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Many real-world applications deal with data that have an underlying graph structure

associated with it. To perform downstream analysis on such data, it is crucial to

capture relational information of nodes over their expanded neighborhood efficiently.

Herein, we focus on the problem of Collective Classification (CC) for assigning labels to

unlabeled nodes. Most deep learning models for CC heavily rely on differentiable variants

of Weisfeiler-Lehman (WL) kernels. However, due to current computing architectures’

limitations, WL kernels and their differentiable variants are limited in their ability to capture

useful relational information only over a small expanded neighborhood of a node. To

address this concern, we propose the framework, I-HOP, that couples differentiable

kernels with an iterative inference mechanism to scale to larger neighborhoods. I-HOP

scales differentiable graph kernels to capture and summarize information from a

larger neighborhood in each iteration by leveraging a historical neighborhood summary

obtained in the previous iteration. This recursive nature of I-HOP provides an exponential

reduction in time and space complexity over straightforward differentiable graph kernels.

Additionally, we point out a limitation of WL kernels where the node’s original information

is decayed exponentially with an increase in neighborhood size and provide a solution

to address it. Finally, extensive evaluation across 11 datasets showcases the improved

results and robustness of our proposed iterative framework, I-HOP.

Keywords: graph neural network, semi-supervised learning (SSL), node classification, social network analysis,

deep learning—artificial neural network (DL-ANN)

1. INTRODUCTION

Many real-world datasets such as social networks can be modeled using a graph wherein the
nodes in the graph represent entities in the network and edges between the nodes capture the
interactions between the corresponding entities. Furthermore, every node can have attributes
associated with it and some nodes can have known labels associated with them. Given such a
graph, collective classification (CC) (Neville and Jensen, 2000; Lu and Getoor, 2003; Sen P et al.,
2008) is the task of assigning labels to the remaining unlabeled nodes in the graph. A key task
here is to extract relational features for every node which not only consider the attributes of the
node but also the attributes and labels of its partially labeled neighborhood. Neural network based
models have become popular for computing such node representations by aggregating node and
neighborhood information.

The key idea is to exploit the inherent relational structure among the nodes which encodes
valuable information about homophily, influence, community structure, etc. (Jensen et al., 2004).
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Traditionally, various neighborhood statistics on structural
properties (Gallagher and Eliassi-Rad, 2008), and distributions
on labels and features were used as relational features to predict
labels (Lu and Getoor, 2003; Neville and Jensen, 2003; McDowell
and Aha, 2013). Furthermore, iterative inference techniques
were widely adopted to propagate these label predictions until
convergence (Sen P et al., 2008). Recently, Kipf and Welling
(2017) proposed Graph Convolutional Networks (GCN) with a
Laplacian based graph kernel for the node classification task.
GS (Hamilton et al., 2017) further extended GCN and proposed
few additional neighborhood aggregation functions to achieve
state-of-the-art results for inductive learning.

These graph convolution kernels are based on differentiable
extensions of the popular Weisfieler-Lehman(WL) kernels. In
this study, we first show that a direct adaptation of WL kernels for
the CC task is inherently limited as node features get exponentially
morphed with neighborhood information when considering
farther hops. More importantly, aggregating information from a
K-hop neighborhood in an end-to-end differentiable manner is
not easily scalable. The exponential increase in neighborhood size
with an increase in hops severely limits themodel due to excessive
memory and computation requirements. To address these, we
propose an Iterative Higher-order Propagation framework (I-
HOP) that provides a solution for both these problems. Ourmain
contributions are:

• A modular graph kernel that generalizes many existing
methods. Through this, we discuss a Node Information
Morphing (NIM) phenomenon. We discuss its implications on
the limitations of existing methods and then discuss a novel
family of kernels called the Node Information Preserving (NIP)
kernels to address these limitations.

• A hybrid semi-supervised learning framework (I-HOP)
for higher order propagation that couples differentiable
kernels with an iterative inference procedure to aggregate
neighborhood information over farther hops. This allows
differentiable kernels to exploit label information and further
overcome excessive memory constraints imposed by multi-hop
information aggregation.

• An extensive experimental study on 11 datasets from different
domains. We demonstrate the node information morphing
issue and show that the proposed Iterative NIP model is robust
and overall outperforms existing models.

2. BACKGROUND

In this section, (i) we define the notations and terminologies used,
(ii) we present the generic differentiable kernel for capturing
higher order information in the CC setting, (iii) we discuss
existing works in the light of the generic kernel, and (iv) analyze
the NIM issue.

2.1. Definitions and Notations
LetG = (V ,E) denote a graph with a set of vertices,V , and edges,
E ⊆ V×V . Let |V| = n. The set E is represented by an adjacency
matrix A ∈ R

n×n, and let D ∈ R
n×n denote the diagonal degree

matrix defined as Dii =
∑

j Ai,j.

A CC dataset defined on graph G comprises of a set of labeled
nodes, S, a set of unlabeled nodes, U with U = V − S, a feature
matrix: X ∈ R

n×f and a label matrix: Y ∈ {0, 1}|S|×l, where f
and l denote the number of features and labels, respectively. Let
Ŷ ∈ R

n×l denote the predicted label matrix.
In this study, neural networks defined over K-hop

neighborhoods have K aggregation or convolution layers
with d dimensions each and whose outputs are denoted by
h1, . . . , hK . We denote the learnable weights associated with

kth layer as W
φ

k
and W

ψ

k
∈ R

d×d. The weights of the input

layer (W
φ
1 , W

ψ
1 ) and output layer, WL are in R

f×d and R
d×l,

respectively. Iterative inference steps are indexed by t ∈ (1,T).

2.2. Generic Propagation Kernel
We define the generic propagation (graph) kernel as follows:

h0 = X

hk = σk(α · (8k ·W
φ

k
)+ β · (F(A) ·9k ·W

ψ

k
))

(1)

where8k and 9k are the node and neighbor features considered
at the kth propagation step (layer), F(A) is a function of the

adjacency matrix of the graph, and W
φ

k
and W

ψ

k
are weights

associated with the kth layer of the neural network. One can view
the first term in the equation as processing the information of
a given node and the second term as processing the neighbors’
information. The kernel recursively computes the outputs of the
kth layer by combining the features computed to the (k − 1)th
layer. σk is the activation function of the kth, layer and α and β
can be scalars, vectors, or matrices depending on the kernel.

Label predictions, Ŷ can be obtained by projecting hK onto the
label space followed by a sigmoid or softmax layer corresponding
to a multi-class or multi-label classification task. The weights of
the model are learned via backpropagation by minimizing an
appropriate classification loss on Ŷ .

2.3. Relation to Existing Works
Appropriate choice of α, β ,8, 9 , and F(A) in the generic kernel
yield different models. Table 1 lists out the choices for some
of the popular models and our proposed approaches. Iterative
collective inference techniques, such as the Iterative Classification
Algorithm (ICA) family combine node information with
aggregated label summaries of immediate neighbors to make
predictions. Aggregation can be based on averaging kernel:
F(A)=D−1A, or label count kernel: F(A)=A, etc. with labels as
neighbors’ features (9k=Ŷ). This neighborhood information is
then propagated iteratively to capture higher order information.
ICA also has a semi-supervised variant (McDowell and Aha,
2012) where after each iteration the model is re-learned with
updated labels of neighbors. Table 1 shows how the modular
components can be chosen to see semi-supervised ICA (SS-ICA)
as a special instantiation of our framework.

