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Dynamic transfer learning refers to the knowledge transfer from a static

source task with adequate label information to a dynamic target task with

little or no label information. However, most existing theoretical studies and

practical algorithms of dynamic transfer learning assume that the target task

is continuously evolving over time. This strong assumption is often violated

in real world applications, e.g., the target distribution is suddenly changing at

some time stamp. To solve this problem, in this paper, we propose a novel

meta-learning framework L2S based on a progressive meta-task scheduler for

dynamic transfer learning. The crucial idea of L2S is to incrementally learn to

schedule themeta-pairs of tasks and then learn the optimal model initialization

from those meta-pairs of tasks for fast adaptation to the newest target task.

The e�ectiveness of our L2S framework is verified both theoretically and

empirically.

KEYWORDS
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1. Introduction

Transfer learning (Pan and Yang, 2009; Tripuraneni et al., 2020) improves the

generalization performance of a learning algorithm on the target task, by leveraging

the knowledge from a relevant source task. It has been studied (Ben-David et al.,

2010; Long et al., 2015; Ganin et al., 2016; Zhang et al., 2019) that the knowledge

transferability across tasks can be theoretically guaranteed under mild conditions, e.g.,

source and target tasks share the same labeling function. One assumption behind

those works is that source and target tasks are sampled from a stationary task

distribution. More recently, it is observed that in the context of transfer learning,

the tasks might be sampled from a non-stationary task distribution, i.e., the learning

task might be evolving over time in real scenarios. It can be formulated as a

dynamic transfer learning problem from a static source task1 with adequate label

information to a dynamic target task with little or no label information (see Figure 1).

1 It can also be generalized to the scenarios (Wu andHe, 2022b) where the knowledge is transferred

from a dynamic source task to a dynamic target task.
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Most existing works (Hoffman et al., 2014; Bobu et al., 2018;

Kumar et al., 2020; Wang H. et al., 2020; Wu and He, 2020,

2022b) on dynamic transfer learning assume that the target task

is continuously changing over time. This assumption allows

deriving the generalization error bound of dynamic transfer

learning using the distribution shift at any consecutive time

stamps. Nevertheless, we show that these error bounds are

not tight when the task distribution changes suddenly at some

time stamp. Therefore, previous works can be hardly applied

to real scenarios where the task distribution might not always

be evolving continuously. This sudden distribution shift can be

induced by some unexpected issues, e.g., adversarial attacks (Wu

and He, 2021), system failures (Lu et al., 2018), etc.

To solve this problem, we derive the generalization error

bound of dynamic transfer learning in terms of adaptively

scheduled meta-pairs of tasks. Moreover, it is observed that

this result is closely related to the existing error bounds (Wang

et al., 2022; Wu and He, 2022b). It is found that previous works

showed the error bounds in terms of the distribution shift at any

consecutive time stamps. In contrast, we consider all the meta-

pairs of tasks, e.g., a pair of tasks transferring the knowledge

from an old time stamp to a new time stamp. As a result, our

error bound can be tight even when the task distribution is

suddenly shifted at some time stamp. Then, by minimizing the

error bound, we propose a novel meta-learning framework L2S

based on a progressive meta-task scheduler for dynamic transfer

learning. In this framework, we automatically learn the sampling

probability for meta-pairs of tasks based on task relatedness. The

effectiveness of L2S framework is then verified on a variety of

dynamic transfer learning tasks. The major contributions of this

paper are summarized as follows.

• We consider a relaxed assumption of dynamic transfer

learning, i.e., the target task distribution might change

suddenly at some time stamp when it is evolving over

time. The generalization error bounds of dynamic transfer

learning can then be derived with this relaxed assumption.

• We propose a novel meta-learning framework L2S based

on a progressive meta-task scheduler for dynamic transfer

learning. Different from recent work (Wu and He, 2022b),

L2S learns to schedule themeta-pairs of tasks based on task

relatedness.

• Experiments on various data sets demonstrate the

effectiveness of our L2S framework over state-of-the-art

baselines.

The rest of the paper is organized as follows. We review

the related work in Section 2. The problem of dynamic transfer

learning is defined in Section 3. In Section 4, we derive the error

bounds of dynamic transfer learning, followed by the proposed

L2S framework in Section 5. The empirical analysis on L2S

is provided in Section 6. Finally, we conclude the paper in

Section 7.

