
TYPE Methods

PUBLISHED 09 January 2023

DOI 10.3389/fdata.2022.1081872

OPEN ACCESS

EDITED BY

Anurag Singh,

National Institute of Technology Delhi,

India

REVIEWED BY

Hui Liu,

University of Bremen, Germany

Dhyanendra Jain,

ABES Engineering College, India

Deepak Sharma,

Indira Gandhi Delhi Technical

University for Women, India

*CORRESPONDENCE

Gaurav Duggal

gauravit.1@gmail.com

Tejas Gaikwad

tejas3.gaikwad@gmail.com

Bhupendra Sinha

bhupendra.n.sinha@gmail.com

†These authors have contributed

equally to this work

SPECIALTY SECTION

This article was submitted to

Data Science,

a section of the journal

Frontiers in Big Data

RECEIVED 27 October 2022

ACCEPTED 14 December 2022

PUBLISHED 09 January 2023

CITATION

Duggal G, Gaikwad T and Sinha B

(2023) Dependable modulation

classifier explainer with measurable

explainability.

Front. Big Data 5:1081872.

doi: 10.3389/fdata.2022.1081872

COPYRIGHT

© 2023 Duggal, Gaikwad and Sinha.

This is an open-access article

distributed under the terms of the

Creative Commons Attribution License

(CC BY). The use, distribution or

reproduction in other forums is

permitted, provided the original

author(s) and the copyright owner(s)

are credited and that the original

publication in this journal is cited, in

accordance with accepted academic

practice. No use, distribution or

reproduction is permitted which does

not comply with these terms.

Dependable modulation
classifier explainer with
measurable explainability

Gaurav Duggal*†, Tejas Gaikwad*† and Bhupendra Sinha*†

Reliance Industries, Mumbai, India

The Internet of Things (IoT) plays a significant role in building smart cities

worldwide. Smart cities use IoT devices to collect and analyze data to

provide better services and solutions. These IoT devices are heavily dependent

on the network for communication. These new-age networks use artificial

intelligence (AI) that plays a crucial role in reducing network roll-out and

operation costs, improving entire system performance, enhancing customer

services, and generating possibilities to embed a wide range of telecom

services and applications. For IoT devices, it is essential to have a robust

and trustable network for reliable communication among devices and service

points. The signals sent between the devices or service points use modulation

to send a password over a bandpass frequency range. Our study focuses

on modulation classification performed using deep learning method(s),

adaptive modulation classification (AMC), which has now become an integral

part of a communication system. We propose a dependable modulation

classifier explainer (DMCE) that focuses on the explainability of modulation

classification. Our study demonstrates how we can visualize and understand

a particular prediction made by seeing highlighted data points crucial for

modulation class prediction. We also demonstrate a numeric explainability

measurable metric (EMM) to interpret the prediction. In the end, we present

a comparative analysis with existing state-of-the-art methods.

KEYWORDS

visualization, constellation diagram, modulation classification, explainability, fair AI

1. Introduction

Industries today are influenced by AI capabilities, and IoT industries are no

exception. May it be data transmission capabilities, cost-effective network roll-out or

operation, system performance, customer service, or any other telecom application

(Balmer et al., 2020), AI has marked its presence. A study (AI in 5G) suggests that

Telecom, IoT, and AI will play a significant role in market disruptions in the coming

decades (Balmer et al., 2020). IoT devices in the smart city setup depend on the

network underneath to work flawlessly. The smart city network uses a telecom setup to

communicate and send the data between the nodes and service points. For every signal

getting transmitted to different locations, a lot of computation, processing, encoding, and

transformation happens in the back end. The transmission uses modulation schemes

to modulate the signal to send data to longer distances, making it prone to noise and
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reducing power requirements at the transmitter end. AI-based

modulation classifiers are used to correctly and automatically

identify the signal’s modulation scheme. The involvement of

AI in this area has massive utilization for high-dimensional

data, which is also highly critical. If not handled appropriately,

it may cause harm to the system and its users and cause a

financial impact. Rana et al. (2022) shed light on the dark side

of AI. The authors discuss how insufficient efforts, recognized

risks, and unclear basis for decisions can lead to a firm’s

operational inefficiency and bring a competitive disadvantage.

They proposed a research model that captures such components

that can cause fallback to a firm and analyses risk factors and

negative performance. Thus, it becomes equally important to

keep track of what AI is trying to provide. Is it the same

thing we as a developer or a user want, or is it merely a

combination of correlations that luckily gives good accuracy

and can predict a significant section of test data? Thus, the

models integrated into systems responsible for making critical

business decisions must be explainable and interpretable. It

would help make a smart city network fair and trustable.

