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Contagion Dynamics for Manifold
Learning
Barbara I. Mahler*

Mathematical Institute, University of Oxford, Oxford, United Kingdom

Contagion maps exploit activation times in threshold contagions to assign vectors in

high-dimensional Euclidean space to the nodes of a network. A point cloud that is the

image of a contagion map reflects both the structure underlying the network and the

spreading behavior of the contagion on it. Intuitively, such a point cloud exhibits features

of the network’s underlying structure if the contagion spreads along that structure, an

observation which suggests contagion maps as a viable manifold-learning technique.

We test contagion maps and variants thereof as a manifold-learning tool on a number

of different synthetic and real-world data sets, and we compare their performance

to that of Isomap, one of the most well-known manifold-learning algorithms. We find

that, under certain conditions, contagion maps are able to reliably detect underlying

manifold structure in noisy data, while Isomap fails due to noise-induced error. This

consolidates contagion maps as a technique for manifold learning. We also demonstrate

that processing distance estimates between data points before performing methods to

determine geometry, topology and dimensionality of a data set leads to clearer results

for both Isomap and contagion maps.

Keywords: dimensionality reduction, manifold learning, topological data analysis, persistent homology, contagion

1. INTRODUCTION

Manifold-learning techniques aim to identify low-dimensional manifold structure in high-
dimensional data (Lee and Verleysen, 2007). High-dimensional point-cloud data may represent
a large number of features on a collection of objects. Some of these features may be redundant
or irrelevant, thus giving the data lower-dimensional intrinsic structure. Alternatively, high-
dimensional point-cloud data with low-dimensional intrinsic structure may arise as a sample of
points from a low-dimensional manifold that is embedded in a high-dimensional space.

Consider, for instance, data points that lie on a plane in three-dimensional space. Principal
component analysis (PCA), a classical dimensionality-reduction technique (Sorzano et al., 2014),
can find the directions along which the data has maximum variance as well as the relative
importance of these directions. In the case of the plane embedded in three-dimensional space,
PCA returns three vectors: two of positive weight spanning the plane and one vector of zero
weight that is orthogonal to the plane. PCA can thus identify the plane underlying the ostensibly
three-dimensional data. More generally, consider data points that are concentrated around a
low-dimensional manifold (reflecting the underlying information) that is embedded in a high-
dimensional space. PCA is a linear dimensionality-reduction method: If the manifold is non-
linear, PCA is unable to detect the low-dimensional space underlying the data set. This is where
manifold-learning techniques (as a type of non-linear dimensionality reduction) can be effective.
The purpose of manifold learning is to uncover low-dimensional manifold structure of a data set in
a high-dimensional feature space, even if the structure of the data is curved.
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A common procedure for non-linear dimensionality
reduction is the following:

1. Create a network on the data points, such as by defining
an edge between any two nodes within some distance ǫ

(producing the ǫ-neighborhood graph) or by connecting each
point to its k closest neighbors (producing the k-nearest-
neighbor graph).

2. Define some notion of distance between data points based
on this network [e.g., shortest-path length for Isomap
(Tenenbaum et al., 2000)]. The aim is to approximate the
actual geodesic distance on the underlying manifold.

3. Map points to some space based on the pairwise distances.
Possible ways of doing this include the following: (a)
use a multidimensional scaling algorithm, which finds an
embedding that preserves pairwise distances as well as
possible; or (b) take distances to be coordinates in a space of
dimension equal to the number of data points [the approach
that contagion maps take as a manifold-learning technique
(Taylor et al., 2015)].

Many well-established manifold-learning techniques perform
poorly when faced with noisy data. Isomap, for instance, can
be very sensitive to noise. Consider, for example, a noisy point
sample on the Swiss roll (see e.g., Figure 2A). Noise can lead
to two points on adjacent sheets lying close together. The k-
nearest-neighbor graph might then have an edge that connects
the corresponding nodes (i.e., a “short-circuit error”), although
the points lie far apart in the intrinsic geometry. Consequently,
Isomap falsely considers the two points to be close, and it thus
fails as a manifold-learning technique in this case.

Contagion maps (Taylor et al., 2015) can circumvent
Isomap’s “short-circuit error” issue by exploiting the “social
reinforcement” phenomenon that characterizes threshold
contagions. When the threshold of a contagion is small enough
to allow spreading via a single edge, the associated contagionmap
can be viewed as a variant of Isomap and is similarly sensitive
to the type of noise described above. For larger thresholds,
however, a single errant edge in the k-nearest-neighbor graph
cannot carry a contagion, and, as a result, the contagion map
does not view the two points as close and performs well as a
manifold-learning technique. When a contagion on a network
spreads as a wavefront exclusively via edges between nodes that
are close together in the intrinsic geometry of the underlying
domain, we call this wavefront propagation (WFP). When it
spreads via edges that connect nodes that are far apart from
each other in the underlying domain, thereby creating new
contagion clusters in regions of the network that are far from
the previously infected regions, we call this appearance of
new clusters (ANC). If a contagion spreads predominantly
via WFP, then, intuitively, the point cloud that is the image
of the corresponding contagion map exhibits features of the
network’s underlying structure, and this has been confirmed
for particular classes of networks in Taylor et al. (2015) and
Mahler (2021). This recovery of underlying structure under
certain spreading dynamics suggests contagion maps as a
manifold-learning technique.

We use persistent homology, a method from topological
data analysis (Edelsbrunner and Harer, 2008), as well as more
established statistical techniques to perform manifold learning
based on contagion dynamics, and we compare this approach to
Isomap-type algorithms. One of the most common applications
of persistent homology is the task of recovering a manifold from
a random, potentially noisy sample of points (Carlsson, 2009).
This application illuminates the natural overlap of topological
data analysis with manifold learning. Both are designed to
find shape regardless of exact geometry (including measures
of curvature and length), and both aim to be robust to noise.
Traditionally, they differ in their respective approaches and, as
a result, in their ability to identify different types of structural
features. Persistent homology can, for example, identify a sphere
(by its topological features in dimensions 1 and 2), but not
a Swiss roll (as it has no non-trivial topological features). A
manifold-learning algorithm like Isomap, on the other hand, can
“unroll” the Swiss roll (under favorable conditions), but cannot
see that a sphere is a two-dimensional manifold: Isomap detects
a sphere’s lowest embedding dimension 3, but cannot see its
intrinsic 2-dimensional structure. In this article, we combine
the two approaches by processing our data via a manifold-
learning-type procedure first and then computing persistent
homology (along with some other measures) based on this
processed data.

