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Explainablemachine learning attracts increasing attention as it improves the transparency

of models, which is helpful for machine learning to be trusted in real applications.

However, explanation methods have recently been demonstrated to be vulnerable to

manipulation, where we can easily change a model’s explanation while keeping its

prediction constant. To tackle this problem, some efforts have been paid to use more

stable explanation methods or to change model configurations. In this work, we tackle

the problem from the training perspective, and propose a new training scheme called

Adversarial Training on EXplanations (ATEX) to improve the internal explanation stability

of a model regardless of the specific explanationmethod being applied. Instead of directly

specifying explanation values over data instances, ATEX only puts constraints on model

predictions which avoids involving second-order derivatives in optimization. As a further

discussion, we also find that explanation stability is closely related to another property

of the model, i.e., the risk of being exposed to adversarial attack. Through experiments,

besides showing that ATEX improves model robustness against manipulation targeting

explanation, it also brings additional benefits including smoothing explanations and

improving the efficacy of adversarial training if applied to the model.

Keywords: post-hoc explanations, adversarial attack and defense, deep learning, data augmentation, explainable

artificial intelligence (XAI)

1. INTRODUCTION

Despite the significant improvements over traditional approaches in many tasks, deep models
are usually criticized as being black-boxes (Ribeiro et al., 2016b; Lipton, 2018; Du et al., 2019).
To tackle this problem, explanation methods have attracted increasing attention as they provide
a tool for understanding how predictions are made by complex models. Methods that produce
feature importance maps (Simonyan et al., 2013; Smilkov et al., 2017a; Sundararajan et al.,
2017a) are commonly used as their explanation results are visually intuitive. Furthermore,
explanation methods are expected by model developers to diagnose and remove defects in model
predictions (Ribeiro et al., 2016b; Guo et al., 2018; Liu et al., 2018; Halliwell and Lecue, 2020) or
abnormalities in data instances (Fong and Vedaldi, 2017).

Nevertheless, recent work discovered that explanation methods, when applied to deep models,
are easy to be manipulated (Ghorbani et al., 2019a). That is, we are able to change explanation
results without changing model predictions. To tackle this challenge, some efforts (Yeh et al., 2019)
have been paid to improve the stability of explanation methods by using SmoothGrad (Smilkov
et al., 2017a). In addition, Dombrowski et al. (2019) proposes to replace ReLU activation with
the smoothed softplus function to obtain explanations similar to SmoothGrad. However, in the
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original work (Ghorbani et al., 2019a), the ReLU activation has
already been changed to softplus function, while explanations
could still be easily manipulated. It, thus, implies that
more effective techniques, besides smoothing explanations,
or activation functions, are needed in order to stabilize
explanation results.

In this work, we try to modify the training process of
neural models to improve their inherent robustness against
manipulation targeting explanations. We call our approach as
Adversarial Training on EXplanations (ATEX). Different from
existing efforts which try to select or design a specific explainer
that is more stable (Levine et al., 2019; Yeh et al., 2019), ATEX
could benefit various existing explanation methods. Different
from the method in Dombrowski et al. (2019), we do not need to
change the model architecture. More precisely, through training
with augmented data, ATEX regularizes model explanations
around data samples. However, explicitly controlling explanation
results is computationally expensive as it requires a significant
amount of computation for second-order gradients. Therefore,
ATEX implicitly regularizes explanation, and it only requires
information of model predictions (zero-order) and gradients
(first-order).

Besides stabilizing model explanation, ATEX also brings two
additional advantages. First, ATEX helps smooth the feature
importance maps of models, even we only use the raw gradient
instead of SmoothGrad to compute feature importance. Second,
ATEX could improve the efficacy of adversarial training on
predictions (Goodfellow et al., 2014; Madry et al., 2018) which
defends against adversarial samples that cause the model to
make wrong predictions. Specifically, traditional adversarial
training (Goodfellow et al., 2014) suffers from the problem that
models easily overfit to adversarial examples (Madry et al., 2018),
and an adversarially trained model turns out to be less robust
against adversarial examples crafted with different perturbation
directions. In this work, we show that the ineffectiveness of
adversarial training stems from the same source as model
interpretation instability. As a result, applying ATEXwill increase
the efficacy of adversarial training.