2. Related work

In this section, we briefly introduce the related work on

dynamic transfer learning and meta-learning.

2.1. Dynamic transfer learning

Dynamic transfer learning (Hoffman et al., 2014; Bitarafan

et al., 2016; Mancini et al., 2019) refers to the knowledge

transfer from a static source task to a dynamic target task.

Compared to standard transfer learning on the static source

and target tasks (Pan and Yang, 2009; Zhou et al., 2017,

2019a,b; Tripuraneni et al., 2020; Wu and He, 2021), dynamic

transfer learning is a more challenging but realistic problem

setting due to its time evolving task relatedness. More recently,

various dynamic transfer learning frameworks are built from

the following aspects: self-training (Kumar et al., 2020; Chen

and Chao, 2021; Wang et al., 2022), incremental distribution

alignment (Bobu et al., 2018; Wulfmeier et al., 2018; Wang

H. et al., 2020; Wu and He, 2020, 2022a), meta-learning (Liu

et al., 2020; Wu and He, 2022b), contrastive learning (Tang

et al., 2021; Taufique et al., 2022), etc. Specifically, most existing

works assume that the task distribution is continuously evolving

over time. Very little effort has been devoted to studying

dynamic transfer learning when this assumption is violated in

real scenarios. Compared to previous works (Liu et al., 2020;

Wang et al., 2022; Wu and He, 2022b), in this paper, we focus

on a more realistic dynamic transfer learning with a relaxed

assumption that the task distribution could be suddenly changed

at some time stamp.

2.2. Meta-learning

Meta-learning (Hospedales et al., 2021) leverages the

knowledge from a set of prior meta-training tasks for

fast adaptation to new tasks. In the context of few-shot

classification, meta-learning aims to find the optimal model

initialization (Finn et al., 2017, 2018; Wang L. et al., 2020; Yao

et al., 2021) from previously seen tasks such that this model

can be fine-tuned on a new task by performing a few gradient

steps. It assumes that all the tasks follow a stationary task

distribution. More recently, this meta-learning paradigm has

been extended into the online learning setting where a sequence

of tasks is sampled from non-stationary task distributions (Finn

et al., 2019; Acar et al., 2021). Following previous work (Wu

and He, 2022b), we formulate dynamic transfer learning as a

meta-learning problem, which aims to learn the optimal model

initialization for knowledge transfer across any meta-pair of

tasks. In contrast to Wu and He (2022b) where the meta-

pairs of tasks are simply constructed from tasks at consecutive

time stamps, we propose to learn the sampling probability for

meta-pairs of tasks based on the task relatedness during model
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FIGURE 1

Illustration of dynamic transfer learning from a static source task (e.g., sketch image classification with fully labeled examples) to a dynamic

target task (e.g., real-world image classification with only unlabeled examples).

training. This can help our meta-learning framework avoid the

negative transfer induced by the meta-pairs of tasks sampled

from suddenly shifted task distribution.

3. Preliminaries

In this section, we present the notation and formal problem

definition of dynamic transfer learning.

3.1. Notation

Let X and Y be the input feature space and output label

space respectively. We consider the dynamic transfer learning

problem (Hoffman et al., 2014; Bobu et al., 2018) with a static

source task Ds and a dynamic target task {Dt
j }
N
j=1 with time

stamp j. In this case, we assume that there arems labeled training

examples Ds = {(xsi , y
s
i )}

ms

i=1 in the source task. Let mt
j be the

number of unlabeled training examples Dt
j = {x

t
ij}

mt
j

i=1 in the

jth target task. Let H be the hypothesis class on X where a

hypothesis is a function h :X → Y . L(·, ·) is the loss function
such that L :Y × Y → R. The expected classification error on

the source task Ds is defined as ǫs(h) = E(x,y)∼Ds [L(h(x), y)]

for any h ∈ H, and its empirical estimate is given by ǫ̂s(h) =
1
ms

∑ms

i=1 L(h(xi), yi). The expected error ǫtj (h) and empirical

error ǫ̂tj (h) of the target task at the jth time stamp can also be

defined similarly.