The WL family of recursive kernels (Weisfeiler and Lehman,
1968; Shervashidze et al., 2011) were initially defined for
graph isomorphism tests and most recent CC methods use
differentiable extensions of it. In its basic form, it is the simplest
instantiation of our generic propagation kernel with no learnable
parameters as shown in Table 1.
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TABLE 1 | Baselines, existing, and proposed models seen as instantiations of the proposed framework.

Models 8k F(A) 9k α β W
φ

k
= W

ψ

k
? Differentiable Kernel Iterative Inference

BL_NODE h0 - - 1 - - - No

BL_NEIGH - D−1A hk−1 - 1 - Yes No

SS-ICA h0 D−1A Ŷ 1 1 No No Yes

WL hk−1 A hk−1 1 1 - - No

GCN hk−1 (D+ I)−1/2A(D+ I)−1/2 hk−1 (D+ I)−1 1 Yes Yes No

GCN-MEAN hk−1 D−1A hk−1 1 1 Yes Yes No

GS-Pool hk−1 maxpool hk−1 1 1 No Yes No

GS-MEAN hk−1 D−1A hk−1 1 1 No Yes No

GS-LSTM hk−1 LSTM gates LSTM 1 1 No Yes No

NIP-MEAN h0 D−1A hk−1 1 1 No Yes No

I-HOP-MEAN h0 D−1A hk−1, Ŷ 1 1 No Yes Yes

The modified, normalized symmetric Laplacian kernel (GCN)
used in Kipf and Welling (2017) can be seen as an instance of
the generic kernel with node weight, α=(D + I)−1, individual
neighbors’ weights’ F(A)=(D + I)−1/2A(D + I)−1/2, 8k =

9k and W
φ

k
= W

ψ

k
. We also consider its mean aggregation

variant (GCN-MEAN), where F(A) = D−1A. In theory, by
stacking multiple graph convolutional layers, any higher order
information can be captured in a differentiable way in O(K × E)
computations. However, in practice, the proposed model by Kipf
and Welling (2017) is only full batch trainable and, thus, cannot
scale to the large graph when memory is limited.

Hamilton et al. (2017) proposed GraphSAGE (GS) different
variants of kth order differentiable WL kernels, viz: GS-MEAN,
GS-Pool, and GS-LSTM. These variants can be viewed as
special instances of our generic framework as mentioned in
Table 1. GS-Pool applies a max-pooling function to aggregate
neighborhood information whereas GS-LSTM uses an LSTM
to combine neighbors’ information sequenced in random order
similar to the study by Moore and Neville (2017). GS has a mean
averaging variant, similar to the GCN-MEAN model but treats

nodes separately from its neighbors, i.e., W
φ

k
6= W

ψ

k
. Finally,

it either concatenates or adds up the node and neighborhood
information. GS-LSTM is over-parameterized for small datasets.
With GS-MAX and GS-LSTM there is a loss of information as
Max pooling considers only the largest input and LSTM focuses
more on the recent neighbors in the random sequence.

We also provide an extended study of related works in section:
B of the supplementary material that discusses other graph
kernels, message passing models, and similar analysis.

3. NODE INFORMATION MORPHING

In this section, we show that existing models which extract
relational features, hk do not retain the original node
information, h0 completely. With multiple propagation steps, the
h0 is decayed and morphed with neighborhood information. We
term this issue as NIM.

For ease of illustration, we demonstrate the NIM issue
by ignoring the non-linearity and weights. Based on the
commonly observed instantiations of our generic propagation
kernel [Equation (1)], where 8k = 9k = hk−1, we consider the
following equation:

hk = α ∗ Ihk−1 + β ∗ F(A)hk−1 (2)

On unrolling the above expression, one can derive the following
binomial form:

hk = (α ∗ I + β ∗ F(A))hk−1

hk = (α ∗ I + β ∗ F(A))kh0 (3)

From Equation (3), it can be seen that the relative importance of
information associated with the node’s 0th hop information, h0,

is αk

(α+β)k
. Hence, for any positive β , the importance of h0 decays

exponentially with k. It can be seen that the decay rate for GCN is
(D+ I)−k and (2)−k for the other WL kernel variants mentioned
in Table 1.

3.1. Skip Connections and NIM
It can be similarly derived and seen that the information
morphing not only happens at h0 but also for every hk∀k ∈ [0,
K − 1]. This decay of neighborhood information can be reduced
by leveraging skip connections. Consider the propagation kernel
in Equation (2) with skip connections as shown below:

hk = (α ∗ Ihk−1 + β ∗ F(A)hk−1)+ hk−1 (4)

The above equation on expanding as above gives:

hk = ((α + 1) ∗ I + β ∗ F(A))kh0 (5)

The relative importance of weights of h0 then becomes (α+1)k

(α+β+1)k
,

which decays slower than αk

(α+β)k
for all α,β > 0. Though

this helps in retaining information longer, it does not solve the
problem completely. Skip connections were also used in GCN
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to reduce the drop in performance of their model with multiple
hops. The addition of skip connection in GCN was originally
motivated from the conventional perspective to avoid the
reduction in performance with increasing neural network layers
and not with the intention to address information morphing.
In fact, their standard 2 layer model cannot accommodate skip
connections because of varying output dimensions of layers.
Similarly, GS models which utilized concatenation operation to
combine node and neighborhood information also lessened the
decay effect in comparison to summation based combination
models. This is because concatenation of information from the
previous layer can be perceived as skip connections, as noted
by its authors. Though the above analysis is done on a linear
propagation model, this insight is applicable to the non-linear
models as well. Our empirical results also confirm this.

NIP Models
To address the NIM issue, we propose a specific class of
instantiations of the generic kernel which we call the NIPmodels.
One way to avoid the NIM issue is to explicitly retain the h0
information at every propagation step as in Equation (6). This
is obtained from Equation (1) by setting 8k = h0 and 9k =

hk−1,∀k. For different choices of α,β , and F(A), we get different
kernels of this family. In particular, setting β = 1 − α and
F(A) = D−1A yields a kernel similar to Random Walk with
Restart (RWR) (Tong et al., 2006), refer to Equation (7).

hk = αh0W
φ

k
+ βF(A)hk−1W

ψ

k
(6)

hk = αh0 + βF(A)hk−1 (7)

The NIP formulation has two significant advantages: (a) It
enables capturing correlation between k-hop reachable neighbors
and the node explicitly and (b) it creates a direct gradient path to
the node information from every layer, thus allowing for better
training. We propose a specific instantiation of the generic NIP
kernel below.

NIP-MEAN : hk = σ (h0W
φ

k
+ D−1Ahk−1W

ψ

k
) (8)

Node Information Preserving-MEAN is similar to GCN-MEAN

but with8k=h0 andW
φ

k
6= W

ψ

k
.

4. ITERATIVE HIGHER-ORDER
PROPAGATION

Building any end-to-end differentiable model requires all the
relational information to be in memory. This hinders models
with a large number of parameters and those that process data in
large batches. For graphs with high link density and a power law
degree distribution, processing even 2nd or 3rd hop information
becomes infeasible. Even with p-regular graphs, the memory
grows at O(pK) with the number of hops, K. Thus, using a
differentiable kernel for even a small number of hops over a
moderate size graph becomes infeasible.