The key contributions of this work are summarized as
below:

• We propose a novel adversarial training method
called ATEX to increase the stability of explanation of
models, so that explanation results are less sensitive to
malicious manipulation.

• Models trained with ATEX will produce visually smoothed
feature importance maps with one-shot gradient, without
applying sophisticated approaches such as SmoothGrad.

• We discuss the positive correlation between interpretation
stability and adversarial training efficacy. Through
experiments, we show that the efficacy of adversarial
training is improved when applied on models fine-tuned
with ATEX.

To avoid confusion, we use “manipulation” to refer to attack
on explanation, while “adversarial attack” still means attack
on model prediction. Correspondingly, we use “ATEX” to

mean adversarial training on explanation, while “adversarial
training” alone still means the defense method to improve
prediction robustness.

2. RELATED WORK

Model explanations could be generally indicated and defined as
the information which can help people understand the model
behaviors. Typically, those useful information could be some
significant features that contribute a lot to model predictions.
To effectively extract explanations from models, there are two
major methodologies, where the first category is based on
instance perturbation (Ribeiro et al., 2016a) and the second is
based on gradient information (Ancona et al., 2017). As for the
first category, LIME (Ribeiro et al., 2016a) is a representative
method, utilizing shallow linear models to approximate the
model local behaviors with feature importance scores. Further,
SHAP (Lundberg and Lee, 2017) unifies and generalizes the
perturbation-based method with the aid of cooperative game
theory, where each feature would be assigned with a Shapley
value for explanation purposes. Some other important methods
within this category can also be found in Bach et al. (2015),
Datta et al. (2016), Ribeiro et al. (2018). As for the second
category of methods, explanations are mainly extracted and
calculated according to the model gradients. Representative
methods can be found in Selvaraju et al. (2017), Shrikumar
et al. (2017), Smilkov et al. (2017b), Sundararajan et al. (2017b),
Chattopadhay et al. (2018), where gradients are used as an
indicator for feature sensitivity toward model predictions. In this
work, we specifically focus on the second category of methods
for generating explanations, and aim to make explanations more
robust and stable.

Although model explanations are useful, it can be fragile and
easy to bemanipulated under certain circumstances. In Ghorbani
et al. (2019a), the authors showed that the gradient-based
explanations can be sensitive to imperceptible perturbations
of images, which could lead to the unstructured changes
in the generated salience maps. Some preliminary work has
been proposed to regularize interpretation variation (Plumb
et al., 2020; Wu et al., 2020), where experimental validation is
limited to tabular or grid data. The work in Ross and Doshi-
Velez (2018) also tries to regularize explanation, but it focuses
on constraining gradient magnitude instead of stability. The
approach in Kindermans et al. (2019) utilized a constant shift on
the target instance to manipulate the explanation salience map,
where the biases of the neural network are also changed to fit the
original prediction. Besides, parameter randomization (Adebayo
et al., 2018) and network fine-tuning (Heo et al., 2019) are
also effective approaches in manipulating explanations. To
effectively handle such issue, robust, and stable explanations are
preferred for model interpretability. In Yeh et al. (2019), the
authors rigorously define two concepts for generating smooth
explanations (i.e., fidelity and sensitivity), and further propose
to optimize these metrics for robust explanation generation.
Also, the authors in Dombrowski et al. (2019), Ghorbani et al.
(2019b) replace the common ReLU activation function with the
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softplus function, aiming to smooth the explanations during
the model training process. Moreover, utilizing the Lipschitz
constant of the explanations to locally lower the sensitivity to
small perturbations is another valid methodology to improve the
explanation robustness (Alvarez-Melis and Jaakkola, 2018; Melis
and Jaakkola, 2018). Our work will specifically focus on themodel
training perspective for explanation stability under a relatively
general setting.

