataset w.r.t gender and age
corresponding to a number of malignant and benign images are
shown in Figure 2.

The dataset has 33,061 diverse groups of images, which has
an age range between 15 years to 90 years (Figure 2A). It has
220 malignant images of women and 364 malignant images of
men (Figure 2B). The rest of the images are benign images of
men (15,761 images) and women (16,716 images) (Figure 2B).
Figure 2A illustrates the number of malignant imagesmost in the
age between 25 and 80 years.

4.1. Outcome of CNN
The values of performance metrics of CNN are mentioned in
Table 1. It includes the best results of different architecture of
CNN. Each CNN’s architecture ran under initialized parameters;
then, the input parameters were tuned in order to get a better
value of performance metric. The tuned parameters include
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changing the learning rate after every iteration (epoch): changing
many optimizers, adding an appropriate number of layers in
each base architecture to get a better learning rate, early stopped
to get better performance metrics, and changing the dataset
split ratio among training, test, and validation dataset. The
best values are mentioned in the table after observing several
attempts under different configurations of the architectures.

Table 1 and Figure 3 illustrate that value of recall and ROC
of VGG16 and EfficentNetB0 is better in comparison to the
rest of the CNN architectures. In contrast, the F1 Score of
VGG16 and DenseNet21 is significantly higher than the other
CNN architectures.

The final results are calculated using the CNN model. The
Keras function (model.evaluate()) tests the model on new data

FIGURE 3 | The Performance metrics of CNN architectures with one epoch.

FIGURE 4 | The performance metrics of different architecture of CNN with the variable number of epochs (A) F1 score, (B) ROC, (C) Precision, (D) Recall, (E)

Accuracy, and (F) Loss.
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after getting new weights from training. The reason for the low
score of the precision and the high score of the accuracy is the
data imbalance. The precision is calculated with the number of
true positives divided by true positives and false positives. It is
favorable for the model to guess that all images are benign or
negative as a large portion of images is benign. Since such a large
portion of images are benign, it is more likely that an optimistic
guess is incorrect, yet we still need to guess positives without
giving everything as benign. Thus, the accuracy is very high, but
the precision is relatively low.

Furthermore, the accuracy value is significantly closer to each
other except for EfficentNetB0 and customized architectures.
Since our dataset is heavily imbalanced (based on our
observation) and the F1 score does not rely on the hits, we
considered the F1 score as the best performance metric for CNN
architectures in our experiment. Also, the F1 score is better since
it is dependent on the values of precision and recall.

In order to get optimal values of performance metrics for
different CNN architectures, we ran our model for considerable
numbers of epochs. Figure 4 shows the values of performance
metrics separately for different architectures. The final evaluation
metric is slightly different from what it is for the validation
data. However, the values of performance metrics are not
significantly different.

4.2. Outcome of RNN
The values of performance metrics of RNN are mentioned in
Table 2. It includes the best results of the four architectures of
RNN. The overall approach was similar to CNN, but we handled
the image data matrix differently. First, the image matrix had to
be resized, reshaped, and normalized. Also, because the Keras
API could not take multiple color channels (R, G, B) at the same
time, the images had to be converted to black and white images.
This way, we had an only one-color channel for each image, and
the overall dimension of the input data was limited.

Moreover, RNN works better with time-series data. To utilize
these images, we modeled the image data as time series by
leveraging the image height and width as time and feature,
respectively. Also, the learning rate was tuned such that it starts at
a slightly higher value but is gradually decreased after every other
epoch. We used SGD optimizers for all the architecture, giving
the best overall performance. The best values are mentioned
in the table after observing several attempts under different
configurations of the four architectures. Figure 5 and Table 2

illustrate that the value of the bi-directional architecture worked
the best in terms of its F1 score and accuracy together. However,
the other metrics values are not significantly different. Since our
dataset is heavily imbalanced (based on our observation) and the
F1 score does not rely on the hits, we considered the F1 score
as the best performance metric for these architectures in our
experiment. Also, the F1 score is better since it is dependent on
the values of precision and recall.

In order to get optimal values of performance metrics for
four RNN architectures, we ran our model for considerable
numbers of epochs. Figure 6 shows the values of performance
metrics separately for different architectures. The final evaluation
metric is slightly different from what it is for the validation

TABLE 2 | Performance metrics values of recurrent neural network (RNN) with

one epoch.

RNN architecture Loss Accuracy Recall ROC Precision F1 Score

Bidirectional 0.6698 0.8319 0.1976 0.6887 0.0526 0.0778

LSTM 0.5918 0.5300 0.4300 0.7444 0.0389 0.0703

GRU 0.6171 0.6872 0.2874 0.7101 0.0361 0.0625

Simple RNN 0.6751 0.9212 0.0641 0.6045 0.0351 0.0413

data. However, the values of performance metrics are not
significantly different.

4.3. Outcome of XG-Boost
We used XG-Boost ensemble learning to use the pre-trained
VGG16 model as a feature extractor. The extracted features
were used as input to the XG-Boost model, with earlier initial
parameters. The values of performance metrics of XG-Boost
are mentioned in Table 3 and are illustrated in Figures 7, 8. It
includes the best result under XG-Boost. It ran under initialized
parameters; then, the input parameters were tuned in order to get
a better value of the performance metric. The tuned parameters
include changing the learning rate (eta) after every iteration
(epoch), changingmany optimizers (n_estimators), early stopped
to get better performance metrics, and altering the dataset split
ratio among training tests and validation datasets. The best values
are mentioned in the table after observing for several attempts
under different configurations. Figures 7, 8 illustrates that value
of accuracy is approximately 97%, although the value of the F1
score is lower.