To address this critical scalability issue, we propose a novel I-
HOP Framework, which encompasses the differentiable kernels

within an iterative mechanism. In each iteration of I-HOP, the
differentiable kernel computes a C hop neighborhood summary,
where C < K. Every iteration starts with a summary,2t−1, of the
information computed until the (t − 1) step as given below.

h00 = X;20 = 0

htk = σ (α ∗8kW
φ

k
+ β ∗ F(A)9 t

kW
ψ

k
) (9)

9 t
k = [9k,2

t−1]

After T iterations, the model would have incorporated (K =

T × C) hop neighborhood information. Here, we fix T based
on the required number of hops we want to capture (K), but it
can also be based on some convergence criteria on the inferred
labels. For the empirical results reported in this study, we have
chosen 2t−1 to be (predicted) labels Ŷ t−1, along the lines of the
ICA family of algorithms. Other choices for 2t−1 includes the C
hop relational information, htC.

Figure 1 explains I-HOP’s mechanism with a toy chain graph.
The graph has 6 nodes with attributes ranging over A–F and the
graph kernel used is of the second order. The figure is intended
to explain how differentiable and non-differentiable layers are
interleaved to allow propagation up to the diameter. We first
analyze it with respect to node 1. In the first iteration, node
1 has learned to aggregate attributes from nodes 2 and 3, viz
BC, along with its own. This provides it with an aggregate of
information from A, B, and C. At the start of each subsequent
iteration, label predictions are made for all the nodes using a
Cth(In Figure 1, C = 2) order differentiable kernel learned
in the previous iteration. These labels are concatenated with
node attributes to form the features for the current iteration.
By treating the labels as non-differentiable entities, we stop the
gradients from propagating to the previous iteration, and hence,
the model is only C = 2 hop differentiable.

With the concatenated label information, the model can be
made to re-learn from scratch or continue on top of the pre-
trained model from the last iteration. Following this setup, one
can observe that the information of nodes D, E, and F which is
not accessible with a 2nd order differentiable kernel(blue paths)
is now accessible via the non-differentiable paths (red and green
paths). In the second iteration, information from nodes at the 3rd
and 4th hop (D and E) becomes available and in the subsequent
iteration, information from the 5th hop (F) becomes available.
The paths encoded in blue, purple, and orange represent different
iterations in the figure and are differentiable only during their
ongoing iteration, not as a whole.

4.1. I-HOP-MEAN: Iterative NIP Mean
Kernel
In this section, we propose a special instance of the I-HOP
framework which addresses the NIM issue with NIP kernels
in a scalable fashion. Specifically, we consider the following
NIP Kernel instantiation, I-HOP-MEAN with mean aggregation
function, by setting F(A) = D−1A, 8k = h0, 9 = hk−1,

2t−1 = Ŷ t−1 andW
φ
K 6= W

ψ
K .
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FIGURE 1 | Iterative higher-order propagation (I-HOP) explained with a chain graph.

h00 = X; Ŷ0 = 0

htk = σ (ht0W
φ

k
+ D−1A[htk−1, Ŷ

t−1]W
ψ

k
) (10)

In Algorithm 1 (I-HOP-MEAN), the iterative learning and
inference steps are described in lines: 7–10 and 12–16,
respectively. Both learning and inference happen in mini-
batches, nodes, sampled from the labeled set, S or the unlabeled
set, U respectively as shown in lines : 8 and 12, correspondingly.
The predict function described in lines: 17–27 is used during
learning and inference to obtain label predictions for nodes,
nodes. The procedure first extracts C-hop relational features (hk
with k = C) and then projects it to the label space and applies a
sigmoid or a softmax depending on the task (line: 27).

To extract C-hop relational features for nodes, the model
via the get_subgraph function first gathers all nodes along with
their neighbors reachable by less than C + 1 hops (nodes∗) and
represents this entire sub-graph by an adjacency matrix (A). A
C-hop representation is then obtained with the kernel as in lines:

21–24. At each learning phase, the weights of the kernels (W
φ

k
s

and W
ψ

k
, ∀k) are updated via back-propagation to minimize an

appropriate loss function.

5. SCALABILITY ANANLYSIS

In most real-world graphs exhibiting power law, the size of the
neighborhood for each node grows exponentially with the depth
of the neighborhood considered. Storing all the node attributes,
the edges of the graph, intermediate activations, and all the
associated parameters become a critical bottleneck. Here, we
analyze the efficiency of the proposed study to scale to large
graphs in terms of the reduction in the number of parameters
and space and time complexity.

5.1. Number of Parameters
The ratio of available labeled nodes to the unlabeled nodes in a
graph is often very small. As observed in Kipf andWelling (2017)
and Hamilton et al. (2017), the model tends to easily over-fit
and perform poorly during test time when additional parameters
(layers) are introduced to capture a deeper neighborhood. In
our proposed framework with iterative learning and inference,
the parameters of the kernel at (t − 1)th iteration are used to
initialize the t-th kernel and are then discarded, hence the model
parameter is O(C) and not O(K). Thus, the model can obtain
information from any arbitrary hop, K with constant learnable
parameters of O(C), where C = T/K. But in the inductive setup,
the parameter complexity is similar to GCN and GS as the kernel
parameters from all iterations are required to make predictions
for unseen nodes.

5.2. Space and Time Complexity Analysis
For a Graph G = (V ,E), let us consider aggregating information
up to the K hop neighborhood. Let number of nodes n = |V|,
and average degree p = 2|E|/n.

Full-BatchGNNs: Instantiations of the generic kernel given in
Equation (1) with full batch updates over the entire graph, such
as GCNs (Kipf and Welling, 2017), require O(2ndk + 2dkdk+1)
memory for each layer, k ∈ [1,K]. O(ndk) is required to save the
node information,9k and the neighborhood information,8k for
N nodes in layer k, assuming dk is the length of their features.
O(dkdk+1) memory is required to store the weight matrices in
each layer, W8

k
and W9

k
. Note that, with full batch GNNs, the

entire graph should also be in memory and that takes O(np)
memory with sparse implementations but that is shared across
all layer computations.

Full batch GNNs have a time complexity of O(2ndkdk+1 +

npdk+1) at each layer, k where the multiplication of node

Frontiers in Big Data | www.frontiersin.org 5 April 2022 | Volume 5 | Article 616617

https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org
https://www.frontiersin.org/journals/big-data#articles


Vijayan et al. Scaling Graph Propagation Kernels

Algorithm 1: I-HOP-MEAN.

1 Input: Dataset: (G, S,U,X,Y), No: of differentiable hops:
C, No: of iterations: T

2 Output: Ŷ

3 Ŷ[S] = 0; Ŷ[U] = 0; Ỹ = Ŷ
4 // Make K-hop features based predictions, K=T*C
5 for t in 1:T do

6 // Learning
7 for epoch_id in 1:Max_Epochs do
8 for nodes in S do

9 Ỹ[nodes] = predict(nodes,G,X, Ŷ ,C)

10 min Loss(Ỹ[nodes],Y[nodes])

11 // Inference
12 for nodes in U do

13 Ỹ[nodes] = predict(nodes,G,X, Ŷ ,C)

14 Ŷ[S] = Y
15 // Temporal averaging of predicted labels

16 Ŷ[U]= (T − t)/T ∗ Ỹ + (t/T) ∗ Ŷ[U]

17 Function predict(nodes,G,X, Ŷ ,C)
18 A, nodes∗ = get_subgraph(G, nodes,C)

19 X = X[nodes∗]; Ŷ = Ŷ[nodes∗]
20 // Compute 0-hop features
21 h0 = σ (XW0)
22 // Compute C-hop features
23 for k in 1 :C do

24 hk = σ (α[h0]W
φ

k
+ βF(A, [hk−1, Ŷ]W

ψ

k
))

25 // Predict labels

26 Ỹ = σ (hC[nodes]WL)

27 return Ỹ

and neighbor features with their corresponding weights take
O(ndkdk+1) time complexity and the sparse-dense multiplication
required to aggregate dk+1-dimensional neighbor features from p
neighbors for N nodes take O(npdk+1) time complexity.