Besides manipulation over interpretation, a more well studied
domain of machine learning security is adversarial attack and
defense on model prediction. Adversarial attack on model
prediction refers to perturbing input in order to change its
prediction results by the model, even though most of the attacks
cannot be perceived by humans (Szegedy et al., 2013; Goodfellow
et al., 2014). Adversarial attack can be categorized into different
categories according to the threat model, including untargeted
attack VS. targeted attack (Carlini and Wagner, 2017), one-shot
attack vs. iterative attack (Kurakin et al., 2016), data dependent
vs. universal attack (Moosavi-Dezfooli et al., 2017), perturbation
attack vs. replacement attack (Thys et al., 2019). Considering such
relation between model explanation and adversarial attack, our
work also discuss the potential benefit to the target model with
the aid of the explanation stability.

3. ALGORITHM DESIGN FOR DEFENSE
AGAINST MANIPULATION

3.1. Explanation Manipulation
We consider the target neural network model f :RD → R

C

with softplus non-linearities, where an input instance x ∈ R
D

is predicted as belonging to class c∗ = argmaxc fc(x). Given
an instance x of interest, the explanation for prediction fc(x)
is φ(fc, x), where φ :F × R

D → R
D denotes the explanation

function. To facilitate discussion, during the development of
ATEX, we assume φ is based on vanilla gradient (Simonyan
et al., 2013), i.e., φ(fc, x) = ∇xfc(x). The relative importance
score of the t-th feature is computed as |φt(fc, x′)|/‖φ(fc, x′)‖1,
which is commonly used in feature importance maps. We will
further discuss the scenarios of using other explanation methods
in experiments.

The problem of manipulating explanation could be
formulated as below (Ghorbani et al., 2019b):

argmax
x′

d(φ(fc, x
′),φ(fc, x))

s.t. ‖x′ − x‖ ≤ ǫ1, ‖fc(x
′)− fc(x)‖ ≤ ǫ2,

(1)

where d(·, ·) is the manipulation objective, the first constraint
limits perturbation range, and the second constraint preserves
prediction. Some typical manipulation objectives include:

• Targeted Attack controls explanation outcome to be close
to certain predefined patterns, where d(φ(fc, x′),φ(fc, x)) =
∑

t∈T |φt(fc, x′)|/‖φ(fc, x′)‖1 and T is the set of features that
the manipulator wants to highlight.

• Untargeted Attack suppresses the contribution of features
that were considered as important in clean samples, where
d(φ(fc, x′),φ(fc, x)) =

∑

t∈T −|φt(fc, x′)|/‖φ(fc, x′)‖1 and T is

the set of important features in φ(fc, x). It is worth noting that
T contains different elements between targeted and untargeted
attack scenario.

The performance of manipulation is d(φ(fc, x∗),φ(fc, x)),
where x∗ denotes the perturbed input. Another
explanation stability metric based on the similar idea is
Ex′∼N (x)[‖φ(fc, x

′) − φ(fc, x)‖2], (Alvarez-Melis and Jaakkola,
2018), which quantifies the average explanation variation instead
of the worst-case scenario.

3.2. A Naïve Solution
Assume g is the new model to train, a straightforward design
for adversarial training is to explicitly require explanations to be
constant within the neighborhood of each training sample:

min
g

∑

x∈X

[α1L(g(x), y)

+
∑

x′∼N (x,ǫ)

[α2L(g(x
′), y)+ d(φ(gy, x

′),φ(gy, x))] ] (2)

where L(·, ·) denotes the instance-level training loss between a
prediction and the true label. N (x, ǫ) denotes the neighborhood
around x within distance of ǫ. The last term in the inner
summation explicitly controls the variation of explanation
around training samples, while the other terms preserve
model prediction performance. Such a design closely mimics
the paradigm of traditional adversarial training over model
predictions (Goodfellow et al., 2014).

Nevertheless, there are two problems for the formulation
in Equation (2). First, since φ usually relies on first-order
partial derivative information, optimization over explanation
maps require computing and propagating second-order partial
derivatives, which could be costly to iterate over all training
samples. Second, the last term in Equation (2) assumes that
φ(gy, x) is the ground-truth explanation where other explanations
on neighborhood are required to approximate it. However, it is
possible that φ(gy, x) is noisy (Smilkov et al., 2017a), whichmakes
it not a good target to fit. In addition, since we mainly care about
the stability of explanation, specifying a concrete ground-truth
may not be necessary.