The manifold-learning-type procedure that we use is based
either on activation times in a threshold contagion or on
shortest-path distances between nodes in a network built on
the given data. In both cases, we compare two different
approaches: We either pass the distance estimates directly
into a pipeline for analyzing dimensionality, topology, and
geometry, or we first process them to create points in high-
dimensional space, whose pairwise distances we then pass
into the same pipeline. We not only compare the contagion-
based approach to the Isomap-type one, but also examine
the effect of this pre-processing step on our results. We
find that the contagion-based approach proves successful in
many cases where the Isomap-type approach breaks down
and that the pre-processing step leads to clearer results
in general.

2. MATERIALS AND METHODS

The fundamental hypothesis that our algorithms are built
on is that our data come as samples from some underlying
submanifold of Rn, which we want to infer. To this end, we
perform variants of a procedure whose basic steps are as follows.

First, if a data set is given in the form of a point cloud, we
start by constructing a neighborhood graph (V ,E) based on this
point cloud. We do so by associating a set V of nodes to the
data points (denoting by i the node associated to point pi) and
defining the edge set E to build either (1) a k-nearest-neighbor
graph by connecting each point to its k closest neighbors, or (2)
an ǫ-neighborhood graph by connecting any two points that are
within ǫ from one another:
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1. Given some k ∈ N, we have (i, j) ∈ E if and only if pi is in the
set of the k nearest neighbors of pj or vice versa.

2. Given some ǫ ∈ R>0, we have (i, j) ∈ E if and only if
d2(pi, pj) ≤ ǫ.

In both types of neighborhood graph, one can either weight the
edges by the corresponding pairwise distances or treat the edges
as unweighted1.

If we are given data in the form of a network, we use this given
(weighted or unweighted) network instead.

Second, we calculate a notion of distance between points that
is aimed to be an estimate for the actual geodesic distance on the
underlying manifold. The idea is that only the pairwise Euclidean
distances between neighboring pairs of points approximate the
geodesic distances sufficiently, and that estimates for geodesic
distances between non-neighboring pairs of points can be
inferred from the distances between neighboring points by
“tracing” through the neighborhood graph.

The precise pairwise distances between adjacent points in
a neighborhood graph provide information that is relevant
to estimating the geodesic distances between non-neighboring
points. Unweighted neighborhood graphs forget this information
and thus tend to lead to less accurate approximations to the
geodesic distances. The loss of information from taking an
unweighted graph can be greater for k-nearest-neighbor graphs
than for ǫ-neighborhood graphs, because, in the latter case, the
pairwise distances are within a range that is capped by ǫ.

We examine dimensionality, topology, and geometry as
follows. We perform classical multidimensional scaling (MDS)
(Torgerson, 1958) based either on the dissimilarity measure
(i.e., activation times in the case of contagion-based algorithms,
and shortest-path lengths in the case of Isomap-type algorithms)
directly or on the Euclidean distances between points in high-
dimensional space whose coordinates are the distance estimates.
MDS aims to embed a point cloud in a given low-dimensional
vector space in a way that preserves given distances between
pairs of points as well as possible. It does so by minimizing a
cost function called “strain”: Given a matrix D =

(

dij
)

i,j∈I
of

pairwise distances, or “dissimilarities” (not necessarily satisfying
the defining properties of a metric), and some Euclidean target
space Y , MDS finds coordinate vectors

{

yi ∈ Y
}

i∈I
that minimize

the cost function

E = ‖τ (D)− τ (DY )‖L2 ,

where DY =
(

‖yi − yj‖2
)

i,j∈I
, ‖M‖L2 =

√

∑

i,j M
2
ij, and

τ (M) = −HSH/2 with Sij = M2
ij and Hij = δij − 1/|I| (Mardia

et al., 1979).
MDS is a linear dimensionality-reduction technique when

applied to Euclidean distances. By applying it to sensible
approximations to the geodesic distances between data points, we
hope to recover potentially curved structure. In other words, we
hope to useMDS to achieve non-linear dimensionality reduction.

1Note that, as the “weights” in this graph are really distances, a small weight of an

edge indicates a strong connection between its incident nodes.

Given an embedding via MDS to Euclidean space
of dimension p, we calculate its residual variance
(Cox and Cox, 2010),

Rp = 1−
(

ρ(p)
)2

,

where ρ(p) is the Pearson correlation coefficient (Pearson,
1895) between the given pairwise distances

{

dij
}

i,j∈I
and the

corresponding pairwise Euclidean distances
{

‖yi − yj‖2
}

i,j∈I

between points in the embedding.
We determine the approximate embedding dimension P of

the data (according to the given pairwise distances) by finding
the smallest dimension such that the residual variance of the
embedding viaMDS to that dimension is less than 5%, that is,

P = min{p | Rp < 0.05}.2

In addition to these dimensionality considerations via MDS,
we analyze our data topologically by computing the persistent
homology of the Vietoris–Rips filtration (Ghrist, 2008) based
either on the dissimilarity measure directly or on the Euclidean
distances between points in the associated high-dimensional
point cloud. When a base-geometry is given, we also examine
our data geometrically through a Pearson correlation coefficient
between that base-geometry and the given dissimilarity measure.
Note that such a known base-geometry to compare our processed
data to is not usually given in manifold-learning applications.
The measure is, however, useful when testing the algorithm on
benchmark data.

When analyze the point cloud given by the columns of D, we
are essentially applying our methods to a dissimilarity matrix that
encodes the pairwise distances between the column vectors of D.
We denote the operator that maps D to that matrix as

pdist : Mm,n (R) −→ Mn,n (R) ,

with
(

pdist(D)
)

ij
= d2(D∗i,D∗j).

The methods for analyzing dimensionality, topology, and
geometry described above were first used in tandem in Taylor
et al. (2015) on contagion maps. That is, they were used after
applying pdist to a matrix holding the activation times in multiple
realizations of a threshold contagion.

2.1. Contagion Maps
First, given point-cloud data, we obtain a neighborhood graph
as described above. If the given data is a network, we work with
this network directly instead. We denote the graph by (V ,E), the
number of nodes (i.e., the number of points in the case of point-
cloud data) by |V| = N, and the graph’s binary adjacency matrix
byA. In order to get an estimate for the intrinsic distance between
pairs of points, we then consider a threshold contagion on this
network. We denote the state of node i ∈ V at time t by ηi(t),
which takes the value 1 if it is active and the value 0 if it is inactive.

