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Background: Daily symptom reporting collected via web-based symptom

survey tools holds the potential to improve diseasemonitoring. Such screening

tools might be able to not only discriminate between states of acute illness

and non-illness, but also make use of additional demographic information

so as to identify how illnesses may di�er across groups, such as biological

sex. These capabilities may play an important role in the context of future

disease outbreaks.

Objective: Use data collected via a daily web-based symptom survey tool

to develop a Bayesian model that could di�erentiate between COVID-19 and

other illnesses and refine this model to identify illness profiles that di�er by

biological sex.

Methods: We used daily symptom profiles to plot symptom progressions for

COVID-19, influenza (flu), and the common cold. We then built a Bayesian

network to discriminate between these three illnesses based on daily symptom

reports. We further separated out the COVID-19 cohort into self-reported

female and male subgroups to observe any di�erences in symptoms relating

to sex. We identified key symptoms that contributed to a COVID-19 prediction

in both males and females using a logistic regression model.

Results: Although the Bayesian model performed only moderately well in

identifying a COVID-19 diagnosis (71.6% true positive rate), the model showed

promise in being able to di�erentiate betweenCOVID-19, flu, and the common

cold, as well as periods of acute illness vs. non-illness. Additionally, COVID-19

symptoms di�ered between the biological sexes; specifically, fever was a more

important symptom in identifying subsequent COVID-19 infection among

males than among females.

Conclusion: Web-based symptom survey tools hold promise as tools to

identify illness and may help with coordinated disease outbreak responses.
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Incorporating demographic factors such as biological sex into predictive

models may elucidate important di�erences in symptom profiles that hold

implications for disease detection.

KEYWORDS

public health, mHealth, sex as a biological variable, Bayesian network, infectious

disease

Introduction

The COVID-19 pandemic has highlighted the need for low-

burden public health screening tools. Traditional approaches

focus on the use of aggregated hospital records for observational

studies of disease progression (Pham et al., 2017; Planell-Morell

et al., 2020). Although these records-based approaches carry

statistical power and familiarity for real-world use, they take

substantial time to consolidate. In times of disease outbreak,

these traditional approaches therefore lose the immediate

actionability needed to reduce negative consequences. Recent

efforts focus on the use of wearable sensors to generate potential

illness alerts more rapidly (Gadaleta et al., 2021; Richards et al.,

2021; Mirjalali et al., 2022; Mason et al., 2022a). Although

new screening approaches using wearable sensors hold great

potential, they have yet to be validated for real-world use.

Early results demonstrate that many algorithms created from

wearable-collected data are burdened by a lack of physiological

diversity, algorithmic generalizability, and unevenly distributed

technology access (Futoma et al., 2020).

Web-based daily symptom survey tools could integrate

with data collected in the field using wearable sensors as

well as records-based data collected in more traditional ways.

Web-based daily symptom surveys delivered via smartphones

could rapidly reach large populations, thereby enabling mining

to identify patterns indicating potential illness. By the same

token, such surveys might allow classification of symptoms

that correspond to likelihoods for different types of disease

outbreaks (e.g., flu, COVID-19). These survey tools could

also incorporate additional available demographic information

(e.g., biological sex) to increase accuracy where different

demographics have different manifestation of sickness. For

example, despite substantial evidence for sex differences in

COVID-19 outcomes (Gomez et al., 2021), we are unaware

of efforts to incorporate these differences into COVID-19

screening efforts. Web-based daily symptom survey tools could

therefore capitalize on rapid collection capabilities accessible to

large populations and allow researchers to quickly incorporate

emerging evidence (e.g., disease manifestation differences by

sex) into optimized screening tools.

The first TemPredict study collected >4M daily symptom

survey responses from a global participant pool of 63,153

individuals. We used these data to develop a Bayesian

network to classify temporal windows for specific individuals as

positive or negative for COVID-19, flu, or the cold, based on

reported symptoms. Additionally, because participants provided

demographic information in addition to their daily symptoms,

we examined the impact of biological sex on the accuracy of

COVID-19 detection. We report on the impact of biological sex

on this classification network and highlight sex differences in

symptom timing and likelihood. Taken together, these analyses

hold implications for the development of web-based public

health screening efforts.

Methods

Participants

To identify positive COVID-19 cases amongst the 63,153

participants, we selected participants (N = 306) who met

inclusion criteria for a confirmed COVID-19 diagnosis, and

diagnosis date (DX date) which represented that a participant

had completed a COVID-19 test that resulted in a positive

result (Mason et al., 2022a). Of these 306 participants, 282

had completed a baseline survey requesting demographic

information. Of these 282 participants, 53 did not provide web-

based symptom survey responses from 3 weeks prior to 1 week

after their DX date, which was the area of interest for our

analysis. This resulted in a final cohort of 229 participants

who had an identified COVID-19 diagnosis with an associated

DX date as well as sufficient web-based symptom survey data

(Figure 1).