3.3. Adversarial Training on Explanations
(ATEX)
Let x′ = x + 1x, the sensitivity of gradient-based explanation
is 1φ = φ(f , x + 1x) − φ(f , x) = H1x + O(‖1x‖2),

where H is the Hessian matrix and Hi,j =
∂f

∂xi∂xj
. Therefore,

if f is simply a linear model, then φ is robust against any
manipulation since the Hessian matrix is all-zero. However, a
hard requirement to eliminate non-linearity in a deep model
would reduce its prediction accuracy. We relax the requirement
of stable explanation to the definition below.

Definition 1. We define the stability of explanation around an
instance x as:

min
γ>0

max
1x

‖φ(f , x+ 1x)− γφ(f , x)‖2 . (3)
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Different from the proposition in Ghorbani et al. (2019b), we
assume a positive scaling does not change explanation, as the
relative importance of features is not changed. This is why a
coefficient γ is introduced here. The definition is compatible with
the commonmetrics for explanation similarity such as Spearman
correlation and top elements inter-section (Dombrowski et al.,
2019; Ghorbani et al., 2019b). One form of f that has stable
explanation locally around x could be written as f (x) = σ (φ⊺x),
where the weights are defined with explanation vector and
σ :R → R is a monotonically increasing non-linear function.
We have φ(f , x) = σ ′(φ⊺x) · φ. Since σ ′(φ⊺x) is a scalar,
perturbing input with 1x only re-scales φ, thus, satisfying the
definition above if we let γ = σ ′(φ⊺x).

Considering the definition above, there are two factors to
consider in algorithm design: (i) how to decide the form of non-
linear function σ ; (ii) how to regularize f for stable explanation.
The high-level idea of ATEX is illustrated in Figure 1. ATEX
aims to train a model g which behaves similar to f in making
predictions, but is more stable in terms of explanation. The
overall loss function of ATEX is:

∑

x∈X J(g, f , x), where

J(g, f , x) = L(g(x), f (x))+ α
∑

xi∼I(x)

∑

xp∼P(xi)

L(g(xp), f (xi)). (4)

The first term is the model distillation loss, and the second term
regularizes explanations. Given a seed instance x ∈ X from
the dataset, two additional sampling process is conducted. In
Equation (4), the outer summation generates a set of samples,
denoted as I(x), along the explanation direction of x. That is,

xi = x+ δ1φ(f , x)/‖φ(f , x)‖2, −11 ≤ δ1 ≤ 11, (5)

where δ1 denotes the shift distance, and 11 is a hyperparameter.
To guarantee that we are sampling along a representative
explanation direction on the prediction function surface, here we
use SmoothGrad (Smilkov et al., 2017a) to compute φ in order to
remove noise. The inner summation generates samples, denoted

as P(xi), along the orthogonal direction of explanation φ(f , x).
Specifically,

xp = xi + δ2φ⊥(f , x)/‖φ⊥(f , x)‖2 ,−12 ≤ δ2 ≤ 12, (6)

where φ⊥ denotes the orthogonal direction to φ. To compute
φ⊥, we first generate a random perturbation u ∼ U(0,12), and
φ⊥ = u− φ · 〈u,φ〉/‖φ‖22. Here U denotes uniform distribution.
The rationale behindmoving samples along φ⊥ is that, restricting
these samples to have the same prediction as f (xi) implicitly
requires the local explanation to be fixed at φ. As shown in the
right half of Figure 1.

We further justify the design of the proposed training
method. According to Equation (1), the success of explanation
manipulation relies on the fact that φ(f , x) is not the sole
reason for f (x′), x′ ∈ N (x, ǫ). That is, f (x′) ; φ(f , x), x′ ∈

N (x, ǫ), where there exist other explanations for neighbor inputs.
Therefore, explanation stability implies f (x′) ⇒ φ(f , x), where
an equivalent task is ¬φ(f , x′) ⇒ ¬f (x′) and we make ¬φ(f , x)
as φ⊥(f , x). The task is implemented in Equations 4-6, which
expresses the idea that input perturbation directions other than
φ(f , x) will not make changes to prediction. Here, xp−xi refers to
perturbation that is orthogonal to the original explanation, where
the resultant prediction should remain the same, as reflected in
the loss term L(g(xp), f (xi)).