3.2. Problem definition

Following previous works (Hoffman et al., 2014; Bitarafan

et al., 2016; Bobu et al., 2018), we formally define the problem of

dynamic transfer learning as follows.

Definition 3.1. (Dynamic Transfer Learning) Given a labeled

static source task Ds and an unlabeled dynamic target task

{Dt
j }
N
j=1, dynamic transfer learning aims to learn the prediction

function for the newest target task Dt
N+1 by leveraging the

knowledge from historical source and target tasks.

The key challenge of dynamic transfer learning is the time

evolving task relatedness between source and target tasks. Recent

works (Liu et al., 2020; Wang et al., 2022; Wu and He, 2022b)

showed the generalization error bounds by assuming that the

data distribution of the target task is continuously changing over

time. Intuitively, in this case, the expected error bound on the

newest target task is bounded in terms of the largest distribution

gap [e.g., max0≤j≤N dH1H(Dt
j ,D

t
j+1)] across time stamps. As

a result, these generalization error bounds are not tight when

the task distribution is significantly shifted at some time stamp.

As shown in Figure 2, the task distribution is shifted smoothly

from time stamp 1 to time stamp 2. However, it changes sharply

from time stamp 2 to time stamp 3. In real scenarios, this sharp

distribution shift might be induced by some unexpected issues,

e.g., adversarial manipulation (Wu and He, 2021). This thus

motivates us to study dynamic transfer learning with a much

more relaxed assumption that the task distribution could be

suddenly shifted at some time stamp.

4. Theoretical analysis

In this section, we provide the theoretical analysis for

dynamic transfer learning.

4.1. Generalization error bound

We derive the generalization error bound of dynamic

transfer learning as follows. Following Ben-David et al. (2010)

and Liu et al. (2020), we use H-divergence to measure the

distribution shift across tasks and Vapnik-Chervonenkis (VC)

dimension to measure the complexity of a class of functions H.

Without loss of generality, we would like to consider a binary

classification problem (i.e., Y = {0, 1}) with the loss function
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FIGURE 2

Challenges of dynamic transfer learning where the task distribution is suddenly changed at time stamp 3. Here orange circle and green square

denote data points from two classes, and the dashed line indicates the optimal decision boundary at di�erent time stamps.

L(ŷ, y) = |ŷ − y|. The following theorem showed that the

expected error of the newest target task Dt
N+1 can be bounded

in terms of the historical source and target knowledge.

Theorem 4.1. (Generalization Error Bound) Let H be a

hypothesis space of VC dimension d. If there are m labeled source

examples i.i.d. drawn from Ds (denoted as Dt
0 as well) and m

unlabeled target examples i.i.d. drawn from Dt
j for each time

stamp j = 1, · · · ,N + 12, then for any δ > 0 and h ∈ H, with

probability at least 1 − δ, the expected error of the newest target

taskDt
N+1 can be bounded as follows.

ǫtN+1(h) ≤
N

∑

i=0

N+1
∑

j=i+1
wij

(

ǫ̂ti (h)+ ηij · d̂H1H

(

D
t
i ,D

t
j

) )

+O






λ+

√

d log(2m)+ log(2/δ)+
∑N

i=0
∑N+1

j=i+1 w
2
ij log(1/δ)

2m







where
∑N

i=0
∑N+1

j=i+1 wij = 1, and wij ≥ 0 if i < j, wij = 0

otherwise. ηij = 1
2 if 1 ≤ j ≤ N and i < j, and ηij =

1
2

(

1+
∑i−1

k=0 wki

wij

)

if j = N + 1 and i < j, ηij = 0 otherwise.

Here λ denotes the combined error of the ideal hypothesis over all

the tasks, i.e., λ = minh∈H
∑N+1

i=0 ǫti (h), and d̂H1H(·, ·) denotes
the empirical estimate ofH-divergence over finite examples.