Our negative control group was a group of participants

who received a confirmed negative antibody test result (see

Measures and Variable Preparation). We randomly selected 229

participants from the resultant 7,756 for whom we received

negative antibody results (Ab-). The random sample was

constrained to be age- and sex-matched to the COVID-

19 positive cohort (see Supplementary Table S1 for exact

composition of both cohorts). Symptom data for this cohort

were limited to those reports captured within the preceding 3

months from the date of the Ab- test.
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FIGURE 1

Flowchart of cohort selection for the COVID-19 positive cohort

in this paper out of all participants in the model.

Procedures

For a detailed description of study procedures, see (Mason

et al., 2022a). In brief, participants enrolled in the TemPredict

study (Smarr et al., 2020; Purawat et al., 2021; Mason et al.,

2022a,b), sharing wearable device data and labels to help us

develop COVID-19 detection capacities. Participants completed

a single web-based baseline survey and, for as long as 8 months

thereafter, had the opportunity to complete a web-based daily

symptom survey that queried participants about acute illness

symptoms typically observed in COVID-19 as well as any

COVID-19 diagnoses. A subset of participants completed mail-

based dried blood spot testing (see Mason et al., 2022a).

The University of California San Francisco (UCSF)

Institutional Review Board (IRB, IRB# 20-30408) and the U.S.

Department of Defense (DOD) Human Research Protections

Office (HRPO, HRPO# E01877.1a) approved of all study

activities, and all research was performed in accordance with

relevant guidelines and regulations and the Declaration of

Helsinki. All participants provided informed electronic consent.

We did not compensate participants for participation.

Measures and variable preparation

Demographic information

Participants provided demographic information including

self-reported biological sex (“sex”) which we use as a

comparison, and age which we use to balance across cohorts

through the aforementioned web administered baseline survey

that participants completed during study enrollment.

COVID-19 symptoms and diagnosis

Participants completed web-based daily symptom surveys

that asked participants to report on a list of symptoms that

characterize COVID-19 and other respiratory illnesses. The

list of symptoms collected included the following: fever, chills,

fatigue, general aches and pains, dry cough, sore throat, cough

with mucus, cough with blood, shortness of breath, runny/stuffy

nose, swollen/red eyes, headache, unexpected loss of smell or

taste, loss of appetite, nausea/vomiting, and/or diarrhea (or

“none of the above”). Participants responded using amulti-select

format, and could not add other symptoms.

Participants also reported on COVID-19 test results, test

dates, and test methods. Participants who reported a positive

COVID-19 test result on an oral or nasopharyngeal swab, saliva,

stool, or antigen test were included in the initial COVID-19

positive cohort. From these data we created the DX date variable,

which was the earliest reported positive test date across surveys.

If a participant reported multiple positive COVID-19 tests, we

included only their first positive test (and first DX date). From

these reports, we computed the following variables:

• Prevalence: Probability of a symptom being reported during

a given instance of a specific illness.

• Symptom rate: Mean number of different symptoms that

each participant endorsed per week.

• Mean symptom rate: Mean symptom rate across a group

of participants.

• Most common symptom: Individual symptom most

frequently reported per type of illness.

• Window of interest (WOI): Time interval defined by

reference to the DX date in which a model is being assessed

for accurate detection of illness. WOIs considered here

range from: 3 weeks prior to DX date through 1 week post

DX date.

• Potential infection window (PIW): Interval in time during

which it was judged possible that an individual would have

the onset of COVID-19 illness given the confirmation of
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virus detected by a PCR test on their DX date, as reported

by them. This was judged to range from 3 weeks prior to

DX date through to 3 weeks post DX date.

Antibody test kits and results

The antibody testing process was described in more detail

previously (see Mason et al., 2022a). Briefly, we mailed kits

for obtaining dried blood spots (TropBio Filter Paper Disks,

Cellabs) to 10,021 participants and instructed participants to dry

their blood spots overnight before returning by mail in plastic

specimen bags containing a desiccant. We processed dry blood

spots with eluent and tested using the Ortho Clinical Diagnostics

VITROS
R©
SARS CoV-2 Total Assay.