For our analysis, we focus only on the scalability concerning
graph size. Thus, for a K layer GNN model with full-batch
updates, the simplified space complexity and time complexity are
O(Kn+ np) and O(Knp), respectively.

Mini-Batch GNNs: As the number of nodes in a graph
increases, the GNN’s memory requirement quickly becomes
impractical especially to be held in VRAM [Graphic Processing
Unit (GPU) Memory]. While mini-batch implementation of
GNNs improves and provides a scalable memory complexity, it
comes at the cost of increased computation time. With mini-
batches of size b, the memory requirement for each mini-batch
of a GNNmodel is in O(Kb+ bpK). The time complexity of each
mini-batch is in O(KbpK), and for n/b batches, the total time
complexity of the model becomes O(KnpK).

The exponential increase in computational time to O(KnpK)
from O(KNp) of that of full-batch models arises from the need to
aggregate a neighborhood size of O(bpK) for each of n/b batches

FIGURE 2 | Node Information Preserving (NIP)-Mean’s performance as a

percentage of neighbors.

independently. This complexity can arise despite having a small
number of nodes considered in each batch. To aggregate K-hop
information for b nodes, pK neighbors are to be considered; thus,
a mini-batch will have to store and process bpk nodes in the
worst case. In our TensorFlow (TF) implementation of models
reported later in the results section, we use TF Queues to handle
neighbor sampling in parallel for batches to avoid stalling GPU
time for this pre-processing step.

Neighbor Sampling: The mini-batching of GNN training
and inference is memory efficient only when bpK << n and
when it fits in memory. In many small-world cases, where
the graphs are highly connected (such as a PPI, Reddit, and
Blog), the neighborhood set of a small K may already be the
whole network, making the task computationally expensive and
often infeasible with respect to memory. To make this tractable,
GS considers sampling q neighbors at every hop and, thus,
aggregates information only from this K.q partial neighborhood
information that is within K-hops from b nodes in a mini-batch.
The resulting complexities for time are inO(KnqK) and for space
in O(Kb+ bqK).

Though sampling neighbors randomly and processing
information in mini-batches as with GS is scalable and fast, in
many cases, it can significantly hurt the performance as shown
on citation networks in Figure 2.

Iterative GNNs: The mini-batch implementation of the
proposed I-HOP model reduces the complexity from exponential
to linear in O(TCnpC) of the total number of hops considered
with T iterations of a constant C hop differentiable kernel (T ×

C = K). Thus, I-hop has a time complexity in O(KnpC) and
space complexity in O(kb + bpC). Run time comparison of the
I-HOP model with a non-iterative GNN model is provided later
in Section 8.6.

While a mini-batch version of I-HOP with neighbor sampling
would further improve the computational efficiency, we do not
recommend it at the cost of accuracy. Our experiments found
that even C as small as 2 and T = 5 was sufficient to outperform
existing methods on most of the datasets. The best models were
the ones whose C was the largest hop which gave the best
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performance for the differentiable kernel. For more details on
how to set C,T, and K refer to the Section 7.4.

6. RELATED WORK

6.1. WL-Based Graph Methods and
Analysis
Many extensions of classical methods have been proposed to
capture higher-order relational properties of the data. Glocalized
kernels (Morris et al., 2017) are a variant of the k-dimensional
WL (Weisfeiler and Lehman, 1968) kernel for graph level tasks
that use a stochastic approximation to aggregate information
from distant nodes. The differentiable kernels are all 1-dim
WL-Kernels whose direct adaptation suffers from NIM. The
relation classifier (Macskassy and Provost, 2003) builds upon
the homophily assumption in the graph structure and diffuses
the available label data to predict the labels of unlabelled
ones. To make this process more efficient, propagation kernels
(Neumann et al., 2016) provide additional schemes for diffusing
the available information across the graph. However, none of
these provide a mechanism to adapt to the dataset by learning
the aggregation filter.

Xu et al. (2018) and Li et al. (2018) presented another
perspective for a specific instance of the NIM problem, which
reinforces our claim. Note that their arguments are only valid
for GCN’s choice of F(A), Laplacian. Our approach of binomial
expansions considering the α and β importance is more general
and extends the results to any general aggregation kernel,
F(A), considered. Numerous more recent models such as GAT
(Veličković et al., 2017) can be interpreted as GCNs with F(A)
determined by a self-attention mechanism. Note that, Xu et al.
(2018) focus on understanding how a Kth hop neighbor affects
the Kth hop representation of a node (we refer to this as
neighborhood information morphing). However, we empirically
find that understanding how the 0th hop features of a node affect
its Kth hop representation (NIM) is even more critical. Note:
retaining the previous layer information of a node is not the same
as preserving the original 0-hop features.

Message Passing Neural Network (MPNN) (Gilmer et al.,
2017) is a message passing framework that contains the message
and read-out component. They are defined for graph level tasks.
Since the read-out component is specifically applicable to the
graph level tasks, the left-over message component was too
simple to aid us in the analysis. Hence, we proposed the I-HOP’s
generic propagation kernel which is more detailed than MPNN’s
message component, and it can additionally support iterative
learning and inference. I-HOP is explicitly defined for node level
tasks and aims at scaling existing graph networks.

6.2. Iterative Refinement Frameworks
From a dynamical systems perspective, predictive state
representations (Sun et al., 2016) also make use of iterative
refinement of internal representations of themodel for sequential
modeling tasks. However, no extension to graph models has been
mentioned. In computer vision applications, iterative Markov
random fields (Yu and Clausi, 2005; Subbanna et al., 2014)
have also been shown to be useful for incrementally using the

local structure for capturing global statistics. In this study, we
restrict our focus to addressing the limitations of the current
state-of-the-art differentiable graph kernels to provide higher
order information for CC tasks. Moreover, I-HOP additionally
leverages label information that is found to give up to a 7% point
improvement on certain datasets over methods that do not use
label information, refer to results for Yeast and Reddit datasets
in Table 4.

Recent study, Fey et al. (2021) proposed GNNAutoscale, a
framework to scale graph-based neural networks using historical
embeddings similar to our I-HOP framework. GNNAutoscale
pre-processes the graph and partitions the datasets into different
partitions and samples batches from each partition. In I-HOP, all
C-hop neighbors of a node are available in a batch, and historical
embeddings are only used to provide neighbors’ information
beyondC hops. In contrast, with GNNAutoscale, even immediate
neighbors of nodes can be missing as they can belong to
another partition. Thus, they use historical embedding of out-
of-batch neighbors to propagate information to nodes in the
batch. GNNAutoscale can be viewed as an instance of the I-HOP
framework, i.e., 9k = 2k−1 with 2k−1 = hk−1,∀k ∈ [1 :T ∗ C]
in Equation (9) for all out-of-batch immediate neighbors.