Note that this error bound holds with other existing

distribution discrepancy measures (see Corollary 4.3),

though we consider H-divergence (Ben-David et al., 2010)

in Theorem 4.1. Furthermore, we show the generalization

error bound of dynamic transfer learning from the perspective

of meta-learning. That is, instead of sharing the hypothesis

h ∈ H for all the tasks, we learn a common initialized

2 Here we assume that it generates the same number of examples at

every time stamp, i.e., ms = mt
1 = · · · = mt

N+1 = m, but the theoretical

results can also be generalized into the scenarios with di�erent number

of samples in source and target tasks.

model h̄ ∈ H across tasks. Then the task-specific model hi via

one-step gradient update for the target at the ith time stamp,

i.e., θi = θ̄ − β∇θL
meta, where θi, θ̄ denotes the parameters

of hi, h̄ respectively and Lmeta is the meta-learning loss for

updating the task-specific model parameters. If we let Lmeta =
ǫ̂ti (h̄) =

1
m

∑m
k=1 L[h̄(xki), yki], the following theorem provides

the generalization error bound based on meta-learning.

Theorem 4.2. (Meta-Learning Generalization Error Bound) Let

H be a hypothesis space of VC dimension d. If there are m labeled

source examples i.i.d. drawn fromDs (denoted asDt
0 as well) and

m unlabeled target examples i.i.d. drawn from Dt
j for each time

stamp j = 1, · · · ,N + 1, then for any δ > 0 and a proper inner

learning rate β, with probability at least 1− δ, the expected error

of the newest target taskDt
N+1 can be bounded in the following.

ǫtN+1(hN+1) ≤
N

∑

i=0

N+1
∑

j=i+1
wij

(

ǫ̂ti (hi)+ ηij · d̂H1H

(

Dt
i ,D

t
j

) )

+O







N
∑

i=0





1

m

m
∑

k=1

∣

∣

∣

∣

∣

∣
∇θ h̄(xki)

∣

∣

∣

∣

∣

∣





2

+ λ+

√

d log(2m)+ log(2/δ)+
∑N

i=0
∑N+1

j=i+1 w
2
ij log(1/δ)

m







where
∑N

i=0
∑N+1

j=i+1 wij = 1, and wij ≥ 0 if i < j, wij = 0

otherwise. ηij = 1
2 if 1 ≤ j ≤ N and i < j, and ηij =

1
2

(

1+
∑i−1

k=0 wki

wij

)

if j = N + 1 and i < j, ηij = 0 otherwise.

Here λ denotes the combined error of the ideal hypothesis over all

the tasks, i.e., λ = minh∈H
∑N+1

i=0 ǫti (h), and d̂H1H(·, ·) denotes
the empirical estimate ofH-divergence over finite examples.

We observe from Theorem 4.2 that the parameter wij

plays an important role in the generalization error bound of

dynamic transfer learning. Intuitively, it is more likely to assign

higher value wij for the easy meta-pair of tasks Di → Dj
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with stronger class discrimination over Di [i.e., smaller ǫ̂ti (hi)]

and smaller distribution shift between Di and Dj [i.e., smaller

d̂H1H(Dt
i ,D

t
j )].

4.2. Connection to existing bounds

The following corollary shows that the error bound in

Theorem 4.1 can be generalized by considering various domain

discrepancy measures.

Corollary 4.3. With the same assumptions in Theorem 4.1, for

any δ > 0 and h ∈ H, there exist wij ≥ 0 and ηij ≥ 0, with

probability at least 1 − δ, the expected error of the newest target

taskDt
N+1 can be bounded in the following.

ǫtN+1(h) ≤
N

∑

i=0

N+1
∑

j=i+1
wij

(

ǫ̂ti (h)+ ηij · d̂
(

Dt
i ,D

t
j

))

+� (1)

where d̂(·, ·) can be instantiated with existing distribution

discrepancy measures, including discrepancy distance (Mansour

et al., 2009), maximum mean discrepancy (Long et al., 2015),

Wasserstein distance (Shen et al., 2018), f -divergence (Acuna

et al., 2021), etc. Here � denotes the corresponding sample

complexity when the distribution discrepancy measure is selected.

Corollary 4.3 shows the flexibility in generalizing existing

static transfer learning theories (Mansour et al., 2009; Ben-David

et al., 2010; Ghifary et al., 2016; Shen et al., 2018; Zhang et al.,

2019; Acuna et al., 2021) into the dynamic transfer learning

setting. Moreover, it is observed that Corollary 4.3 is closely

related to the existing generalization error bounds (Wang et al.,

2022; Wu and He, 2022b) of dynamic transfer learning, under

different parameters wij and ηij.