Analytic methods

Bayesian network construction

We trained Bayesian networks using the python package

Pomegranate (Schreiber, 2018). A Bayesian network utilizes

known properties of a system (for example, prevalence of illness

symptoms) to generate a probabilistic relationship between a

given set of symptoms and each disease class (for example,

COVID-19, flu, and cold). The network can then be used

to calculate probabilities of a participant having each disease

based on a symptom profile (Chen and Pollino, 2012). We

included each symptom as a node weighted by its prevalence

in each specific illness (e.g., COVID-19, flu, or cold). We built

an evidence matrix (matrix of node weights by symptom)

from estimated symptom prevalence for each illness, including

for COVID-19 in 2019 and 2020, from previous literature

(Giacomelli et al., 2020; Wu et al., 2020; Yang et al., 2020). When

specific symptoms in the matrix were exact matches to terms

in the literature (e.g., dry cough vs. hacking cough), we chose

one term for consistency. The symptom of “chills” was the only

symptom that was not common in the COVID-19 literature, and

we therefore set the prevalence to be that discovered in our data.

The input to the network is a list of Boolean values,

indicating whether a participant endorsed a symptom during

a given 7-day window. We tested a series of aggregate window

sizes, and found that the 7-day window size optimized the

true positive rate (TPR). The output from the network is

presented as the probability distribution across all illnesses,

with the maximum probability assigned as the illness that the

network predicts.

Precision-recall

To generate precision recall metrics from the Bayesian

network we split participants’ data into three regions, the positive

region which is the same as the POI, the pre-negative region

which is all datapoints before the POI, and the post-negative

region which is all datapoints past the POI. A positive prediction

in each region is defined as at least one of the 7-day windows

in the region being predicted as having COVID-19. In the

context of precision-recall metrics, we define a true positive

classification (not to be confused with the TPR as described in

Bayesian Network Construction) as a positive prediction in the

positive region, a false negative as a lack of positive prediction

in the positive region, a true negative as a lack of a positive

prediction in either of the negative regions, and a false positive

as a positive prediction in either of the negative regions. Each

of the negative regions were treated separately, so that, e.g., a

person could have a false positive in their pre-negative region

and a true negative in their post-negative region. From these

counts we generated precision recall scores, where: precision

= true positive/(true positive + false positive); recall = true

positive/(true positive + false negative); F1 = 2 × (recall ×

precision)/(recall+ precision).

Logistic regression methods

We trained basic logistic regression models using scikit-

learn’s (Pedregosa et al., 2018) basic Logistic Regression

implementation. Logistic regression models iteratively fit a set

of weights (beta coefficients) which multiply the input (in this

case a participant’s daily symptom profile) in order to maximize

the number of correct predictions in its training data (Shipe

et al., 2019). We extracted the beta coefficients from each model.

A highly positive beta coefficient for a symptom indicated that

the presence of that symptom contributes strongly to a COVID-

19 prediction.

Specific analyses

COVID-19 vs. flu vs. cold

We compared the mean symptom rate between COVID-19,

flu, and cold, identifying a trend in the number of symptoms

the participants endorsed for each disease during the PIW. To

explore symptom progression, we visualized the proportion of

people who reported a given symptom out of all the people that

filled out a survey on that given day relative to DX date (i.e., day

DX–5, as opposed to a date). We calculated this proportion for

all symptoms during the WOI.

Using our Bayesian network, we compared COVID-19, flu,

and cold illness manifestations by testing the network on all

participants and assessing TPR (for COVID-19 detection) and

false positive rate (FPR, for flu and cold). We report the percent

of participants from each illness group that the model predicted

as having COVID-19. To differentiate prediction from detection

capacity, we calculated COVID-19 prediction probabilities for

intervals starting with the 3 weeks leading up to the DX date,

then incrementally adding one additional subsequent week

(postdiagnosis) for 3 weeks (i.e., PIW).
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To determine an FPR for COVID-19, we used antibody test

results from the initial TemPredict study to identify a population

of true negative participants. We used their prediction of

COVID-19 as a metric of the FPR.

Di�erences in symptom presentations across
biological sexes

We divided the COVID-19 population by sex, and then

repeated the mean symptom rate analysis for each of the

sexes separately. We trained several other Bayesian networks in

the framework of sex as a biological variable, using different

evidence matrices. In those cases, we either relied upon

literature-reported values, or we generated “in house” evidence

matrices based on symptom prevalence of the illnesses from

our own data, grouped across sexes. Additionally, we generated

male and female “in house” evidencematrices from the symptom

prevalence of male and female participants separately (i.e.,

grouped within sexes).