In order to get optimal values of the performance metric of
XG-Boost, we ran ourmodel for considerable numbers of epochs.
Figures 8A,B shows that the values of performance metrics
are converging. The final evaluation metric is slightly different
from what it is for the validation data. However, the values of
performance metrics are not significantly different.

4.4. Comparison of CNN, RNN, and
XG-Boost Outcomes
The performance metrics of CNN, RNN, and XG-Boost are listed
in Table 4 and are illustrated in Figure 9. We found that the
performance of VGG16 architecture, with an accuracy of 89.6%,
is the best architecture (among the other seven architectures) for
CNN. Additionally, the RNN’s bidirectional architecture is better
(accuracy:95.96%) among the other four architectures of RNN.
The accuracy of the XG-Boost method is 97.22%.

Based on the values of metrics in Table 4 and shown in
Figure 9, CNN’s metrics values are much better among the three
methods. Most of the performance metrics are higher than RNN
and XGBoost (except loss which should be less anyways). One
of the reasons for this is the changes required to transform the
input data to fit the RNN model. We do lose important features
because of this transformation. Also, CNN is more geared for
classification problems; as a result, it has better results. XGBoost
did get higher Precision and Accuracy, but these metrics do not
give the overall picture as the F1 score. While XGBoost generally
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FIGURE 5 | The Performance metrics of RNN architectures with one epoch.

FIGURE 6 | The performance metrics of different architecture of RNN with the variable number of epochs (A) F1 score, (B) ROC, (C) Precision, (D) Recall, (E)

Accuracy, and (F) Loss.

better, it seems to perform well if there is a limited set of data,
which was not the case here.

Figure 10 illustrates the validation metrics from before,
combined for the selected CNN and RNN architectures, and
XGBoost. It shows better contrast among the three methods.
(XGBoost validation data is only for 3 of these metrics). We also
found that the CNN converges in twenty epochs onward, whereas
the RNN converges at thirty epochs onward, although XG-Boost
took more than one hundered epochs.

TABLE 3 | Performance metrics values of XG-Boost with one epoch.

Boosting Loss Accuracy Recall ROC Precision F1 Score

XGBoost 0.9592 0.9722 0.1260 0.1578 0.5568 0.1401

Finally, it is noticeable that the CNN, RNN, and XG-
Boost achieved much greater accuracy than the dermatologists.
The combination of human and deep learning methods’
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FIGURE 7 | The Performance metrics of XG-Boost with one epoch.

FIGURE 8 | The performance metrics of different architecture of XG-Boost with variable number of epochs (A) Loss, (B) ROC, and (C) Precision.

TABLE 4 | Values of best performance metrics of CNN, RNN, and XG-Boost with

one epoch.

Architecture Loss Accuracy Recall ROC Precision F1 Score

CNN (VGG16) 0.2407 0.8958 0.5010 0.8835 0.1270 0.1926

RNN (Bidirectional) 0.6754 0.9590 0.0224 0.6467 0.0160 0.0182

Boosting (XGBoost) 0.9592 0.9722 0.1260 0.1578 0.5568 0.1401

decision to achieve higher accuracy is not limited to the
classification of skin cancer of static lesions. Still, it can
also be extended to the prospective evaluation of other
medical images.

5. CONCLUSION

Based on the experimental outcome of three methods -CNN,
RNN, and XG-Boost- of deep neural networks, we found that
CNN is generally better than RNN for any architectures used.
Within CNN, VGG16 performed the best. CNN with VGG16

seemed to perform better than XG-Boost as well. We would like
to continue this process to try our other deep learning algorithms
since datasets images are imbalanced and hazy. Moreover, we
think there is still some scope for improvements in our runs
for CNN, RNN, and XG-Boost. We would like to try out other
variations for CNN and further fine-tune the hyperparameters.
For RNN, we would like to develop architectures that have
many layers, something that we did with CNN using various
base models. For XG-Boost, instead of simply using the pre-
trained model, we may combine the trained CNN with the
XG-Boost classifier.

In order to prevent skin cancer, it has been observed that
a typical nevus (moles) is the most decisive risk factor in
fair-skinned populations. In particular, the person who has
phenotype—pale complexion, blue eyes, and red or fair hair—
and high intermittent exposure to solar Ultra Violet A (UVA)
radiation are at substantial risk since the UVA penetrates the
deeper layers of the skin, which enhance the development of
skin cancer, especially if sunburns happen at an early age. Also,
the other environmental factors affect a person’s UVA exposure,
including time of the day and year, latitude, altitude, haze
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FIGURE 9 | The comparison of performance metrics of CNN, RNN, and XG-Boost.

FIGURE 10 | The performance metrics of different architecture of CNN, RNN, and XG-Boost with the variable number of epochs (A) F1 score, (B) ROC, (C) Precision,

(D) Recall, (E) Accuracy, and (F) Loss.

and clouds, ozone, and ground reflection (Cancer-Society, 2021;
WHO-Cancer, 2021).
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