In this study, we demonstrate explanations that can further

be used to measure the model’s effectiveness, i.e., having an

interpretable and explainable AI. Explainability term refers to

the extent to which the output of the model can be explained,

and interpretability refers to the extent to which the model’s

output can be interpreted by its user. When it comes to

having a fair model, interpretability and explainability hold

important roles (Murdoch et al., 2019). Our article presents a

machine-learning application in the field of communication.

It describes the use of convolutional neural network (CNN),

a part of deep learning (DL) in modulation classification

using constellation points (Kojima et al., 2019), a crucial stage

in all communications systems. It relies on a large volume

amount of data to have a good-performing model, and this

data availability may be limited in communications systems. We

have generated our data using Labview software which gives out

constellation points with a wide range of SNR levels. Notably,

we have used the gradient-based methodology GradCAM++

(Chattopadhyay et al., 2017) to visualize the predictions made

by the model in the form of a heat map. Brighter the pixel,

the more critical information it holds. Figure 1 shows the

explainability of the 4PSK modulated signal. The red points

are the ideal points of the signal, and the highlighted points

are identified as crucial points causing correct prediction of the

modulation class.

1.1. Motivation

The prime motivation for our study is to have a fair

and trustable AI system when we discuss a smart network

system, especially for applications where AI is making critical

FIGURE 1

Result: 4PSK. Red dots are ideal points. Yellow and Green dots

represent an explanation of the prediction made by the

modulation classifier.

business decisions. It can be achieved by having explainable

and interpretable AI systems (models). The explainable term

refers to a model whose output can be explained by some

means. The interpretable discusses more about the scale to

which humans understand explanations for critical areas like

medicine, law, defense, finance, and some telecommunications

areas. AI should be accountable for the decisions/

predictions made.

1.2. Contribution

We proposed a dependable modulation classifier explainer

(DMCE) with explainability measurable metric (EMM). In this

study, dependable refers to a fair and bias-free model that can

be achieved by having the model explainable and interpretable.

In our study, we proposed explanations for correctly and

incorrectly classified classes and the explanation scores for each

class. The explanations are presented in the form of heat maps

that highlight data points crucial for that specific class. Our

explainability score measures the relevancy of identified critical

data points. The explainability score ranges from 0 to 1, where 1

is the maximum and ideal case.

2. Previous work

Automatic modulation classification, constellation

diagrams, and gradient-based methods for visualization of
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the model predictions are core components of our study. In

the following section, we discussed details of the works that we

have inherited.

2.1. Classification using a standard
machine learning approach

A constellation diagram is a 2-D representation of a

modulated signal by mapping signal samples into scattering

points on a complex plane (Zhendong et al., 2013; Kumar et al.,

2020). This study discusses modulation recognition algorithms

for M-QAM signals used in IoT devices and digital equipment.

In this study, the authors used k-means clustering to perform

modulation classification.

2.2. Previous DL methods for modulation
classification

Automatic Modulation Classification (AMC) is used to

identify modulation types effectively and automatically. Wang

et al. (2018) demonstrated that DL-based AMCworks effectively

in single-input-single-output systems but is scarcely explored

for multiple-input-multiple-output (MIMO) systems. This

study demonstrates that CNN-based AMC has the highest

correct classification probability. Kojima et al. (2019) presented

methods representing modulated signals in various data formats

with grid-like topology for the CNN model. The authors

demonstrated a considerable performance advantage of DL

based approach for modulation classification. Wang et al.

(2018) presented a constructed multi-layer hybrid machine

learning network for classifying seven types of signals in

different modulation by extracting modulated signal features

using support vector machines and naive Bayes to accomplish

automatic modulation classification. The simulated results

demonstrated the accomplishments of their approach with

significant improvement in classification accuracy. Huang et al.

(2020) present a method to visualize different LSTM and

CNN models for radio modulation classifiers. The authors also

demonstrated different hyper-parameter settings for extracting

radio features relating to modulation reference points.

2.3. Visualization using gradient-based
methods

GradCAM (Selvaraju et al., 2017) and GradCAM++

(Chattopadhyay et al., 2017) are explanation techniques for

CNN-based implementations. It gives a heatmap of predictions

made by the model and highlights the pixel critical for a

particular class prediction. It uses the target class’ gradients

and the convolution network’s final layer to produce the

desired output.

3. Methodology

As shown in Figure 2, the system has three main categories:

transmission of the signal, reception of the signal, and the

DMCE block. The first category is the transmission of an

input signal with additive white Gaussian noise (AWGN). This

stage is responsible for the modulation and transmission of

the signal. The second category is the modulation signal’s

reception and identifying modulation class using our

AMC. This stage is responsible for receiving, denoising,

identifying the modulation scheme, and demodulating the

signal. The third and the last category is our proposed

DMCE. Figure 3 shows the DMCE system diagram

demonstrating the steps followed for classification and

explanation.