• When wij and ηij are given by

wij =















1
N+1 , if i = 0

τ
N+1 , if 1 ≤ i ≤ N and i+ 1 = j

0, otherwise

ηij =















ρ
√

R2 + 1(N + 1), if i = 0 and j = 1

ρ
√

R2 + 1(N + 1)/τ , if 1 ≤ i ≤ N and i+ 1 = j

0, otherwise

where τ ∈ R. Then, when τ → 0, Corollary 4.3 recovers

the generalization error bound (Wang et al., 2022).

ǫtN+1(hN+1) ≤ ǫs(h0)+ ρ
√

R2 + 1

N+1
∑

i=1
dWp

(

Dt
i−1,D

t
i

)

+O



N

√

log(1/δ)

m
+ N√

m
+ 1√

mN
+

√

log(mN)3L−2

mN

+
√

log(1/δ)

mN

)

whereH is the hypothesis class of R-Lipschitz L-layer fully-

connected neural networks with 1-Lipschitz activation

function.

• When wij and ηij are given by

wij =







1
N+1 , if i+ 1 = j

0, otherwise
ηij =







1, if i+ 1 = j

0, otherwise

Then, Corollary 4.3 recovers the generalization error

bound (Wu and He, 2022b).

ǫtN+1(h) ≤
N+1
∑

i=1

1

N + 1

(

ǫ̂ti−1(h)+ d̂H1H

(

Dt
i−1,D

t
i

))

+�L (2)

where �L is a Rademacher complexity term.

Compared to existing theoretical results (Wang et al., 2022;

Wu and He, 2022b), with appropriate wij, our generalization

error bound in Corollary 4.3 is much more tighter when there

exists some time stamp i such that d̂H1H

(

Dt
i−1,D

t
i

)

is large. It

thus motivates us to develop a progressive meta-task scheduler

in the meta-learning framework for dynamic transfer learning.

The crucial idea is to automatically learn the values wij, based on

the intuition that assigning large value wij on easy meta-pair of

tasksDi → Dj would make our error bound much tighter.

5. Methodology

Following Wu and He (2022b), we propose a meta-learning

framework named L2S for dynamic transfer learning by

empirically minimizing the error bound in Theorem 4.2. Instead

of uniformly sampling the meta-pairs of tasks in the consecutive

time stamps (Wu and He, 2022b), in this paper, we learn a

progressive meta-task scheduler for automatically formulating

the meta-pairs of tasks from the dynamic target task.

The overall objective function of L2S for learning the

prediction function of Dt
N+1 on the (N + 1)th time stamp is
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given as follows.

min
θ

min
w

J (θ ,w)

=
N

∑

i=0

N+1
∑

j=i+1
wij

(

ǫ̂ti (Mij(θ))+ η · d̂H1H

(

Dt
i ,D

t
j ;Mij(θ)

) )

s.t.

N
∑

i=0

N+1
∑

j=i+1
wij = 1 (3)

s.t. Mij(θ) = θ − β∇θL
meta(Dt

i ,D
t
j )

where θ is the trainable parameters and Lmeta(Dt
i ,D

t
j ) is the

meta-training loss. η ≥ 0 is a hyper-parameter to balance the

classification error and discrepancy minimization.

The proposed L2S framework has three crucial

components: meta-pairs of tasks, meta-training, and meta-

testing. The overall training procedures of L2S are illustrated in

Algorithm 1.

• Meta-Pairs of Tasks: Following the theoretical results in

Section 4.1, we formulate the candidate meta-pairs of tasks

from any two different time stamps (Dt
i ,D

t
j ) (i < j). It

can be considered as a simple knowledge transfer from

Dt
i to Dt

j . Here we simply denote the source task Ds as

Dt
0. Since we focus on learning the prediction function

on the target task at a new time stamp, we consider the

knowledge transfer from an old time stamp i to a new

time stamp j, i.e., i < j. Note that as suggested in

Theorem 4.2, those candidate meta-pairs of tasks might

not have equal sampling probability for meta-training.

Therefore, we propose a progressive meta-pair scheduler

to incrementally learn the sampling probability of every

candidate meta-pair of tasks.