While this results in a constant GPU memory usage similar
to I-HOP, the CPU RAM usage is K = T ∗ C folds more
than I-HOP as the output for all the layers needs to be
saved for all the nodes. Furthermore, the computational and
classification performance of GNNAutoscale is highly dependent
on the initial partitioning as with more inter-partition edges, the
computation time will increase, and the quality of the historical
embedding’s approximation will depend on the homophilous
nature of the graphs as even the immediate neighbors might be
missing. In I-HOP, unlike GNNAutoscale, we can theoretically
quantify the time complexity directly, as discussed in the
previous section, which leads to an apparent exponential
reduction in complexity. Our model can be less error-prone
as we have the actual information up to C hops. Additionally,
the model can better capture different label distributions in
the neighborhood using label-based historical approximations.
Also, unlike GNNAutoscale, where the performance can drop
compared to the original GNN method even for shallow
networks, we can control at what iteration (t) to stop with
I-HOP. As a result, the performance will either saturate or
increase afterC-hops. Thus, I-HOP ismore generic, flexible, CPU
RAM efficient over GNNAutoscale and can leverage useful label
information.

7. EXPERIMENTS

7.1. Dataset Details
In this study, we treat networks as undirected graphs but the
proposed framework can also handle directed graphs with non-
negative edges. We extensively evaluate the proposed models and
the baselines on 11 datasets from various domains. To the best
of our knowledge, there exists no previous study in collective
classification that reports results on these many datasets over
a wider range of domains. Dataset statistics are summarized in
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TABLE 2 | Dataset stats: |V|, |E|, |F|, |L|, Lm denote the number of nodes, edges, features, multi-label dataset.

Dataset Network |V| |E| |F| |L| Lm

Cora (Lu and Getoor, 2003) Citation 2708 5429 1433 7 F

Citeseer (Bhattacharya and Getoor, 2007) Citation 3312 4715 3703 6 F

Cora2 (Mccallum, 2000) Citation 11881 34648 9568 79 T

Pubmed (Namata et al., 2012) Citation 19717 44327 500 3 F

Yeast (Cheng et al., 2002) Biology 1240 1674 831 13 T

Human (Hamilton et al., 2017) Biology 56944 1612348 50 121 T

Reddit (Hamilton et al., 2017) Social 232965 5376619 602 41 T

Blog (Wang et al., 2010) Social 69814 2810844 5413 46 T

Fb (Pfeiffer III et al., 2015) Social 6302 73374 2 2 F

Amazon (Leskovec and Sosič, 2016) Product 16553 76981 30 2 F

Movie (Cantador et al., 2011) Movie 7155 388404 5297 20 T

Table 2. Code and pre-processed datasets are available at https://
github.com/PriyeshV/HOPF.

Most datasets used in this study are taken directly from
already available preprocessed dataset repositories. In other cases
where only raw data is available, the work study follows the
preprocessing instructions provided in the original studies. The
train/test/Val split for 5-folds for all works is available in the
above link. Additional specification to preprocess any data that
is important is mentioned below along with their descriptions.

Social Networks: We use Facebook (FB) (Pfeiffer III et al.,
2015; Moore and Neville, 2017), BlogCatalog (BLOG) (Wang
et al., 2010), and Reddit dataset (Hamilton et al., 2017). In the
FB dataset, the nodes are FB users and the task is to predict the
political views of a user given the gender and religious view of
the user as features. In the BLOG dataset, the nodes are users of
a social blog directory, the user’s blog tags are treated as node
features and edges corresponding to friendship or fan following.
The task here is to predict the interests of users and labels with
less than 500 samples are removed. In Reddit, the nodes are the
Reddit posts, the features are the averaged glove embeddings of
text content in the post, and edges are created between posts if
the same users comment on both. The task here is to predict
the sub-Reddit community to which the post belongs. Unlike the
original inductive task on the Reddit dataset, here, we use it for a
transductive task.

Citation Networks: We use four citation graphs: Cora (Lu
and Getoor, 2003), Citeseer (Bhattacharya and Getoor, 2007),
Pubmed (Namata et al., 2012), and Cora-2 (Mccallum, 2000).
In all the four datasets, the articles are the nodes and the edges
denote citations. The bag-of-word representation of the article
is used as node attributes. The task is to predict the research
area of the article. Apart from Cora-2, which is a multi-label
classification dataset from Mccallum (2000), others are multi-
class datasets.

Biological Network: We use two protein-protein interaction
(PPI) networks: Yeast and Human. The yeast dataset is part
of the KDD cup 2001 challenge (Cheng et al., 2002) which
contains interactions between proteins. The task is to predict the
function of these genes. Additionally, we use the available gene-
location information. Similarly, the Human dataset, introduced

in Hamilton et al. (2017), is a PPI network from human tissues.
The dataset contains PPI from 24 human tissues and the task
is to predict the gene’s functional ontology. Features consist of
positional gene sets, motif gene sets, and immunology signatures.

Movie Network: We constructed a movie network from the
Movielens-2k dataset available as a part of the HetRec 2011
workshop (Cantador et al., 2011). The dataset is an extension
of the MovieLens10M dataset with additional movie tags. The
nodes are the movies and edges are created between movies if
they share a common actor or director. The movie tags form the
movie features and movies with no tags are removed. The task
here is to predict all possible genres of the movies.

Product Network: We constructed an Amazon DVD co-
purchase network which is a subset of Amazon_0505 co-
purchase data by Leskovec and Sosič (2016). The network
construction procedure is similar to the one created in Moore
and Neville (2017). The nodes correspond to DVDs and edges
are constructed if two DVDs are co-purchased. The DVD genres
are treated as DVD features. The task here is to predict whether a
DVD will have Amazon sales rank ≤ 7,500 or not.

7.2. Experiment Setup
The experiments follow a semi-supervised setting with only 10%
labeled data. We consider 20% of nodes in the graph as test nodes
and randomly create 5 sets of training data by sampling 10% of
the nodes from the remaining graph. Furthermore, 20% of these
training nodes are used as the validation set. We do not use the
validation set for (re)training.

7.3. Weighted Cross Entropy Loss
Models in earlier studies (Yang et al., 2016; Kipf and Welling,

2017), were trained with a balanced labeled set, i.e., equal

number of samples for each label is provided for training. Such

assumptions on the availability of training samples and similar

label distribution at the test time are unrealistic inmost scenarios.

To test the robustness of CC models in a more realistic set-

up, we consider training datasets created by drawing random

subsets of nodes from the full ground truth data. It is highly likely

that randomly drawn training samples will suffer from severe
class imbalance. This imbalance in class distribution can make
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TABLE 3 | Hyperparameters for different datasets.

Hyperparams CORA CITE CORA2 YEAST HUMAN BLOG FB AMAZON MOVIE Pubmed Reddit

Learning Rate 1E-02 1E-02 1E-02 1E-02 1E-02 1E-02 1E-02 1E-02 1E-02 1E-02 1E-02

Batch Size 128 128 128 128 512 512 128 512 64 128 512

Dimensions 16 16 128 128 128 128 8 8 128 16 128

L2 weight 1E-03 1E-03 1E-06 1E-6 0 1E-06 0 0 1E-06 1E-3 0

Dropouts 0.5 0.5 0.25 0.25 0 0 0 0 0 0.5 0

WCE Yes Yes Yes Yes No Yes Yes Yes Yes Yes No

Activation ReLU ReLU ReLU ReLU ReLU ReLU ReLU ReLU ReLU ReLU ReLU

the weight updates skewed toward the dominant labels during
training. To overcome this problem, we generalize the weighted
cross entropy defined inMoore and Neville (2017) to incorporate
both multi-class and multi-label setting. We use this as the loss
function for all the methods including baselines. The weight ω
for the label i is given in the equation below, where |L| is the
total number of labels, and Nj represents the number of labeled
samples with label j. Thus, the weights for labels at training,
validation, and test phases are the same. The weight of each label
ωi is inversely proportional to the number of samples having
that label.