Our work is divided into four stages: conversion of signal

into constellation points, predicting modulation scheme class,

explaining the modulation output, and generating the relevancy

measure score (EMM). The signal received is converted into

a set of constellation points and then into an image. This

image is fed to the classifier module AMC to identify the

modulation class. After identifying the modulation class, the

gradient of the final CNN layer for the activated class is

obtained in the backpropagation process. This gradient of the

activated class, i.e., the gradient of the last CNN layers of

the activated class, is further operated using global average

pooling. After the pooling operation, summation for R, G,

and B matrices is done, post which the Re-LU activation

function is applied. This operation will give a heat map of the

activated class. The heat map is the explanation visualization

for the input image, and this image is further given to the

explainability measure block to obtain the EMM score and check

the relevancy measure. Algorithm 1 gives a detailed approach of

entire process.

4. Implementation

4.1. Signal conversion

The signal is in the form of an electromagnetic

wave. This electromagnetic signal is received via

antennas and converted into an electronic signal using a

transducer. This electronic signal is then used to generate

constellation data points. The constellation data points

are converted into an image which is then given to our

CNN model to identify the modulation scheme used

during transmission.
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FIGURE 2

Our proposed system architecture. It takes constellation data points as image input. This image is fed to a trained CNN whose last convolutional

neural network (CNN) layer is used to obtain an explanation shown as explanation visualization.

FIGURE 3

A complete overview of end-to-end pipeline of a standard communication system and understanding of locating our DMCE block in the

communication pipeline.
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Require: signalrec : cons_d_rec : mod_c_rec :

dmce_rec

signalrec = Received Signal

cons_d_rec = Constellation Data of Received

Signal

mod_c_rec = Modulation Classifier

dmce_rec = Explanation Block

predclass = Predicted modulation scheme

Epred = Explaination of the predicted class

cons_points_rec = Constellation Points

dmcescore = EMM score

while(signalrec):

... cons_points_rec ← cons_d_rec(signalrec)

... predclass ← mod_c_rec(cons_points_rec)

... Epred ← dmce_rec(predclass),

... dmcescore = Epred,cons_points_rec

return Epred, dmcescore

Algorithm 1. Policy for getting explanations for the receiver’s input.

4.2. Predicting modulation scheme

The constellation points image of the input signal obtained

from the previous stage are fed to our CNN-based AMC

to identify the modulation scheme. The AMC will give

the modulation scheme and its confidence score for the

predicted class.

4.3. Explaining the results

In this stage, we obtain an explanation of the modulation

class prediction done at the previous stage, i.e., AMC. Here, we

extract the weights of the final convolutional layer of the AMC

and obtain gradients of those layers followed by global average

pooling. These layers are then given to Rectified Linear Unit

(ReLU) activation function to generate heatmaps (Figure 4).

These heatmaps are then combined with the original data

image to identify actual data points responsible for predicting

a particular class.

4.4. Explainability measurable metric

ExplanationMeasurable Metric is a crucial metric to identify

the correctness of explainability. The correctness of EMM scores

is obtained by measuring an aggregate distance between the data

points’ heat map and the ideal data points (shown as a red dot in

Figure 1 of the modulation scheme). This score is between 0 and

1, and a score above 0.5 gives a good prediction model. Analysis

of this is required to justify the explanations so that a user can

trust the explanations given by our AMC.

4.5. Dataset

We have created this dataset using LabView software. The

constellation data is obtained for 4PSK, 8PSK, 8QAM, 16QAM,

and 64QAM with SNR ranging from 0 to 10db.

4.6. Training and hyper-parameters

A 9-level 2D-CNN-based architecture is used for building

our automatic modulation classification (Kumar et al., 2020).

2D CNN was used to reduce the computation as we are

concerned only with the position of the data points. A 9-

level CNN network was a result of experimentation and hyper-

parameter tuning. We have generated constellation points for

the following five classes for our implementation: 64 QAM,

4PSK, 16QAM, 8 PSK, and 8 QAM with a range of SNR values

from 0 to 10 db. A standard communication network with

a signal SNR above 20 db is considered good quality. These

classes are considered to cover phase shift keying and amplitude

modulation schemes and examine more straightforward and

complex modulation schemes together. The CNN model is

trained on around 2–2.5 k samples in each class with an SNR

range from 0 to 10 db, where 0db SNR is the worst. We have

obtained 74.6% validation accuracy for classification. We have

used the GradCAM (Chattopadhyay et al., 2017) method to

visualize the critical data points for the activated class. As shown

in Figure 3, we have taken the convolutional network’s last layer

of the predicted class and used the last CNN layer weights to

obtain the explainability. Details are discussed in Sections 3, 4.