2In practice, we put a cap of 100 on P, so if the approximate embedding dimension

is 100 or larger, we record it as 100.
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Given a set of seed nodes consisting of a node j ∈ V together with
its immediate neighbors

S(j) = {j} ∪ {k | Ajk 6= 0}

that are active at time t = 0, and a threshold T, we update
node states synchronously in discrete time steps according to the
following rule. If ηi(t) = 1, then ηi(t + 1) = 1. If ηi(t) = 0, then

ηi(t + 1) = 1 if and only if fi > T ,

where fi =
1

d

∑

k∈V

Aikηk(t), and d is the node degree.

Given a network (V ,E) and a threshold T, a contagion seed
yields a deterministic process, which we call a realization of the
contagion model with T on (V ,E). The activation time of node i
in the realization seeded around node j is the smallest t such that

ηi(t) = 1, and we denote it by x
(i)
j . If node i is never activated in

the realization that is seeded around node j ∈ V , we set x
(i)
j = 2N

(i.e., larger than any actual activation time).
One can now work directly with this set of activation times,

that is, treat the activation times as estimates for the geodesic
distance between points on the underlying manifold, and use
them to examine geometry, topology, and dimensionality of the
data. Alternatively, one can first apply pdist. That is, one can work
with points whose coordinate vectors are given by the columns

of the dissimilarity matrix Dcont =
(

x
(j)
i

)

i,j∈V
that holds the

activation times (or of a symmetrization of this dissimilarity
matrix given byDcont+(Dcont)

T). Using terminology from Taylor
et al. (2015), producing such a point cloud is equivalent to
mapping the nodes via a contagion map. The regular contagion

map associated to (V ,E) and T is the function from the set V of
nodes to RN that is defined by

i 7→ x(i) = [x
(i)
1 , x

(i)
2 , . . . , x

(i)
N ]T .

Similarly, the symmetric contagion map associated to (V ,E) and
T is the function from the set V of nodes to RN that is defined by

i 7→ [x
(i)
1 + x

(1)
i , . . . , x

(i)
N + x

(N)
i ]T .

In this article, we work with symmetric contagion maps
exclusively.

We examine dimensionality, topology, and geometry based on
the activation times directly, that is, based on the entries of the
matrix Dcont + (Dcont)

T, as well as after applying pdist (i.e., we
analyze the symmetric contagion map).

2.2. Isomap
The Isomap algorithm (Tenenbaum et al., 2000) is
essentially a combination of a shortest-path algorithm
with MDS. In a sense, Isomap works as a “non-linear
version” of MDS which accommodates for potential
curvature of data by incorporating a shortest-paths

algorithm to estimate geodesic distances between
data points.

The original Isomap algorithm proceeds as follows.
First, given point-cloud data, Isomap starts by building a
neighborhood graph (V ,E) on the point cloud, as described
at the beginning of section 2. Next, Isomap calculates
the shortest-path lengths between pairs of nodes in this
network using some shortest-path algorithm. We use the
Floyd–Warshall algorithm (Floyd, 1962; Warshall, 1962) in
this work. The set of shortest-path lengths can be recorded
in a dissimilarity matrix Diso =

(

dG(i, j)
)

i,j∈V
3, to which

Isomap finally applies MDS to map the data points to a
low-dimensional space.

As in the case of contagion maps, if data is given in the
form of a network, we will work with this given network
instead of a neighborhood graph. Moreover, in addition to
the original Isomap algorithm, which simply projects points
via MDS based on the set of shortest-path lengths (i.e., the
entries in Diso), we calculate the residual variances of these
projections, and we also examine this set topologically (via the
persistent homology of the Vietoris–Rips filtration based on
these shortest-path lengths) and geometrically [via a Pearson
correlation (Pearson, 1895) with some given base-geometry],
when possible. Furthermore, we analyze the point cloud given by
the columns (or, equivalently, rows) of Diso, that is, we analyze
the entries in pdist(Diso).

Note that a contagion map with threshold T= 0 is
approximately equivalent to a version of Isomap that uses an
unweighted neighborhood graph.

2.3. Workflow
Our workflow is composed of multiple stages, at each of
which one can choose from a number of different options.
This leads to exponentially many possible procedures that one
can use to analyze a given data set. First, given point-cloud
data, one needs to choose the type of neighborhood graph
to build on this data set as well as the defining parameter k
or ǫ. Next, one needs to pick a way of estimating geodesic
distances based on this graph. We choose either shortest-
path distances or activation times in a threshold contagion,
that is, we follow either the Isomap algorithm or that of
contagion maps. In the case of contagion maps, one also
needs to choose a threshold parameter T. Given the set of
estimates for the geodesic distances, i.e., the dissimilarity matrix
that encodes the shortest-path (Diso) distances or activation
times (Dcont), one can apply further methods either to these
estimates directly or to the pairwise distances between the
points whose coordinate vectors are the columns (or rows,
by symmetry) of this dissimilarity matrix. For either of
these choices one can finally apply methods to determine
dimensionality, topology, and geometry. Figure 1 shows a
schematic representation of our workflow. We apply different

3The length of a shortest path between nodes i and j is denoted by dG(i, j). Note that

the function dG : V×V → [0,∞) is a metric on the set of nodes or (equivalently)

on the set of data points.
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FIGURE 1 | Schematic representation of the workflow.

subsets of the full analysis to the different data sets that
we study.

3. RESULTS

We apply Isomap, as well as contagion maps with several
different thresholds, to three different data sets. First, we consider
point samples from a Swiss roll, a classical benchmark data
set for dimensionality reduction and one of the first data sets
to which Isomap was applied (Tenenbaum et al., 2000). We
then analyze a couple of representatives of the class of torus-
based networks that was studied in Mahler (2021). The toroidal
structure underlying these networks allows us to examine the
topological aspect of our methods by looking to recover the
torus’ non-trivial topological features. Finally, we consider a data
set that represents the conformation space of the cyclo-octane
molecule (Martin et al., 2010). This data set is known to have
non-trivial topological features and is an example of a naturally
occurring data set.

3.1. Noisy Samples From a Swiss Roll
We first examine point samples from a Swiss roll that are
obtained by taking regularly spaced points on the Swiss roll
surface and then adding various levels of noise to these points.
This way of generating data makes it possible to have direct
control over the data, so one can explore how different algorithms
react to slight variations of the data (in terms of e.g., density,
noise level, or uniformity). We use this data set primarily to
explore the effects of the parameter k or ǫ when building a
neighborhood graph.