We trained a Bayesian network with each of the above

evidence matrices and calculated the percent of the male and

female COVID-19 subpopulations that each network predicts

as having COVID-19 at some point in the WOI. We compared

the TPR of each network to see how sex affects each network’s

performance. We resampled 10 participants from each sex at

a time, calculated the peak of each symptom for those 10

people in the PIW (calculated as the highest proportion of

participants endorsing a symptom to the number of participants

who completed a survey on a given day), resolving ties by

taking the median. We repeated this 5,000 times for each sex,

normalized the data for each symptom and sex by taking the

kernel density estimate, setting the area under the curve of

each symptom equal to one. This gave us a relative probability

distribution for the timing of each symptom peak with regard to

DX date.

We combined the COVID-19, flu, cold, and true negative

cohorts into 2 separate datasets based on sex. Using a similar

resampling approach, we trained a logistic regression model (as

described in “Analytic Methods”) on a random 80% split of

each dataset at a time, and saved the beta coefficients for each

symptom. We repeated this 5,000 times for each sex.

Results

COVID-19 vs. flu vs. cold

Comparison of symptom prevalence across COVID-19, flu,

and cold showed that people with COVID-19 experienced more

symptoms than those ill with flu or cold, with a few exceptions,

such as headaches, runny/stuffy nose, and nausea/vomiting

(Table 1).

Symptom rates also differed between COVID-19 and those

of flu and cold (Figure 2A). Specifically, COVID-19 had the

TABLE 1 The prevalence of each illness type and of reported

symptoms per illness.

Diagnosis Other/No ID COVID-19 Flu Cold

Prevalence 0.62 0.11 0.06 0.10

Chill 0.01 0.3 0.09 0.04

Fever 0.01 0.50 0.10 0.05

Fatigue 0.01 0.54 0.20 0.14

General aches/pain 0.01 0.30 0.13 0.09

Dry cough 0.01 0.63 0.16 0.10

Sore throat 0.01 0.20 0.20 0.12

Cough mucus 0.01 0.31 0.13 0.08

Cough blood 0.01 0.00 0.02 0.00

Short breath 0.01 0.37 0.09 0.06

Runny/stuffy nose 0.01 0.20 0.27 0.20

Swollen/red eyes 0.01 0.17 0.03 0.03

Headache 0.01 0.20 0.24 0.14

Loss of smell/taste 0.01 0.62 0.02 0.01

Loss of appetite 0.01 0.40 0.04 0.02

Nausea/vomiting 0.01 0.07 0.30 0.02

Diarrhea 0.01 0.14 0.09 0.03

COVID-19 rates were generated from pre-existing literature (see Measures and Variable

Preparation), while cold and flu symptom prevalence were generated from in-house data.

largest number of symptoms endorsed per report, followed by

flu, and then cold. Centering symptom reports around diagnosis

date for all three illnesses resulted in clear peaks of reports,

confirming that people experienced the most symptoms around

the time of diagnosis. We also found differences in symptom

prevalence between the three illnesses (Figure 2B). Fatigue was

the most common symptom in COVID-19, while runny/stuffy

nose was the most common symptom in both flu and cold.

Notably, COVID-19 and flu each had several symptoms with

similarly high rates of endorsement per reported illness.

The frequency of specific symptom endorsements relative

to the DX date for COVID-19 (Figure 2C) revealed substantial

differences in the duration and order of symptoms reported.

Of note among these symptom profiles, fatigue had the highest

area under the curve among the symptoms. Additionally, while

loss of smell or taste has been reported as one of the most

COVID-specific symptoms among the three illnesses (Dawson

et al., 2021), in our data we observed participants reported

loss of smell or taste later on average than other symptoms,

limiting its usefulness in early illness screening despite its high

COVID-19 specificity.

The Bayesian network had a TPR for COVID-19 detection of

71.6% in the WOI, and 78.16% in PIW (Figure 2D). Conversely,

for flu, the network had a FPR for COVID-19 detection of 16.5%

in theWOI, and 34.1% in the PIW. For cold, the network had an

FPR for COVID-19 detection of 17.8% in theWOI, and 36.4% in
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FIGURE 2

Di�erences among illnesses and across symptoms enable COVID-19 specific classification. The mean symptom rate for individuals with a

diagnosis date reported for COVID-19 (yellow), flu (green), and cold (purple) (A). Percent of individuals with these diagnoses reporting each of

the recorded symptoms, by illness type, sorted by prevalence within COVID-19 subjects (B). Heatmap of symptom report frequency by days

from diagnosis (C) reveal di�erent temporal profiles and likelihood across symptoms within reports paired to COVID-19 diagnoses. Results from

a Bayesian classifier network (D) run on all times with symptom reports reveal good alignment between positive detections (green) and

diagnosis date.