ωi =

∑|L|
j=1 Nj

|L| ×Ni

(11)

7.4. Hyper-Parameters
The hyper-parameters for the models are the number of layers
of neural network (hops), dimensions of the layers, dropouts for
all layers, and L2 regularization. We train all the models for a
maximum of 2,000 epochs using Adam (Kingma and Ba, 2015)
with the initial learning rate set to 1e-2. We use a variant of the
patience method with learning rate annealing for early stopping
of the model. Specifically, we train the model for a minimum
of 50 epochs and start with patience of 30 epochs and drop the
learning rate and patience by half when the patience runs out
(i.e., when the validation loss does not reduce within the patience
window). We stop the training when the model consecutively
loses patience for 2 turns. Important hyper-parameter details are
tabulated in Table 3.

7.5. Implementation Details
We found all weighted average kernels along with the GS-
Max model to share similar optimal hyper-parameters as their
formulations and parameters were similar. In fact, this is in
agreement with the work of GCN and GS where all their models
had similar hyper-parameters. However, GS-LSTM which has
more parameters and a different aggregation function required
additional hyper-parameter tuning. For reported results, we
searched for optimal hyper-parameter setting for a two layer
GCN-S model on all datasets with the validation set. We then
used the same hyper-parameters across all the other models
except for GS-LSTM for which we searched separately. We
report the performance of models with their ideal number of
differentiable graph layers, C based on their performance in
the validation set. The maximum number of differentiable hops

beyond which performance saturated or decreased on datasets
were: 3 hops for Amazon, 4 hops for Cora2 and Human, and
2 hops for the remaining datasets. For the Reddit dataset, we
used partial neighbors 25 and 10 in 1st and 2nd hop which is the
default GS setting as the dataset had extremely high link density.

We row-normalize the node features and use Glorot
initialization for weights (Glorot and Bengio, 2010). Since
the percentage of different labels in training samples can be
significantly skewed (Moore and Neville, 2017), we weigh the
loss for each label inversely proportional to its total fraction as
in Equation (11). We added all these components to the baseline
codes too and ensured that all models have the same setup in
terms of the weighted cross entropy loss, the number of layers,
dimensions, patience based stopping criteria, and dropouts. In
fact, we observed an improvement of 25.91% for GS on their
dataset. GS’s LSTM model gave Out of Memory error for Blog,
Movielens, and Cora2 as the initial feature size was large, and
with a large number of parameters for the LSTM model, the
parameter size exploded. Hence, for these datasets alone, we
reduced the size of the feature.

Setting the Values C, K, and T: The choice of K (required
number of hops or message passing rounds) and the decision
to use iterative learning depends on a variety of factors such as
memory availability and relevance of the labels. The choice of
C (the number of end-end differentiable layers) is determined
by performance on the validation set. C should be set as the
minimum of maximum differentiable layers that fit into memory
or the maximum hop beyond which performance of validation
set saturates or drops. Post finding the optimal value for C,
the search for optimal value for T (number of steps of iterative
inference) is motivated by the importance of information from
higher hops and/or by label correlations. One solution is to set
T to an arbitrary value, preferably determined based on the
validation set. In our experiments, we searched for the optimal
value of T corresponding to a fixed C for every run in the
range [1, 5].

7.6. Models Compared
We compare the proposed NIP and I-HOP models with
various differentiable WL kernels, semi-supervised ICA, and two
baselines, BL_NODE and BL_NEIGH as defined in Table 1. I-
NIP is an instance of HOPF which iteratively uses the NIP-
MEAN kernel. BL_NODE is a K-layer feedforward network that
only considers the node’s information ignoring the relational
information whereas BL_NEIGH ignores the node’s information

Frontiers in Big Data | www.frontiersin.org 9 April 2022 | Volume 5 | Article 616617

https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org
https://www.frontiersin.org/journals/big-data#articles


Vijayan et al. Scaling Graph Propagation Kernels

TABLE 4 | Results in micro-F1 for transductive experiments.

Datasets Aggregate measures

MODELS Blog FB Movie Cora Citeseer Cora2 Pubmed Yeast Human Reddit Amazon Shortfall Rank

BL_NODE 37.929 64.683 50.329 59.852 65.196 40.583 83.682 59.681 41.111 57.118 64.121 12.11 8.82

BL_NEIGH 19.746 51.413 35.601 77.43 70.181 63.862 83.16 53.522 60.939 59.699 66.236 10.52 8.46

GCN 34.068 50.397 39.059 76.969 72.991 63.956 85.722 62.565 58.298 75.667 61.777 6.91 6.64

GCN-S 39.101 63.682 51.194 77.523 71.903 63.152 86.432 60.34 62.057 77.637 73.746 2.79 4.36

GCN-MEAN 38.541 62.651 51.143 76.081 72.357 62.842 85.792 61.787 64.662 74.324 63.674 3.97 6

GS-MEAN 39.433 64.127 50.557 76.821 70.967 62.8 84.23 59.771 63.753 79.051 68.266 3.43 6

GS-MAX 40.275 64.571 50.569 73.272 71.39 53.476 85.087 62.727 65.068 78.203 70.302 3.87 4.73

GS-LSTM 37.744 64.619 41.261 65.73 63.788 38.617 82.577 58.353 64.231 63.169 68.024 9.94 8.46

NIP-MEAN 39.433 64.286 51.316 76.932 71.148 63.901 86.203 61.583 68.688 77.262 69.136 2.51 3.9

SS-ICA 38.517 64.349 52.433 75.342 68.973 63.098 84.798 68.444 43.629 81.92 65.789 4.56 5.73

I-NIP-MEAN 39.398 62.889 51.864 78.854 71.541 66.23 85.341 69.917 68.652 81.64 75.045 0.54 2.82

The lower shortfall is better. Top two results for each dataset in bold.

TABLE 5 | Results in Micro-F1 for inductive learning on human tissues.

Node Neighbor GCN-S GCN-MEAN GS-Mean GS-Max GS-LSTM NIP-MEAN SS-ICA I-NIP-MEAN

PPI 44.51 83.891 88.585 86.049 88.585 79.634 78.054 92.243 61.51 92.477

and considers the neighbors’ information. BL_NEIGH is a
powerful baseline that we introduce. It is helpful to understand
the usefulness of relational information in datasets. In cases
where BL_NEIGH performs poorer than BL_NODE, the dataset
has less or no useful relational information to extract with the
available labeled data and vice versa. In such datasets, we observe
no significant gain in considering beyond one or two hops. All the
models in Tables 4, 5 except SS-ICA, GCN, and GS models have
skip connections. GS models combine node and neighborhood
information by concatenation instead of summation.

8. RESULTS AND DISCUSSIONS

In this section, we make some observations from the results
of our experiments as summarized in Tables 4, 5. In Table 4,
we report the averaged test results for transductive experiments
obtained from models trained on the 5 different training sets.
We also report results on the Transfer (Inductive) learning task
introduced in Hamilton et al. (2017) under their same setting,
where the task is to classify proteins in new human tissues
(graphs) which are unseen during training.

8.1. Statistical Significance
In order to report the statistical significance of models’
performance across different datasets, we resort to Friedman’s
test andWilcoxon signed rank test as discussed in Demšar (2006).
Levering Friedmans’ test, we can reject the null hypothesis that
all the models perform similarly with p < 0.05. The statistical
significance of our proposed models is provided in Section 8.5.1.