We start by taking points on a Swiss roll at a density of
approximately 50 per unit area, regularly spaced with respect to
the intrinsic geodesic distance on the Swiss roll (see Figure 2A).
We then add Gaussian noise with a specified signal-to-noise ratio
(S/N) to these regularly spaced points (see Figure 2B). That is,
for each point p = [p1, p2, p3] in this regularly spaced point
sample, we add independent, identically distributed noise drawn
from a zero-mean normal distribution to each of its coordinates
to obtain a perturbation pnoisy of the point:

pnoisy = [p1 + n1, p2 + n2, p3 + n3],

where ni ∼ N
(

0, σ 2
)

with σ 2 = 10
−S/N
10 .

We test Isomap and contagion maps on this noisy point cloud
to see how well each of them sees the underlying 2-dimensional

space. Each algorithm starts by building a neighborhood graph
on the points (see Figures 2C,D).

We have already touched on Isomap’s sensitivity to “short-
circuit errors” in the introduction. However, a careful choice of
ǫ (or k) when constructing the neighborhood graph can mitigate
such errors to some extent (Balasubramanian et al., 2002). The
goal is to find an ǫ (or k) that is small enough to avoid short-
circuit edges but not so small that the resulting graph “corrupts”
the underlying space. One may choose to simply vary ǫ over
a range and implement Isomap on all of the neighborhood
graphs that thus arise. This approach is in the same vein as
considering the full range of thresholds for the contagion map
algorithm, and it works whenever there exists a range of ǫ

(or k) for which the resulting neighborhood graphs correctly
represent the underlying topology. However, for some data sets—
particularly those that are sparse and incorporate a high level of
noise—it is impossible to find a value for ǫ (or k) that strikes
a balance between covering the underlying topology and not
making “short-circuit errors”. In other words, the range of ǫ (or
k) that “corrupt” the underlying topology and the range of ǫ (or
k) that make “short-circuit errors” overlap, leaving no values of ǫ
(or k) that yield neighborhood graphs that correctly represent the
underlying topology. For such data sets, Isomap is inadequate as
a manifold-learning tool, but contagion maps may be effective.

See Figures 3, 4 for examples on the Swiss roll that illustrate
the concepts in the above paragraph. In particular, Figure 3
shows an example of a data set for which a careful choice
of ǫ generates a neighborhood graph that both captures the
underlying manifold and does not include “short-circuit” edges.
By contrast, Figure 4 shows an example of a data set for which
no choice of ǫ produces a neighborhood graph that accurately
represents the underlying manifold. Figure 5 shows the residual
variances of projecting this data set via MDS to dimensions 1 to
10 when based on Isomap and when based on the contagion map
with T = 0.2 (both starting with a 0.18-neighborhood graph). For
the contagion map, the residual variance plunges at dimension
2, thereby correctly identifying the intrinsic dimension of the
data. The residual variances for Isomap, on the other hand, only
decrease slighty and continuously across the increasing target
dimensions. That is, Isomap fails to see the correct intrinsic
structure of the data when starting with an ǫ-neighborhood graph
with ǫ = 0.18 (or any other value of ǫ), while contagion map
— with a suitable choice of ǫ and T — correctly identifies the
underlying structure. For contagion maps to work in this case,
the value of ǫ had to be chosen large enough for the neighborhood
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FIGURE 2 | (A) Regularly spaced points on a Swiss roll at density 50 per unit area. (B) Gaussian noise is added at a signal-to-noise ratio of 30. (C) The

5-nearest-neighbor graph on the noisy point cloud. (D) The 0.18-neighborhood graph on the noisy point cloud. We show two views of each plot.

graph to cover the underlying manifold, and the value of T had to
be picked small enough to carry the contagion and large enough
to be resistant to the unavoidable noisy inter-sheet edges in the
ǫ-neighborhood graph.

We now consider 2,000 points of the Swiss roll data set4 from
Tenenbaum et al. (2000). This data set consists of 20,000 points
in total.

Both Isomap and contagion maps perform adequately for the
high signal-to-noise ration of S/N = 20 (i.e., low noise level)
with all four examined versions of neighborhood graphs (see
Figure 6).

For the lowest signal-to-noise ratio (i.e., greatest noise level)
that we consider (namely S/N= 5) the 8-nearest-neighbor graph
includes noisy inter-sheet edges. As a result, Isomap does not
detect the intrinsic dimension 2 of the Swiss roll when using the
8-nearest neighbor graph, and neither does the contagion map
with T = 0 or T = 0.1, thresholds for which the activation
times in our threshold contagion are close to the shortest paths
in the unweighted neighborhood graph (see Figure 7). With
T = 0.2, however, the contagion map does correctly recover the
intrinsic dimension 2, as this threshold is just large enough to be
robust to the occurring noisy edges. For thresholds larger than
T = 0.2, many of the realizations of our threshold contagion
leave nodes in the neighborhood graph inactive (recorded as
“infinite” activation times), and, as a result, the residual variances
of the embeddings based on these activation times are large
for all considered dimensions (1 to 10). This illustrates that,
while contagion maps can be a powerful tool when dealing
with such noisy edges, a suitable choice of threshold can be a
delicate matter.

Similarly, for signal-to-noise ratio S/N= 5, Isomap fails when
based on the 4.5-neighborhood graph or the 5-neighborhood
graph, but the contagion map for a threshold of T =

0.2 successfully identifies the intrinsic dimension 2 for both
examined values of the neighborhood parameter ǫ. Furthermore,
when based on a 5-neighborhood graph, Isomap fails even for the

4https://web.mit.edu/cocosci/isomap/datasets.html

higher S/N = 10, as the 5-neighborhood graph includes noisy
inter-sheet edges even for this lower noise level (see Figure 8).

Note that our measures for topology and geometry are
not useful for this data set, as the underlying manifold
has no non-trivial topological features, and there is no
base-geometry provided.

Our experiments on this classical manifold-learning data
showcase examples where contagion maps have the power
to detect low-dimensional structure, even when Isomap is
unsuccessful. Crucial to contagion maps’ success is the
careful choice of suitable neighborhood graph parameter and
contagion threshold.