4.7. Error-analysis

Error-Analysis for the modulation classifier is given below.

The first column, “Possible Hypothesis for Error,” represents the

cases where the miss-classification occurred at most. These are

categorized into 4 sections, SNR > 8 db, SNR > 5 db, SNR >

3 db, and SNR > 0 db. With the percentage of total errors, we

can see that the errors or miss-classification happen the most

when SNR drops below 5 db. The permissible value of SNR in

the real-time scenario is 20–30 db.

4.8. Comparative analysis

The existing methods focus on identifying the best-

performing approaches that can be used for automatic

modulation classification. On top of it, existing methods (Peng

et al., 2019; Huang et al., 2020) have performed an analytical
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FIGURE 4

Explainability Results: (In order left to right) 4PSK, 8PSK, 8QAM, 10QAM, and 64QAM. The yellow colored box represents the actual constellation

points of a given class, and the blue box represents a visual explanation of predictions for the respective sample.

TABLE 1 Error-Analysis for our CNN-based Automatic Modulation Classifier (AMC).

Possible hypothesis for error (Out of 100) Percentage of total errors (%)

Modulation
class count ->

4 PSK 8 PSK 8 QAM 16 QAM 64 QAM 4 PSK 8 PSK 8 QAM 16 QAM 64 QAM

With SNR >8 db 12 16 20 17 23 10.6 14.8 18.5 15.80 20.53

With SNR >5 db 25 34 32 39 42 22.12 31.48 29.62 36.44 37.5

With SNR >3 db 38 44 51 63 63 33.62 40.7 47.22 58.87 56.25

With SNR >0 db 44 52 47 66 73 38.90 48.14 43.51 61.60 65.17

Total samples 113 108 108 107 112

The performance is tested for different SNR values ranging from 0 to 10 db. It is observed that the AMC is performing well for high SNR values and less complex modulation classes. The

comparison is done for randomly selected 100 samples.

operation to visualize the data points and predictions of the

AMCs. These methods do not demonstrate any approach that

explains the reason for predicting the activated class. They

neither have any metric to justify the correctness of their

respective approaches. Moreover, the interpretability of the

proposed visualization in these works(s) is one of the demerits.

Frontiers in BigData 06 frontiersin.org

https://doi.org/10.3389/fdata.2022.1081872
https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org


Duggal et al. 10.3389/fdata.2022.1081872

TABLE 2 The error analysis and reasoning via explainability measurable metric (EMM).

Samples correctly classified Samples incorrectly classified

Modualation
Class

SNR Ratio
(Top 10)

Explanation Score
(Avg. Top 10)

SNR Ratio
(Top 10)

Explanation Score
(Avg. Top 10)

4 PSK 10 db 0.74 1 db 0.34

8 PSK 10 db 0.61 3 db 0.26

8 QAM 10 db 0.68 3 db 0.19

16 QAM 10 db 0.54 3 db 0.17

64 QAM 10 db 0.52 5 db 0.11

The evaluation is done on five classes, namely 4 PSK, 8 PSK, 8 QAM, 16 QAM, and 64 QAM. For a good SNR ratio, the classification is successful, and it is fairly supported by the

explanation score (EMM). Similarly, the explanation score is comparatively a smaller value for the mis-classification scenario.

In our work, we have overcome these demerits. We have

proposed and demonstrated explanations for predictions by our

AMC. The highlighted data points can be compared to the

positions of the ideal constellation points, and an EMM score

also gives insights into the explanation’s correctness.

5. Experiments and results

Our error analysis, as shown in Table 1, and explainability

measurable metric, as shown in Table 2, shows that the

explainability helps us understand the weak areas where the

model is not performing well and also gives a numerical analysis

of model performance for different classes. Furthermore,

our results are easy to interpret thus, helps to provide

transparency for the AI models (Figure 4). We found minor

implementations discussing interpretability and explainability

modulation classification, but in comparison to these methods,

our method demonstrates the credibility of explained critical

data points with the help of EMM.

6. Future work

Our work considers demodulation block, which uses

deep learning techniques for AMC. The explainability and

interpretability components are much-needed components of

any system where AI plays a crucial role in making decisions.

The extension of this work will be a continuous learning and

improvement system for these models by taking feedback from

the explanations and EMM to further optimize the models by

performing hyper-parameter selection and tuning.

7. Conclusion

We propose a DMCE that helps to understand predictions

by modulation classifier in a smart city network of connected

devices. DMCE provides a visualization-based explanation

by highlighting data points crucial for a modulation class

prediction. We have added an EMM that gives insights

about working/ failing cases for the model by providing

numerical analysis, thus enhancing the explainability.

The system’s error analysis helps us to get better insights

into areas where the modulation classifier needs to be

fixed.
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