8.2. Model Consistency
These rank based significance tests do not provide a metric
to measure the robustness of a model across datasets. One
popular approach is to use count based statistics like average
rank and number of wins. The average rank of the models across
datasets is provided in the table, where a lower rank indicates
better performance. It is evident from Table 4 that the proposed
algorithm I-NIP-MEAN achieves the best rank and wins on 4/11
datasets followed by SS-ICA with 2 wins and NIP-Mean with
1 win and second best rank. By this simple measure of rank
and number of wins, the proposed method outperforms other
models overall.

However, we argue that this is not helpful in measuring the
robustness of models. For example, there could be an algorithm
that is consistently the second best algorithm on all the datasets
with minute difference from the best and yet have zero wins.
To capture this notion of consistency, we introduce a measure,
shortfall, which captures the relative penalty in performance
compared to the best performing model on a given dataset.

shortfall [model] =
∑

Di∈{datasets}

best [Di]−model [Di]

|datasets|
(12)

Where best [Di] is the micro_f1 of the best performing model
and model [Di] is the model’s performance, for the dataset Di.
The total number of datasets is denoted by |datasets|. shortfall of
models are reported in Table 4.

Even using this consistency measure the proposed algorithm
I-NIP-MEANoutperforms existingmethods. In particular, notice
that while SS-ICA seemed to be the second best algorithm using
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the naive method of counting the number of wins, it does very
poor when we consider the shortfall metric. This is because SS-
ICA is not consistent across datasets and, in particular, it gives
a very poor performance on some datasets which is undesirable.
On the other hand, I-NIP-MEAN not only wins on 4/11 datasets
but also does consistently well on all the datasets and, hence, has
the lowest shortfall and also the best average rank.

8.3. Baselines vs. CC Models
As mentioned earlier, the baselines BL_NEIGH and BL_NODE
use only neighbor and only node information, respectively. In
datasets, where BL_NEIGH significantly outperforms BL_NODE,
all CC models outperform both these baselines by jointly utilizing
the node and neighborhood information. In datasets such as Cora,
Citeseer, Cora2, Pubmed, and Human, where the performance of
BL_NEIGH> BL_NODE, CC models improve over BL_NEIGH
by up to 8% in the transductive setup. Similarly, on the inductive
task where the performance of BL_NEIGH is greater than
BL_NODE by ≈ 40%, CC methods end up further improving
by another 8%. In Reddit and Amazon datasets, where the
performance of BL_NODE≈BL_NEIGH, CCMethods still learn
to exploit useful correlations between them to obtain a further
improvement of≈ 20% and≈ 10%, respectively.

8.4. WL-Kernels vs NIP-Kernels
NIM in WL-kernels: The poor performance of BL_NEIGH
compared to BL_NODE on the Blog, FB, and Movie datasets
suggest that the neighborhood information is noisy and node
features are more crucial. The original GCN which aggregates
information from the neighbors but does not use CONCAT or skip
connections typically suffers a severe drop in performance of up to
≈ 13% on datasets with a high degree. Despite having the node
information, GCN performs worse than BL_NODE on these
datasets. The improved performance of GCN over BL_NEIGH
in Blog and Movie supports the claim that node information
is essential.

Solving NIM With Skip Connections: The original GCN
architecture does not allow for skip connections from h0 to
h1 and from hK−1 to hK . We modify the original architecture
and introduce these skip connections (GCN-S) by extracting h0
features from the 1st convolution’s node information. With skip
connections, GCN-S outperforms the base GCN on 8/11 datasets.
We observed a performance boost of ≈ 5 − 13% in Blog, FB,
Movie, and Amazon datasets even when we consider only 2
hops, thereby decreasing the shortfall on these datasets. GCN-S
closed the performance gap with BL_NODE on these datasets
and in the case of the Amazon dataset, it further improved
by another 9%. GCN-MEAN which also has skip connections
performs quite similarly to GCN-S in all datasets and does not
suffer from NIM as much as GCN. It is important to note
that skip connections are required not only for going deeper but
more importantly, to avoid information morphing even for smaller
hops. GS models do not suffer from the NIM issue as they
concatenate node and neighborhood information. Authors of GS
also noted that they observed a significant performance boost
with the inclusion of the CONCAT combination. GS-MEAN’s
counterpart among the summation models is the GCN-MEAN
model which gives a similar performance on most datasets,

except for Reddit and Amazon where GS-MEAN with concat
performs better than GCN-MEAN by ≈ 5%. GS-MAX provides
very similar performances to GS-MEAN, GCN-MEAN, and
GCN-S across the board. Their shortfall is also very similar.
The poor performance of GS-LSTM might be because of the
morphing of earlier neighbors’ information by more recent
neighbors in the list.

Solving NIM With NIP Kernels: NIP-MEAN, a MEAN
pooling kernel from the NIP propagation family outperforms its
WL family counterpart, GCN-MEAN on 9/11 datasets. With
Wilcoxon signed-rank test, NIP-MEAN > GCN-MEAN with p
< 0.01. It achieves a significant improvement of ≈ 3 − −6%
over GCN-MEAN in Human, Reddit, and Amazon datasets. It
also outperforms GS-MEAN on another 9/11 dataset despite GS-
MEAN having two times more parameters. NIP-MEAN provides
themost consistent performance among the non-iterativemodels
with a shortfall as low as 2.51. NIP-MEAN’s clear improvement
over its WL-counterparts demonstrates the benefit of using the
NIP family of kernels which explicitly mitigates the NIM issue.

8.5. Iterative Inference Models vs.
Differentiable Kernels
Iterative inference models, SS-ICA and I-NIP-MEAN exploit
label information from the neighborhood and scale beyond the
memory limits of differentiable kernels. This was evidently visible
with our experiments on the large Reddit dataset. Reddit was
computationally time-consuming with even partial neighbors
due to its high link density. However, the iterative models
scale beyond 2 hops and consider 5 hops and 10 hops for SS-
ICA and I-NIP-MEAN, respectively. This is computationally
possible because of the linear scaling of time and the constant
memory complexity of iterative models. Hence, they achieve
superior performance with lesser computation time on Reddit.
The micro-f1 scores of SS-ICA over T = 1 − 5 iterations on a
particular fold for Reddit dataset was 56.6, 78.4, 79.8, 81.9, 82.2,
and 82.2. Similarly for I-NIP-MEAN on the same fold, we
obtained 78, 80.1, 80.7, 81, 81.4, and 81.7. SS-ICA’s performance
of 81.92 starting from 57.118 (BL_NODE) as seen in the table
shows that iterative models are remarkable despite not being
end-end differentiable.

The benefit of label information over attributes can be
analyzed with SS-ICA which aggregates only the label
information of immediate neighbors. In the Yeast dataset,
SS-ICA gains ≈ 8 − −10% improvement over non-iterative
models which do not use label information. However, SS-ICA
does achieve good performance on some datasets as it does not
leverage neighbors’ features and is restricted to only learning
first-order local information differentiably.

8.5.1. Iterative Differentiable Kernels vs. Rest

I-NIP-MEAN which is an extension of NIP-MEAN with iterative
learning and inference can leverage attribute information and
exploit non-linear correlations between the labels and attributes
from different hops. I-NIP-MEAN improves over NIP-MEAN
on seven of the eleven datasets with a significant boost in
performance up to≈ 3−8% in Cora2, Reddit, Amazon, and Yeast
datasets. Levering Wilcoxon signed-rank test, I-NIP-MEAN is
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FIGURE 3 | Linear scaling of iterative models.

significantly better than NIP-MEAN (with p < 0.05). I-NIP-
MEAN also successfully leverages label information like SS-ICA
and obtains a similar performance boost on Yeast and Reddit
datasets. It also outperforms SS-ICA on eight of eleven datasets
with a statistical significance of p < 0.02 as per the Wilcoxon
test. The benefits of using neighbors’ attributes along with labels
are visible in Amazon and Human datasets where the I-NIP-
MEAN model achieves ≈ 10% and ≈ 25% improvement
correspondingly over SS-ICA which uses label information
alone. Moreover, by leveraging both attributes and labels in a
differentiable manner, it further achieves a 3% improvement over
the second best model in cora2. This superior hybrid model, I-NIP-
MEAN emerges as the most robust model across all datasets with
the lowest shortfall of 0.54.