3.2. Torus-Based Networks
We consider the torus-based model described in Mahler (2021)
with N= 2,500 nodes and a degree of geometric edges of
dG= 8. Networks in this model are similar to Kleinberg’s
small-world like network (Kleinberg, 2000). They consist of a
periodic grid of nodes that are connected via geometric edges
(i.e., edges between neighboring nodes) in a regular manner,
and to which non-geometric edges are added according to
a probability distribution. We add first 2 and then 4 non-
geometric edges per node uniformly at random and apply
versions of both Isomap and contagion maps (with thresholds
T = 0, 0.1, . . . , 1) to the resulting networks. Namely, we
calculate the shortest-path lengths between pairs of nodes in
these two unweighted networks, as well as the activation times
in all realizations of our threshold contagion that are seeded
at the direct neighborhoods of individual nodes. We thus
obtain two dissimilarity matrices: one holding the shortest-
path lengths (Diso) and one holding the symmetrized activation
times (Dcont). We analyze the information held in these two
dissimilarity matrices geometrically, topologically, and in terms
of dimensionality in two ways each. We first analyze the
estimated pairwise geodesic distances held in each dissimilarity
matrix directly, and we then consider the point clouds that
results from taking columns (or, equivalently, rows) of each
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FIGURE 3 | The ǫ-neighborhood graphs on a noisy point sample from a Swiss roll with S/N = 35 for (A) ǫ = 0.14, (B) ǫ = 0.15, (C) ǫ = 0.16, (D) ǫ = 0.17, and (E)

ǫ = 0.18 (We show three views of each plot.). If ǫ is too small (e.g., ǫ = 0.14), the ǫ-neighborhood graph does not adequately “cover” the underlying Swiss roll. If ǫ is

too large (e.g., ǫ = 0.18), the ǫ-neighborhood graph includes inter-sheet edges, and thus does not represent the underlying Swiss roll. However, there exists a range

of ǫ for which the ǫ-neighborhood graph covers the underlying surface and does not include inter-sheet edges, thus providing an authentic representation of the

underlying Swiss roll. In other words, the pairwise distances between points whose corresponding nodes are adjacent in the ǫ-neighborhood graph for such ǫ

approximate the actual geodesic sufficiently, and approximate pairwise geodesic distances between other point pairs can be inferred through the Isomap algorithm.

This is an example of a data set for which Isomap is suitable as a manifold-learning technique with a careful choice of ǫ.

Frontiers in Big Data | www.frontiersin.org 7 April 2022 | Volume 5 | Article 668356

https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org
https://www.frontiersin.org/journals/big-data#articles


Mahler Contagion Dynamics for Manifold Learning

FIGURE 4 | The ǫ-neighborhood graphs on a noisy point sample from a Swiss roll with S/N = 30 for (A) ǫ = 0.11, (B) ǫ = 0.12, (C) ǫ = 0.14, (D) ǫ = 0.16, (E)

ǫ = 0.18, and (F) ǫ = 0.19 (We show three views of each plot.). For small ǫ, the ǫ-neighborhood graph does not adequately “cover” the underlying Swiss roll. As ǫ

increases, noisy inter-sheet edges appear (for e.g., ǫ = 0.12) before ǫ is large enough for the neighborhood graph to adequately “cover” the underlying Swiss roll. This

is an example of a data set for which Isomap cannot be used successfully as a manifold-learning technique with any choice of ǫ.
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FIGURE 5 | (A) Isomap and (B) contagion map with T = 0.2 (both starting with a 0.18-neighborhood graph) on a noisy sample from a Swiss roll with S/N = 30.

FIGURE 6 | (Top row) Neighborhood graphs on 2,000 points of the Swiss roll data set from Tenenbaum et al. (2000) with white Gaussian noise added with S/N = 20.

(Bottom row) The residual variances of MDS projections to dimensions 1–10 resulting from the approximate pairwise geodesic distances between nodes based on

shortest paths on the weighted graph (i.e., Isomap) and the activation times in a threshold contagion on the unweighted graph (i.e., contagion maps). The

neighborhood graphs are (A) the 5-nearest-neighbor graph, (B) the 8-nearest-neighbor graph, (C) the 4.5-neighborhood graph, and (D) the 5-neighborhood graph.

dissimilarity matrix as the coordinate vectors of points in
R
2500.
In detail, we perform the following analyzes:

• In terms of dimensionality: We perform MDS based on the
entries in each dissimilarity matrix to dimensions 1–10 and
record the residual variance for each dimension. We also
perform MDS on the point cloud that results from taking
columns (or, equivalently, rows) of each dissimilarity matrix
as the coordinate vectors of points in R

2500. In both cases, we
identify the approximate embedding dimension as the lowest

dimension such that the residual variance when projecting
down to that dimension viaMDS is below 5%.

• Topologically: We build Vietoris–Rips filtrations based on the

approximations to the pairwise geodesic distances (i.e., the

entries in each dissimilarity matrix) and compute their

persistent homologies. We also build Vietoris–Rips filtrations

on the points cloud that results from taking columns
(or, equivalently, rows) of each dissimilarity matrix as the
coordinate vectors of points in R

2500 and compute their
persistent homologies.
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FIGURE 7 | (Top row) Neighborhood graphs on 2,000 points of the Swiss roll data set from Tenenbaum et al. (2000) with white Gaussian noise added with S/N = 5.

(Bottom row) The residual variances of MDS projections to dimensions 1 to 10 resulting from the approximate pairwise geodesic distances between nodes based on

shortest paths on the weighted graph (i.e., Isomap) and the activation times in a threshold contagion on the unweighted graph (i.e., contagion maps). The

neighborhood graphs are (A) the 5-nearest neighbor graph, (B) the 8-nearest neighbor graph, (C) the 4.5-neighborhood graph, and (D) the 5-neighborhood graph.

FIGURE 8 | (Top row) Neighborhood graphs on 2,000 points of the Swiss roll data set from Tenenbaum et al. (2000) with white Gaussian noise added with S/N = 10.

(Bottom row) The residual variances of MDS projections to dimensions 1 to 10 resulting from the approximate pairwise geodesic distances between nodes based on

shortest paths on the weighted graph (i.e., Isomap) and the activation times in a threshold contagion on the unweighted graph (i.e., contagion maps). The

neighborhood graphs are (A) the 5-nearest neighbor graph, (B) the 8-nearest neighbor graph, (C) the 4.5-neighborhood graph, and (D) the 5-neighborhood graph.

• Geometrically: We calculate the Pearson correlation
coefficient between the entries in each dissimilarity matrix
and the corresponding pairwise distances between regularly
spaced points on a torus:
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We also calculate the Pearson correlation coefficient between

the pairwise distances between points in the point cloud

that results from taking columns (or, equivalently, rows)

of each dissimilarity matrix as the coordinate vectors
of points in R

2500 and the corresponding pairwise
distances between the regularly spaced points on a
torus specified in (1).