4. EXPLANATION STABILITY VS
ADVERSARIAL TRAINING EFFICACY

One of the best known adversarial training method is robust
optimization (Madry et al., 2018). The goal is to approximately
solve: minf E[maxx′∈N (x,ǫ) L(f (x

′), y)]. The inner maximization
problem is usually solved through attacking algorithms such as
FGSM (Goodfellow et al., 2014) and PGD (Kurakin et al., 2016),
where x′ can be seen as themost threatening adversarial sample as

FIGURE 1 | Illustration of explanation stability and ATEX idea. (A) One perspective of why the explanation is prone to be manipulated, i.e., moving an instance along

φ⊥ will change its explanation as well as prediction. (B) Illustration of ATEX training process (overhead view from y-axis), where each augmented data instance goes

through two rounds of sampling. In the first round, xi is sampled along explanation direction. In the second round, xp is sampled perpendicularly to explanation. (C,D)

An ideal prediction function that is robust to explanation manipulation.
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FIGURE 2 | Illustration of explanation instability that leads to adversarial training inefficiency.

it maximizes the loss. The outer problem trainsmodel parameters
to minimize the loss.

One issue for the above method is that, simply defending
against the most threatening adversarial sample is not enough to
guarantee prediction robustness. First, other adversarial samples,
although leading to smaller losses, could still exist. Second,
more adversarial samples could be discovered by using different
attacking algorithms. An illustration of such a risk is shown
in the right part of Figure 2. Suppose x′ is the adversarial
sample by perturbing x. A new decision boundary is learned
via certain defense method, so that x′ can no longer fool model
prediction. However, it is still possible to perturb x toward other
directions (e.g., to x′′). This prediction is also under the risk of
having its explanation been manipulated, as shown in the left
part of Figure 2. A relation between explanation and adversarial
perturbation can be proven as below:

Theorem 1. Given a data instance x0, let explanation φ(fc, x0)
be defined using vanilla gradient (Simonyan et al., 2013), and
adversarial perturbation δ be crafted using FGSM (Kurakin et al.,
2016) without the additional sign() operation, then we have
φ(fc, x0) ∝ −δ. The proof can be found in supplementary material.

Proof: According to Simonyan et al. (2013), fc(x0) is explained
via linear approximation by computing its first-order Taylor
expansion:

fc(x) ≈ fc(x0)+ wT
c · (x− x0) (7)

where φ(fc, x) = wc = ∇xfc(x0).
On the other and, in FGSM (Goodfellow et al., 2014), let

L(f (x0), y) be the cross entropy loss, and the target label to be c,
then

δ = ∇xL(f (x0), c)

= ∇x

(

−
∑

y

1[y = c] log fy(x0)
)

= −∇x log fc(x0)

= −
1

fc(x0)
∇xfc(x0),

(8)

where 1
fc(x0)

is a scalar. Therefore, we have φ(fc, x) ∝ −δ.

Therefore, if a prediction fc(x) does not have a stable explanation,
then this prediction could potentially be attacked towardmultiple
directions, thus requiring doing more iterations of adversarial
training. In experiments, we will show that ATEX could improve
the efficacy of adversarial training in each iteration.

5. EXPERIMENTS

The experimental results here demonstrate the efficacy of ATEX
in several aspects. Specifically, in section 5.2, we show how ATEX
could improve interpretation stability. In section 5.4, we show
that ATEX could mitigate noises in feature importance maps
generated by vanilla gradient interpretation. In section 5.3, we
further demonstrate that ATEX can accelerate the adversarial
training process, which ATEX requires fewer adversarial training
samples to obtain a decent defense performance.