As shown in Theorem 4.2, the sampling probability wij

is strongly related to the classification error on Dt
i and

the empirical distribution discrepancy betweenDt
i andDt

j .

However, we have only unlabeled training examples for

the target task. It is intractable to accurately estimate the

classification error on Dt
i (i = 1, 2, · · · ) for the target

task. One solution is that we can incrementally estimate

the pseudo-labels of unlabeled target examples, and then

obtain the classification error using these pseudo-labels.

But it will be largely affected by the quality of the pseudo-

labels. Instead, in this paper, we simply learn the sampling

probability using the empirical distribution discrepancy

between Dt
i and Dt

j because this distribution discrepancy

involves only the unlabeled examples. That is, the sampling

probability wij is learned as follows.

wij =
exp

(

1/d̂H1H

(

Dt
i ,D

t
j

))

Ŵ
(4)

where Ŵ is a normalization term. it indicates that the meta-

pair of tasks with a smaller distribution discrepancy has

a larger probability of being sampled for meta-training.

Intuitively, the smaller distribution discrepancy guarantees

the knowledge transfer across tasks (Ganin et al., 2016;

Zhang et al., 2019). Therefore, we can sample a set of

meta-pairs of tasks S based on the sampling probability for

meta-training.

• Meta-Training: Following Wu and He (2022b), the meta-

training over meta-pairs of tasks is given as follows. Let

ζij(θ) = ǫ̂ti (Mij(θ)) + η · d̂H1H

(

Dt
i ,D

t
j ;Mij(θ)

)

be the

loss function over the validation set on a meta-pair of tasks.

Then the model initialization θ can be learned by

θ ← argmin
θ

∑

(i,j)∈S
ζij(θ)

Mij(θ)← θ − β∇θL
meta(Dt

i ,D
t
j )

(5)

where Mij : θ → θij is a function which maps the

model initialization θ into the optimal task-specific

parameter θij. Similar to the model-agnostic meta-learning

(MAML) (Finn et al., 2017), Mij(θ) can be instantiated by

one or a few gradient descent updates in practice. In this

case, the meta-training loss is given by Lmeta(Dt
i ,D

t
j ) =

ǫ̂ti (Mij(θ))+ η · d̂H1H

(

Dt
i ,D

t
j ;Mij(θ)

)

over the training

set.

As illustrated in Algorithm 1, the predictive function is

incrementally learned for the target task at every historical

time stamp, and then the pseudo-labels of unlabeled target

examples can be inferred.

• Meta-Testing:The optimal parameters θN+1 on the newest
target task Dt

N+1 could be learned by fine-tuning the

optimal model initialization θ on a selective meta-pair of

tasks (Dt
k
,Dt

N+1).

θN+1 = Mk(N+1)(θ)← θ − β∇θL
meta(Dt

k,D
t
N+1) (6)

where θ is the optimized model initialization learned in

the meta-training phase. Here we choose the meta-pair of

tasks (Dt
k
,Dt

N+1) by estimating the sampling probability

wk(N+1) (k = 0, 1, · · · ,N) and choosing k with the largest

value wk(N+1).

6. Experiments

In this section, we provide the empirical analysis of L2S

framework on various data sets.

6.1. Experimental setup

We used the following publicly available image data sets:
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• Rotating MNIST (Kumar et al., 2020): The original

MNIST (LeCun et al., 1998) is a digital image data set

with 60,000 images from 10 categories. Rotating MNIST

is a semi-synthetic version of MNIST where each image

is rotated by a degree. Following Bobu et al. (2018) and

Kumar et al. (2020), we rotate each image by an angle

FIGURE 3

Rotating MNIST with (A) continuous evolvement and (B) large distribution shift.

FIGURE 4

I→ C on ImageCLEF-DA with (A) continuous evolvement, (B) large distribution shift. I→ P on ImageCLEF-DA with (C) continuous evolvement,

(D) large distribution shift.

TABLE 1 Results of dynamic transfer learning on Rotating MNIST.