We find that Isomap is unable to infer the underlying torus
structure from these networks. Contagion maps, however, detect
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FIGURE 9 | Dimensionality results on our torus-based network with dNG = 2. (A) Residual variances of MDS based on the estimated geodesic distances (i.e., the

entries in Diso and Dcont) according to Isomap, and according to contagion maps with thresholds T = 0, T = 0.1, T = 0.2, and T = 0.3. (B) Residual variances of

MDS based on the point cloud (i.e., the rows of the Diso and Dcont) according to Isomap, and according to contagion maps with thresholds T = 0, T = 0.1, T = 0.2,

and T = 0.3.

FIGURE 10 | Dimensionality results on our torus-based network with dNG = 4. (A) Residual variances of MDS based on the estimated geodesic distances (i.e., the

entries in Diso and Dcont) according to Isomap, and according to contagion maps with thresholds T = 0, T = 0.1, T = 0.2, and T = 0.3. (B) Residual variances of

MDS based on the point cloud (i.e., the rows of the Diso and Dcont) according to Isomap, and according to contagion maps with thresholds T = 0, T = 0.1, T = 0.2,

and T = 0.3.

the characteristics of the torus when using a threshold of T ≈ 0.2.
The results in this section illustrate the utility of contagion maps
for spatial network data that incorporates noisy edges and its
potential to outperform Isomap in such scenarios, but they also
highlight that a careful choice of T is critical.

Dimensionality
MDS based on Isomap does not identify the embedding
dimension 4 of a torus for either dNG= 2 or dNG= 4 (see
the purple data points in Figures 9, 10). The residual variance
based on contagion maps does have a dip at dimension 4 for
the threshold T= 0.2 (see the red data points in Figures 9,
10) but does not when the threshold is T= 0.1 or T= 0.3.
Note that for Isomap, as well as contagion maps with all

considered thresholds, the residual variances are smaller for
all considered dimensions when the analysis is done on the
point cloud, making the results for contagion map with T= 0.2
look sharper.

We identify the approximate embedding dimensions for
Isomap and contagion maps with thresholds T= 0,0.1, . . . ,1
and show the results in Figure 11. Both versions of Isomap
(the one performing MDS based on the entries in Diso and
the one performing MDS based on the distances between the
rows of Diso) vastly overestimate the embedding dimension
for the torus-based network with dNG= 2 and the one with
dNG= 4. When performing MDS based on the entries in Diso,
the approximate embedding dimension is at least 100 (which
is the dimension at which we cap our computations). When
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FIGURE 11 | Dimensionality results on our torus-based network with dNG = 2

(colored in green and yellow) and dNG = 4 (colored in red and blue).

Approximate embedding dimension according to contagion maps with

different values of threshold T and critical value 5% using the dissimilarity

matrix Dcont (colored in green and red), and the point cloud whose coordinate

vectors are the rows in Dcont (colored in yellow and blue). For dNG = 2, the

results for Isomap are practically identical to those for the contagion map with

T = 0: The approximate embedding dimension is at least 100 (which is the

dimension at which we cap our computations) when based on the entries in

Diso, and it is 61 when based on the point cloud whose coordinate vectors are

given by the rows of Diso. The approximate embedding dimension according

to contagion maps reaches a minimum value for T = 0.2 both when working

with Dcont and when working with pdist(Dcont). This minimal value is 7 in the

former case (see the data points colored in green), and is 4 in the latter case

(see the data points colored in yellow). Similarly, for dNG = 4, the results for

Isomap are practically identical to those for the contagion map with T = 0: The

approximate embedding dimension is at least 100 (which is the dimension at

which we cap out computations) when based on the entries in Diso; and it is

95 when based on the point cloud whose coordinate vectors are given by the

rows of Diso. The approximate embedding dimension according to contagion

maps reaches a minimum value of 8 for T = 0.2 when working with pdist(Dcont)

(see the data points colored in blue).

performing MDS based on the distances between the rows
of Diso, the embedding dimensions are still very large: The
embedding dimension is 61 for the network with dNG= 2, and
it is 95 for the network with dNG = 4. Note that these results
are practically identical to those the for the contagion map
with T = 0, as we are working with the same unweighted
graphs in both Isomap and contagion maps. For contagion
maps with varying thresholds T, the approximate embedding
dimension has a dip around T= 0.2, except when performing
MDS based on the entries in Dcont for the network with
dNG = 4, in which case contagion maps return an embedding
dimension of at least 100 for all thresholds (see the red data
points in Figure 12). This suggests that, for thresholds close to
0.2, the contagion spreads predominantly via WFP along the
underlying torus, making it possible to identify the underlying
low-dimensional structure.

Topology
Figures 12, 13 show the barcodes corresponding to the persistent
homology in dimension 1 of the Vietoris–Rips filtrations built

according to the different versions of Isomap and contagion
maps. The barcodes in dimension 1 of the Vietoris–Rips
filtrations based on the estimated geodesic distances (i.e., the
entries in Diso and Dcont) do not seem to reveal any
significant features for either Isomap or contagion maps (see
Figures 12A–E, 13A–E). The barcode in dimension 1 of the
Vietoris–Rips filtration on the point cloud based on Isomap
(i.e., given by the rows ofDiso) on the network with d

NG = 2 does
feature two dominant bars (see Figure 12F), as do the barcodes
corresponding to point clouds based on contagion maps for T
= 0, T= 0.1, and T= 0.2 (i.e., given by the rows of Dcont) (see
Figures 12G–I). Note, however, that in panels F–H, due to the
order of the bars, the dominance appears slightly stronger than
it actually is. For the network with dNG = 4, the barcode in
dimension 1 of the Vietoris–Rips filtration on the point cloud
based on Isomap does not have any dominant bars, whereas
the one based on the contagion map for T = 0.2 does (see
Figure 13I).

Geometry
We examine the geometry of our Isomap and contagion map
results by comparing the entries of Diso and Dcont, as well as the
point clouds given by the rows of these dissimilarity matrices,
to the regularly spaced points on a torus specified in (1) via the
Pearson correlation coefficient (see Figure 14). Isomap returns a
low Pearson correlation in all cases, suggesting that the shortest-
path distances are (as expected, given the large number of non-
geometric edges) not good estimates for the distances along the
torus that underlies these networks. Note that these results are
practically identical to those for contagion map with T = 0, as
we are working with the same unweighted graphs in both Isomap
and contagionmaps. For contagionmaps with varying thresholds
T, the Pearson correlation coefficient peaks around T = 0.2,
suggesting that, for thresholds close to T = 0.2, the contagion
spreads predominantly via WFP, making the activation times
good estimates for the distance along the torus that underlies
these networks.