5.1. Experiment Settings
Datasets. We conduct our experiment on the Fashion-MNIST
dataset and MNIST dataset. Fashion-MNIST consists of a
training set of 60,000 examples and a test set of 10,000 examples.
Each example is a 28 × 28 gray-scale image with a label from 10
categories. Image pixels of all examples are normalized to [0, 1]
range. The classification model has two convolutional layers and
two FC layers. We use Adam optimizer to train the model with
the cross-entropy loss. MNIST consists of a training set of 60,000
examples and a test set of 10,000 examples. Data properties and
preprocessing methods are similar to those of FashionMNIST.
The classification model also has two convolutional layers and
two FC layers.

Metrics for Interpretation Similarity. Following the settings
in Ghorbani et al. (2019b), we consider three metrics for
quantifying the similarity between two feature importance maps.
To measure statistic similarity, we have Spearman’s rank order
correlation which utilizes rank correlation to compare the
similarity, and Top-k inter-section which compares similarity
by the size of inter-section of the k most important features.
For visual similarity, we adopt the Structural Similarity Index
(SSIM), which measures the perceptual difference between two
similar images.

5.2. Defense Performance Against
Explanation Manipulation Attack
In this section, we conduct experiments to measure the
interpretation stability of models after applying ATEX. To
manipulate explanations, we adopt the two explanation attack
approaches introduced in section 3.2. For targeted attack, we
manage to increase model’s attention in a predefined region
with a size of 5×5 pixels, which are determined randomly in
runtime. For untargeted attacks, we suppress the contribution
of the 50 most important pixels in original samples. Due
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to the piecewise-linear property (Ghorbani et al., 2019b) of
deep models that use ReLU as activation function, attacking
methods that rely on Hessian matrices will not work since
second-order gradients are zero. Hence, in this work, we replace
ReLU activation with smoothed softplus activation when training
models, so (Dombrowski et al., 2019) can be seen as the
baseline method, which is denoted as β-smoothing in our
experiments. Subsequent steps such as generating explanations,
manipulation samples, and applying defense, are all implemented
on softplus activated models. We also implement the solution
mentioned in Equation (2), which is denoted as Naïve in
our experiments.

Results are summarized in Tables 1–4, where the best
performance is highlighted in bold. Compared with the β-
smoothing and Naïve methods, we see that ATEX improves the
stability of interpretation, in terms of both Rank Correlation and
Top-k Inter-section metrics. The relative improvement is more
significant as the attackmagnitude ǫ1 increases. A larger ǫ1 means
a greater manipulation range (11 and 12 are set to be equal

to ǫ1). The model prediction accuracy will be slightly affected
on FashionMNIST, but remains consistent on MNIST. From
the computational efficiency perspective, in our experiments,
ATEX trains 5 times faster than the Naïve counterpart (the
average training time of each batch is 1.2 s and 6.1 s for ATEX
and Naïve, respectively.) This is because Naïve method requires
computing the Hessian metric toward each input sample and the
computational cost is proportional to input feature dimensions.

5.3. Qualitative Assessment of Explanation
In this part, we show that ATEX helps reducing noises in
interpretation feature maps, even when we only use vanilla
gradient (Simonyan et al., 2013) as the interpretation method.
We choose SmoothGrad (Smilkov et al., 2017a) as the reference
method, because SmoothGrad can reduce the noise in sensitivity
maps, and we use SmoothGrad to provide direction to generate
xi in ATEX. In our experiment, we run SmoothGrad on normally
training models without applying ATEX. Specifically, we add
pixel-wise Gaussian noise to 100 copies of each test image and

TABLE 1 | Defense against untargeted explanation manipulation on FashionMNIST.

ǫ1 Model accuracy Rank cORRELATION Top-k intersection

ATEX β-smoothing Naïve ATEX β-smoothing Naïve

0.02 0.884 0.766 0.708 0.751 0.747 0.674 0.725

0.04 0.878 0.715 0.622 0.722 0.717 0.574 0.710

0.08 0.870 0.686 0.536 0.655 0.702 0.484 0.685

TABLE 2 | Defense against targeted explanation manipulation on FashionMNIST.

ǫ1 Model accuracy Rank correlation Top-k intersection

ATEX β-smoothing Naïve ATEX β-smoothing Naïve

0.02 0.887 0.746 0.698 0.735 0.717 0.671 0.707

0.04 0.878 0.708 0.618 0.698 0.681 0.577 0.632

0.08 0.867 0.700 0.540 0.693 0.667 0.502 0.655

TABLE 3 | Defense against untargeted explanation manipulation on MNIST.