Methods With continuous evolvement With large distribution shift

Acc H-Acc Acc H-Acc

SourceOnly 1.0000 0.4393 0.3437 0.4393

DAN (Long et al., 2015) 1.0000 0.4518 0.5625 0.4830

DANN (Ganin et al.,

2016)

1.0000 0.3884 0.3750 0.4000

MDD (Zhang et al.,

2019)

1.0000 0.4250 0.4063 0.4482

CUA (Bobu et al., 2018) 0.9375 0.9277 0.4375 0.8259

GST (Kumar et al., 2020) 0.0625 0.1062 0.1250 0.2259

L2E (Wu and He, 2022b) 0.9688 0.9795 0.6250 0.7179

L2S 1.0000 0.9991 0.9687 0.9116

The best results are indicated in bold.
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for generating the time-evolving classification task. More

specifically, for the source task, we randomly choose 32

images and then rotate them by an angle between 0 and

10 degrees. All the images in the source task are associated

with class labels. For the time-evolving target task, we

randomly choose 32 images at every time stamp j (j =
1, · · · , 35) and rotate them by an angle between 10 · j and
10 · (j+ 1) degrees. It can be seen that in this case, the data

distribution of the target task is continuously evolving over

time. Therefore, we denote the aforementioned Rotating

MNIST as a data set “with continuous evolvement.”

In contrast, we consider the dynamic transfer learning

scenarios “with large distribution shift,” where the samples

at the last 18 time stamps of the target task are randomly

shuffled. That is, the target task might not be evolving

smoothly with respect to the rotation degree.

• ImageCLEF-DA (Long et al., 2017): ImageCLEF-DA has

three image classification tasks: Caltech-256 (C), ImageNet

ILSVRC 2012 (I) and Pascal VOC 2012 (P). Following Wu

and He (2022b), we generate the time evolving target

task by adding random noise and rotation to the original

images. For example, if we consider Caltech-256 (C) as the

target task, we can generate a time-evolving target task by

rotating the original images of Caltech-256 with a degree

Od(j) (j = 1, 2 · · · , 5 is the time stamp) and adding the

random salt&pepper noise with the magnitude On(j), i.e.,

Od(j) = 15 · (j− 1),On(j) = 0.01 · (j− 1), N = 4.

Following Bobu et al. (2018) and Wu and He (2022b), we

report both the classification accuracy on the newest target task

(Acc) and the average classification accuracy on the historical

target tasks (H-Acc) in the experiments. The comparison

baselines we used in the experiments include: (1) static transfer

learning approaches: SourceOnly, DAN (Long et al., 2015),

DANN (Ganin et al., 2016), and MDD (Zhang et al., 2019);

and (2) dynamic transfer learning: CUA (Bobu et al., 2018),

GST (Kumar et al., 2020), L2E (Wu and He, 2022b), and

our proposed L2S framework. For a fair comparison, all the

methods use the same base models for feature extraction, e.g.,

LeNet for Rotating MNIST and ResNet-18 (He et al., 2016) for

ImageCLEF-DA. In addition, we set η = 1, β = 0.01 and

the number of inner epochs in Mij(θ) as 1. All the experiments

are performed on a Windows machine with four 3.80GHz Intel

Cores, 64GB RAM and two NVIDIA Quadro RTX 5000 GPUs.

TABLE 2 Results of dynamic transfer learning on ImageCLEF-DA.

Methods

With continuous evolvement With large distribution shift

I → C I → P I → C I → P

Acc H-Acc Acc H-Acc Acc H-Acc Acc H-Acc

SourceOnly 0.3125 0.4250 0.2812 0.3938 0.3125 0.4125 0.2187 0.2562

DAN (Long et al., 2015) 0.2500 0.4000 0.2187 0.2688 0.3750 0.3750 0.2500 0.2625

DANN (Ganin et al., 2016) 0.3125 0.4438 0.3125 0.4188 0.3125 0.4125 0.1875 0.2750

MDD (Zhang et al., 2019) 0.3437 0.4750 0.3125 0.4562 0.3125 0.4062 0.2500 0.3188

CUA (Bobu et al., 2018) 0.4063 0.5125 0.5312 0.5438 0.4375 0.4625 0.3437 0.4000

GST (Kumar et al., 2020) 0.5000 0.5312 0.4375 0.4312 0.2812 0.3062 0.2500 0.2562

L2E (Wu and He, 2022b) 0.5625 0.6875 0.5625 0.5875 0.3750 0.4812 0.3750 0.4812

L2S 0.5625 0.6125 0.6562 0.6188 0.4375 0.5500 0.4375 0.4812

The best results are indicated in bold.