These synthetic torus-based network data sets allowed us to
explore all three structural measures (dimensionality, topology,
and geometry), as the data’s underlying structure is not only low-
dimensional but has non-trivial topological features to recover,
and we have a base-geometry to compare our contagion and
shortest-path based distance estimates against.

Again, we emphasized the importance of finding a suitable
value for the contagion threshold. In the case of these torus-
based network data sets, a range of thresholds around T= 0.2
produce contagion maps that reveal the underlying toroidal
structure. This optimal range for T could be predicted from
the bifuracation analysis in Mahler (2021). In a true manifold-
learning application, however, where we have no a priori
knowledge about the data’s underlying structure and how
it is sampled from that underlying space, it is generally
difficult to guess an appropriate value of T. A practical
approach is to simply sweep over a range of incremental
values of T and look for dips and peaks in the measures
for topology, geometry, and dimensionality. Such dips and
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FIGURE 12 | Topology results on our torus-based network with dNG = 2. (Left column) Dimension 1 barcodes of the Vietoris–Rips filtrations based on the estimated

geodesic distances (i.e., the entries in Diso and Dcont ) according to (A) Isomap, and according to contagion maps with (B) T = 0, (C) T = 0.1, (D) T = 0.2, and (E)

T = 0.3. (Right column) Barcodes of the Vietoris–Rips filtrations on the point clouds according to (F) Isomap, and according to contagion maps with (G) T = 0, (H)

T = 0.1, (I) T = 0.2, and (J) T = 0.3.
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FIGURE 13 | Topology results on our torus-based network with dNG = 4. (Left column) Dimension 1 barcodes of the Vietoris–Rips filtrations based on the estimated

geodesic distances (i.e., the entries in Diso and Dcont ) according to (A) Isomap, and according to contagion maps with (B) T = 0, (C) T = 0.1, (D) T = 0.2, and (E)

T = 0.3. (Right column) Barcodes of the Vietoris–Rips filtrations on the point clouds according to (F) Isomap, and according to contagion maps with (G) T = 0, (H)

T = 0.1, (I) T = 0.2, and (J) T = 0.3.
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FIGURE 14 | Geometry results on our torus-based network with dNG = 2 and

dNG = 4. Pearson correlation coefficient between the pairwise distances

between the regularly spaced points on a torus specified in (1) and the

following sets: the estimated geodesic distances (i.e., the entries in Dcont)

according to contagion maps with thresholds T = 0, 0.1, . . . , 1 on a

torus-based network with dNG = 2 (colored in green); the pairwise distances

between points in R
2500 whose coordinate vectors are the rows of Dcont

according to contagion maps with thresholds T = 0, 0.1, . . . , 1 on a

torus-based network with dNG = 2 (colored in yellow); the estimated geodesic

distances (i.e., the entries in Dcont) according to contagion maps with

thresholds T = 0, 0.1, . . . , 1 on a torus-based network with dNG = 4 (colored

in red); the pairwise distances between points in R
2500 whose coordinate

vectors are the rows of Dcont according to contagion maps with thresholds

T = 0, 0.1, . . . , 1 on a torus-based network with dNG = 4 (colored in blue). The

results for Isomap are practically identical to those for the contagion map with

T = 0: The Pearson correlation coefficient is 0.1458 (0.1311) when based on

the entries in Diso for a torus-based network with dNG = 2 (dNG = 4), and it is

0.2175 (0.2013) when based on the point cloud whose coordinate vectors are

given by the rows of Diso for a torus-based network with dNG = 2 (dNG = 4).

peaks correspond to values of T for which the contagion
spreads predominantly as a wavefront, and therefore yields
activation times that give good estimates for the actual intrinsic
distances between data points and allow recovery of the
underlying structure.

We also demonstrated that processing our distance
estimates through pdist before performing our analyzes to
determine dimensionality, topology, and geometry improves
these measures, giving clearer results. In some cases we
saw that pdist appears, in fact, to be a crucial step in the
manifold-learning pipeline.

3.3. Conformation Space of the
Cyclo-Octane Molecule
The cyclo-octane molecule (CH2)8 consists of a ring of eight
carbon atoms, each bonded with two hydrogen atoms. A
conformation of a molecule is a possible spatial arrangement of
its atoms (modulo rotation and translation) (Moss, 1996). The
conformation of a molecule can be specified by the coordinates
of each of its atoms in three-dimensional space, giving a point
in R

3a, where a is the number of atoms in the molecule. (In

this case, each coordinate of each atom in three-dimensional
space is a feature and R

3a is the feature space). The set of
such points for all conformations of a molecule is called its
conformation space. Each conformation is accompanied by a
state of potential energy of the molecule, and a conformation
is more likely to occur the lower its associated potential
energy. The cyclo-octane molecule has many conformations of
comparable potential energy, and its conformation space has
been studied in computational chemistry for over 50 years
(Hendrickson, 1967; Pakes et al., 1981). Given the locations
of the eight carbon atoms in a conformation of the cyclo-
octane molecule, the locations of the hydrogen atoms are
determined to minimize energy: The two covalent hydrogen
atoms of each carbon atom are positioned to form a tetrahedral
arrangement with the two neighboring carbon atoms that
minimizes the potential energy of that subunit of the molecule.
The conformation space of cyclo-octane thus lies in R

3×8 =

R
24. It is generally assumed that conformation spaces form

low-dimensional manifolds, so identifying the structure of the
conformation space of a molecule is essentially a manifold-
learning problem. The conformation space of cyclo-octane
has been shown to be the union of a sphere with a Klein
bottle intersecting in two circles of singularities (Brown et al.,
2008; Martin et al., 2010), forming a two-dimensional manifold
with singularities.

Martin et al. (2010) analyzed a data set of 6, 040 points in the
conformation space of cyclo-octane, subsampled from a larger
data set consisting of 1031644 cyclo-octane conformations. This
data set is publicly available as part of the JAVAPLEX software
package5 (Tausz et al., 2014). To visualize this set of points,
Martin et al. mapped the points from R

24 to R
3 via Isomap. We

explore different versions of both Isomap and contagion maps
on it.

Figure 15 shows the residual variances for projections via
MDS onto dimensions 1 to 10 based on shortest-path distances,
i.e., based on the entries in Diso, (panel A) as well as for
those based on activation times in contagions with thresholds
T = 0.1, 0.2, and 0.4, i.e., based on the entries in Dcont,
(panel B–D), and it shows the visualizations of the projection
to 3D (panels E–H). We see that Isomap and contagion
maps with low thresholds (T = 0.1 and 0.2) detect the
embedding dimension of the underlying space, suggesting
the absence of noisy edges in the 8-nearest-neighbor graph
on this data set. Contagion maps with higher thresholds
(e.g., 0.4) do not seem to reveal any meaningful structure.
This is likely due to the contagion stabilizing before much
of the graph has been activated, leading to many “infinite”
activation times.