ǫ1 Model accuracy Rank correlation Top-k intersection

ATEX β-smoothing Naïve ATEX β-smoothing Naïve

0.02 0.988 0.864 0.842 0.851 0.760 0.732 0.754

0.04 0.987 0.825 0.787 0.807 0.744 0.709 0.714

0.08 0.988 0.783 0.705 0.755 0.808 0.676 0.656

TABLE 4 | Defense against targeted explanation manipulation on MNIST.

ǫ1 Model accuracy Rank correlation Top-k intersection

ATEX β-smoothing Naïve ATEX β-smoothing Naïve

0.02 0.987 0.856 0.842 0.852 0.699 0.732 0.703

0.04 0.988 0.825 0.784 0.813 0.719 0.708 0.689

0.08 0.987 0.785 0.708 0.759 0.766 0.678 0.735
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compute the average of vanilla gradients to get feature maps.
In comparison, after running ATEX for 5 iterations, we use
vanilla gradient to produce feature importance maps directly
for test images. The baseline feature maps are obtained by
vanilla gradient on normally trained models. We expect the
interpretation results of ATEX to be more similar to Smoothgrad
than baseline results. This is validated in Figure 3, as ATEX
achieve higher SSIM scores than the baseline results. We also
show the explanation results in Figure 4. We could observe that
the noise level is significantly reduced in the feature maps after
applying ATEX training to models, even though we only use
vanilla gradient to generate feature maps. It thus indicates that
models trained with ATEX are more focused on the objects
in input.

5.4. Efficacy of Adversarial Training After
Applying ATEX
We now investigate the correlation between explanation stability
and adversarial training efficacy. Our analysis in section 4
demonstrates that stability in explanation can potentially
improve the efficacy of adversarial training. In this experiment,

given a pre-trained classifier, we run ATEX for several iterations.
After each iteration, to evaluate the efficacy of adversarial
training, we further fine-tune the classifier with adversarial
training and then evaluate the robustness of the resultant model
against a new round of attack. We adopt FGSM as the approach
for both adversarial samples generation. The attack step length
ǫ = 0.1. For the adversarial training, we generate 50,000 FGSM
attack samples from training data and combine them with
original training data to fine-tune the model. Results are shown
in Figure 5. The x-axis denotes the number of iterations of ATEX,
where iteration = 0 means pure adversarial training without
using ATEX. From the figures, we observe that as we run more
iterations of ATEX, the performance of adversarial training also
increases. It indicates that ATEX reduces the potential weakness
contained in models.

6. CONCLUSION

Despite the unique role in improving transparency for neural
networks, interpretation methodologies have recently been
shown to be vulnerable tomanipulation. That is, malevolent users

FIGURE 3 | Quantitative evaluation of interpretation smoothness. Left: FashionMNIST. Right: MNIST.

FIGURE 4 | Gradient explanation map produced from the original network and the network trained with ATEX. Three images form a case, which consists of an input,

a gradient explanation from the original network, and a gradient explanation from ATEX-trained network.
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FIGURE 5 | Efficacy of adversarial training after apply ATEX. Left: FashionMNIST. Right: MNIST.

could slightly perturb the input to change its interpretation result
while maintaining prediction output. In this work, we propose
a new training method called ATEX, which tries to improve
model interpretation robustness against manipulation on input.
ATEX does not explicitly control interpretation, but implicitly
regularize it via control the predictions around training samples.
We also show that interpretation stability is closely related to
the potential efficacy of adversarial training, since adversarial
attack direction has a strong relation to interpretation. Through
experiments, we show that ATEX could stabilize interpretation
of model predictions. ATEX also reduce noises in feature
importance maps, similar to SmoothGrad, even the maps are
obtained with vanilla gradient. In addition, ATEX boosts the
efficacy of adversarial training.

Future work could investigate how to detect manipulated
inputs, which is more efficient especially on large datasets, instead
of retraining models. Another interesting direction is how to
improve training with augmented data so that the prediction
accuracy on clean samples will not decrease.
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