FIGURE 5

Ablation study with di�erent number of inner epochs. (A) Training loss. (B) Acc. (C) H-Acc.
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Input: A source task Ds (denoted as Dt
0) and a dynamic target

task {Dt
j }
N
j=1, the newest target taskD

t
N+1.

Output: Prediction performance on the new target taskDt
N+1.

1: Initialize the set of meta-pairs of tasks S = ∅;
−−−−−−−−− Meta-training −−−−−−−−−

2: for k = 1 to N do

3: Find all the candidate meta-pairs of tasks

from Dt
0, · · · ,Dt

k
;

4: Estimate the sampling probability for these

meta-pairs using Equation (4);

5: Select a set of meta-pairs of tasks according

to the sampling probability;

6: Learn the model initialization θ̃∗ via Equation

(5);

7: Generate the pseudo-label for Dt
k
;

8: end for

−−−−−−−−− Meta-testing −−−−−−−−−
9: Fine-tune on the newest target task Dt

N+1 via

Equation (6);

10: return Predicted labels on the newest target

task Dt
N+1.

Algorithm 1. Learning to Schedule (L2S).

6.2. Results

Figures 3, 4 show the distribution shift in the dynamic

transfer learning tasks, where “S-T" denotes the distribution

difference d(Ds,Dt
j ) between the source and the target at

every time stamp and “T-T" denotes the distribution difference

d(Dt
j−1,D

t
j ) of the target at consecutive time stamp. Here

we use maximum mean discrepancy (MMD) (Gretton et al.,

2012) to measure the distribution difference across tasks. We

see that when the target task is continuously evolving over

time, d(Dt
j−1,D

t
j ) is small. This enables gradual knowledge

transferability in the target task. If there exists a large

distribution shift at some times, i.e., d(Dt
j−1,D

t
j ) is large, the

strategy of gradual knowledge transferability might fail. In

Figures 3, 4, the large distribution shift happened in the time

stamps 17–35 on Rotating MNIST and time stamp 1 on I →
C/P.

Tables 1, 2 provides the experimental results of L2S as

well as baselines on Rotating MNIST and Image-CLEF data

sets. We have the following observations from the results. On

the one hand, when the target task is continuously evolving

over time, most dynamic transfer learning baselines can achieve

satisfactory performance on both the newest and historical target

tasks. The baseline GST (Kumar et al., 2020) fails on Rotating

MNIST, because the self-training approach might be more likely

to accumulate the classification error when the target task is

evolving for a long time. On the other hand, the performance

of CUA (Bobu et al., 2018) and L2E (Wu and He, 2022b)

drops significantly when there is a large distribution shift within

the target task at some time stamp. In contrast, by adaptively

selecting the meta-pairs of tasks, the proposed L2S framework

can mitigate the issue of the potential large distribution shift

in the targe task. Specifically, compared to L2E (Wu and He,

2022b), L2S improves the performance by a large margin. This

confirms the efficacy of the proposed progressive meta-pair

scheduler.

6.3. Analysis

We provide the ablation study of our L2S framework with

respect to the number of inner training epochs. The results

on the newest target task of Rotating MNIST are shown in

Figure 5, where we use 1 or 5 inner epochs for our meta-learning

framework. We see that using more inner epochs can improve

the convergence of L2S but it sacrifices the classification

accuracy on the historical target task. This is because L2S with

more inner epochs would enforce the fine-tuned model to be

more task-specific. Thus, we set the number of inner epochs as 1

in our experiments.

7. Conclusion

In this paper, we study the problem of dynamic transfer

learning from a labeled source task to an unlabeled dynamic

target task. We start by deriving the generalization error

bounds of dynamic transfer learning by assigning the meta-

pairs of tasks with different weights. This allows us to provide

the tighter error bound when there is a large distribution

shift of the target task at some time stamp. Then we

develop a novel meta-learning framework L2S with progressive

meta-task scheduler for dynamic transfer learning. Extensive

experiments on several image data sets demonstrate the

effectiveness of the proposed L2S framework over state-of-the-

art baselines.
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