In Figure 16, we show barcodes corresponding to the
persistent homology in dimension 1 of various Vietoris–
Rips filtrations based on the cyclo-octane data set of 6040
points in R

24. The barcode in Figure 16A corresponds to
the Vietoris–Rips filtration built directly on the data points
in their ambient space R

24. This barcode has one dominant
bar, suggesting that the Klein bottle and the sphere whose

5http://appliedtopology.github.io/javaplex/
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FIGURE 15 | Results for (A,E) Isomap and for (B,C,D,F,G,H) contagion maps for different values of T on the data set of 6040 points in the conformation space of

cyclo-octane (using an 8-nearest neighbor neighborhood graph). (A) Residual variances for projections via MDS onto dimensions 1 to 10 in the original Isomap

algorithm. (E) Visualization of Isomap in 3D (B–D). Residual variances for projections onto dimensions 1 to 10 in the contagion-map algorithm for (B) T = 0.1, (C)

T = 0.2, and (D) T = 0.4 (F–H). Visualizations of projections to 3D for (F) T = 0.1, (G) T = 0.2, and (H) T = 0.4.
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FIGURE 16 | Barcodes for the persistent homology in dimension 1 of various Vietoris–Rips filtrations based on the cyclo-octane data set. (A) Vietoris–Rips filtration

directly on the data points in R
24. (B) Vietoris–Rips filtration based on the shortest-path distances in the 8-nearest-neighbor graph (i.e., based on the entries in Diso).

(C) Vietoris–Rips filtration based on the points whose coordinate vectors are the rows of Diso (corresponding to the 8-nearest-neighbor graph). (D) Vietoris–Rips

filtration based on the activation times of the contagion with threshold T = 0.2 on the 8-nearest-neighbor graph (i.e., based on the entries in Dcont ). (E) Vietoris–Rips

filtration based on the points whose coordinate vectors are the rows of Dcont (corresponding to the contagion with threshold T = 0.2 on the 8-nearest-neighbor graph).
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union is the conformation space of cyclo-octane intersect in
a way that makes the 1-dimensional loop that is present in
the homology of the Klein bottle over Z/2Z, but not over Z,
nullhomotopic. The other panels show barcodes corresponding
to various Vietoris–Rips filtrations that, in a sense, mimic the
Vietoris–Rips filtration built according to the intrinsic metric
on the underlying manifold. Namely, they are Vietoris–Rips
filtrations based on different versions of Isomap and contagion
map, that is, based on estimates for the geodesic distance
on the underlying manifold. Figure 16B shows the barcode
corresponding to the shortest-path distances in the 8-nearest-
neighbor graph (i.e., based on the entries in Diso). Figure 16C
shows the Vietoris–Rips filtration based on the points whose
coordinate vectors are the columns of Diso. Figure 16D shows
the Vietoris–Rips filtration based on the activation times of the
contagion with threshold T = 0.2 on the 8-nearest-neighbor
graph (i.e., based on the entries in Dcont). Figure 16E shows the
Vietoris–Rips filtration based on the points whose coordinate
vectors are the columns of Dcont. All of these barcodes have
one dominant bar, which is consistent with the homology of
the underlying manifold. The barcode in Figure 16D has many
bars with identical birth and death. This stems from the fact
that activation times (in our contagion model) have integer
values between 0 and 2N (where N is the number of node or,
equivalently, data points), and so a Vietoris–Rips filtration based
on these values has only few filtration steps at which simplices
are added.

This sample of the conformation space of cyclo-octane is
an example of a data set for which Isomap is successful,
as are contagion maps with a sufficiently small contagion
threshold T. Sweeping over a range of values of the threshold
T includes the value zero, which corresponds to a contagion
map that can be seen as equivalent to Isomap. We can therefore
view contagion maps as an extension that includes a form
of Isomap.

4. CONCLUSION

Isomap is a well-established manifold-learning tool and is useful
for many data sets. It can successfully handle curvature of data
in many cases, and the freedom of choosing the parameter k
or ǫ when creating a neighborhood graph allows it to handle
noise to some extent. However, when faced with particularly
sparse and noisy data, Isomap is prone to so-called “short-
circuit errors”, which in some cases cannot be avoided regardless
of the choice of k or ǫ. For such data, contagion maps
can yield better reconstructions. For a suitable choice of the
threshold parameter T, single noisy edges that occur in a
neighborhood graph do not carry a contagion and thus do
not distort the estimate of the geodesic distances via activation
times significantly. In other words, with the right choice of
T, contagion maps are able to “exploit social reinforcement to
silence noise”.

We have demonstrated this on a number of synthetic and
real-world data sets, including samples from the Swiss roll, a
classical benchmark data set for manifold learning. Some of
the data sets we examined were point clouds, on which we
built different neighborhood graphs in the first step of our
algorithm. Others were already in the form of a network, on
which we could directly consider threshold contagions and
shortest paths.

We analyzed the activation times in multiple realizations
of a threshold contagion directly in terms of dimensionality,
topology, and geometry, and we also did the same analysis
after performing the pdist-operation, that is, after mapping
data points to points in high-dimensional space based on
these activation times. In doing so, we have added to what
had been done with the original contagion map algorithm in
Taylor et al. (2015) and Mahler (2021), which only examined
point clouds in high-dimensional space. We studied these
variants of the original contagion-map algorithm, and we
did the analogous for Isomap, which, in its original form,
only considered embedding dimension based on the shortest-
path lengths directly. By comparing the variants of contagion
maps and Isomap, we found not only that contagion maps
perform better in many cases where Isomap breaks down due
to noise-induced short circuit errors, but also that processing
the distance estimates via the pdist-operation before analyzing
them leads to clearer results. Indeed, we saw in some
instances that this operation seems to accentuate our results
(see e.g., the red data points in Figure 10A vs. Figure 10B,
or Figure 11). Even more remarkably, in our method for
determining topological features of a data set, the pdist operation
does not only emphasize results but seems, in some cases,
to be a necessary methodological step, bringing out features
that are not detectable without this pre-processing step (see
Figures 12, 13). How exactly pdist transforms a dissimilarity
matrix andwhat effect this operation has on our variousmeasures
of geometry, topology, and dimensionality will be studied in
future work.
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