8.5.2. Inductive Learning on Human Dataset

For the inductive learning task (Table 5), the CC models
obtain a 44% improvement over BL_NODE by leveraging
relational information. The I-NIP-MEAN and NIP-MEAN
kernels achieve the best performance with a ≈ 6% improvement
over GCN-MEAN.

8.6. Run Time Analysis
We adapt the scalability setup from GCN (Kipf and Welling,
2017) to compare the average training time per epoch
between the fully differentiable model, NIP-MEAN and iterative
differentiable model, I-NIP-MEAN, to make predictions with
multi-hop representations. We consider two I-HOP-Variants
here: I-NIP-MEAN with 1 differential layer (C = 1) and I-NIP-
MEAN with 2 differential layers (C = 2). In order to obtain
multi-hop representations, we increase the number of iterations,
T accordingly. Note: I-NIP-MEAN with C = 2 can only provide
multi-hop representations of multiples of 2. The training time,
included time to pre-fetch neighbors with queues, forward pass
of NN, loss computation, and backward gradient propagation
similar to the setup of Kipf and Welling (2017). We record wall-
clock running time for these models to process a synthetic graph
with 100k nodes, 500k edges, 100 features, and 10 labels on a 4GB
GPU. The batch size and hidden layers size were set to 128. The
plot of the averaged run time overruns across different hops is
presented in Figure 3.

The fully differentiable model, NIP-MEAN incurred an
exponential increase in compute time with an increase in the
hop, (C = K) and moreover ran out-of-memory after 3
hops. Whereas, I-NIP-MEAN with C = 1 and C = 2 has
a linear growth in computing time with increasing T. This
is in agreement with the time complexity provided earlier for
these models. Not only does the time for non-iterative methods
increase exponentially with hops, but the memory complexity
also increases exponentially with a new layer as it is required
to store the gradients and activations for all the new neighbors
introduced with a hop. In comparison, the runtime of the
proposed iterative solution has a linear growth rate and also has
a lesser memory footprint.

9. CONCLUSION

In this study, we proposed I-HOP, a novel framework for CC
that combines differentiable graph kernels with an iterative
stage. Deep learning models for relational learning tasks can
now leverage I-HOP to use complete information from larger
neighborhoods without succumbing to over-parameterization
and memory constraints. For future study, we can further
optimize the framework by committing only high confidence
labels, like in cautious ICA (McDowell et al., 2007) to reduce the
erroneous information propagation, and we can also increase the
supervised information flow to unlabeled nodes by incorporating
ghost edges (Gallagher et al., 2008). The framework can
also be extended for unsupervised tasks by incorporating
structural regularization with Laplacian smoothing on the
embedding space.
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Veličković, P., Cucurull, G., Casanova, A., Romero, A., Lio, P., and Bengio, Y.

(2017). “Graph attention networks,” in International Conference on Learning

Representation (Toulon).

Vijayan, P. (2019). Designing better graph convolutional networks: scaling graph

propagation based neural networks for collective classification.

Vijayan, P., Chandak, Y., Khapra, M. M., and Ravindran, B. (2018). HOPF:

higher order propagation framework for deep collective classification. CoRR,

abs/1805.12421.

Wang, X., Tang, L., Gao, H., and Liu, H. (2010). Discovering overlapping groups in

social media. InData Mining (ICDM), 2010 IEEE 10th International Conference

on, pages 569–578. IEEE.

Weisfeiler, B., and Lehman, A. (1968). A reduction of a graph to a canonical

form and an algebra arising during this reduction. Nauchno-Technicheskaya

Informatsia 2, 12–16.

Xu, K., Li, C., Tian, Y., Sonobe, T., Kawarabayashi, K.-i., and Jegelka, S. (2018).

“Representation learning on graphs with jumping knowledge networks,” in

ICML (Stockholm).

Yang, Z., Cohen,W.W., and Salakhutdinov, R. (2016). “Revisiting semi-supervised

learning with graph embeddings,” in Proceedings of the 33nd International

Conference onMachine Learning, ICML 2016, June 19-24, 2016 (New York City,

NY), 40–48.

Yu, Q., and Clausi, D. A. (2005). “Combining local and global features for image

segmentation using iterative classification and region merging,” in Computer

Frontiers in Big Data | www.frontiersin.org 13 April 2022 | Volume 5 | Article 616617

https://doi.org/10.1145/1217299.1217304
https://JMLR.org
https://doi.org/10.1145/2898361
https://doi.org/10.1023/A:1009953814988
https://doi.org/10.1007/s10994-015-5517-9
https://doi.org/10.1609/aimag.v29i3.2157
https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org
https://www.frontiersin.org/journals/big-data#articles


Vijayan et al. Scaling Graph Propagation Kernels

and Robot Vision, 2005. Proceedings. The 2nd Canadian Conference on (Victoria,

BC: IEEE), 579–586.

Conflict of Interest: The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be construed as a

potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated organizations, or those of

the publisher, the editors and the reviewers. Any product that may be evaluated in

this article, or claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

Copyright © 2022 Vijayan, Chandak, Khapra, Parthasarathy and Ravindran. This

is an open-access article distributed under the terms of the Creative Commons

Attribution License (CC BY). The use, distribution or reproduction in other forums

is permitted, provided the original author(s) and the copyright owner(s) are credited

and that the original publication in this journal is cited, in accordance with accepted

academic practice. No use, distribution or reproduction is permitted which does not

comply with these terms.

Frontiers in Big Data | www.frontiersin.org 14 April 2022 | Volume 5 | Article 616617

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org
https://www.frontiersin.org/journals/big-data#articles

	Scaling Graph Propagation Kernels for Predictive Learning
	1. Introduction
	2. Background
	2.1. Definitions and Notations
	2.2. Generic Propagation Kernel
	2.3. Relation to Existing Works 

	3. Node Information Morphing
	3.1. Skip Connections and NIM
	NIP Models

	4. Iterative Higher-Order Propagation
	4.1. I-HOP-MEAN: Iterative NIP Mean Kernel

	5. Scalability Ananlysis
	5.1. Number of Parameters
	5.2. Space and Time Complexity Analysis

	6. Related Work
	6.1. WL-Based Graph Methods and Analysis
	6.2. Iterative Refinement Frameworks

	7. Experiments
	7.1. Dataset Details
	7.2. Experiment Setup
	7.3. Weighted Cross Entropy Loss
	7.4. Hyper-Parameters
	7.5. Implementation Details
	7.6. Models Compared

	8. Results and Discussions
	8.1. Statistical Significance
	8.2. Model Consistency
	8.3. Baselines vs. CC Models
	8.4. WL-Kernels vs NIP-Kernels
	8.5. Iterative Inference Models vs. Differentiable Kernels
	8.5.1. Iterative Differentiable Kernels vs. Rest
	8.5.2. Inductive Learning on Human Dataset

	8.6. Run Time Analysis

	9. Conclusion
	Data Availability Statement
	Author Contributions
	Funding
	Acknowledgments
	References