TABLE 2 The percent of individuals predicted as having COVID-19 by

the Bayesian network run over an increasing number of weeks.

Weeks COVID-19—TP Cold—FP Flu—FP Negative

(FPR)

−3: 0 34.5 9.27 5.8 5.6

−3: 1 71.6 17.8 16.5 6.1

−3: 2 77.7 28.5 27.1 6.5

−3: 3 78.16 36.4 34.1 8.7

Intervals began covering from 3 weeks prior to DX (−3) to DX (0). Intervals were

expanded by increments of 1 week until they covered through to 3 weeks subsequent to

DX (+3). For the COVID-19 positive group, this is the number of correct predictions (TP,

%); for the cold, flu, and true negative cohort (FPR) this is the number of false predictions

(FP, %).

the PIW (Table 2). The network had a precision score of 73.2%,

recall of 71.6%, and F1 measure of 72.4%.

Sex di�erences

Comparison of the COVID-19 symptom rates indicated that

the timing of the number of symptoms experienced by females

and males was similar. However, females with COVID-19 had

a higher mean symptom rate (Figure 3A; mean peak rate males

= 2.89; mean peak rate females = 3.83); symptoms’ prevalence

were also higher in females than males, except “fever” and

“chills” (Figure 3B; Table 3).

Based on these observed differences, we re-evaluated the

Bayesian network for each sex (Table 4). The network performed

best for both sexes when trained on the external literature-

reported (Giacomelli et al., 2020; Wu et al., 2020; Yang et al.,

2020) data (male TPR: 66.7%; female TPR: 76.3%). The network

trained on female data performed better on males (TPR =

64.4%) than the network trained on male data (TPR = 62.9%),

while the network trained on male data performed better on

females (TPR= 75.3%) than the network trained on female data
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FIGURE 3

Sex di�erences in symptom reporting. Within individuals reporting COVID-19 diagnosis, females have a higher average mean symptom rate than

males (A). Comparison by individual symptoms reported (B) shows that symptom prevalence is not identical across sexes. The probability

distribution of the peaks of symptoms relative to DX date, separated by females (blue) and males (red) (C).

TABLE 3 Prevalence (% reporting) of symptoms in the COVID-19+

cohort for a given sex.

Sex Female Male

Fatigue 73.20 69.70

Headache 72.16 59.09

Runny/stuffy nose 70.10 44.70

General aches and pains 69.07 64.39

Dry cough 63.92 50.00

Sore throat 57.73 43.18

Loss of smell or taste 49.48 34.09

Loss of appetite 42.27 23.48

Fever 41.24 56.06

Chill 40.21 44.70

Cough mucus 39.18 27.27

Shortness of breath 31.96 15.90

Diarrhea 30.93 24.24

Nausea vomiting 26.80 8.33

Swollen/red eyes 20.62 15.15

Cough blood 1.03 0.00

(TPR = 74.4%). The networks were, on average, 10.25% more

sensitive for COVID-19 in females than in males (Table 4).

The probability distribution of the peaks of each symptom,

separated by sex, revealed that symptoms such as swollen/red

eyes and nausea/vomiting had diffused peaks, while symptoms

such as chills and general aches/pains had concentrated peaks

(Figure 3C). Peaks in fatigue, general aches and pains, and loss of

appetite came earlier for males than for females, whereas peaks

for runny/stuffy nose came earlier for females than males. The

symptom of dry cough was relatively equally distributed across

males and females across time.

TABLE 4 Bayesian models were trained on one of the following

sources of symptom prevalence, described in Methods: literature

search; in house female data; in house male data; combined sexes in

house data.

TPRs (%) Model: 1

literature

Model 2:

female

Model 3:

male

Model 4:

combined

sexes

Male subgroup 66.7 64.4 62.9 65.2

Female subgroup 76.3 74.4 75.3 74.2

TPRs were then calculated for each model across male and female data separately.

The symptoms that most strongly correlated with a COVID-

19 illness were different for males and females (Figures 4A,B).

Even though loss of smell or taste was the strongest indicator

of COVID-19 for both sexes by a wide margin, there were more

nuanced differences in the hierarchy of the rest of the symptoms.

For males, the top four most indicative symptoms of COVID-19

after loss of smell or taste were fever, general aches/pains, chills,

and headaches (in that order). For females, the top four most

indicative symptoms of COVID-19 after loss of smell or taste

were general aches/pains, dry cough, fatigue, and fever (in that

order). Notably, for females, runny/stuffy nose was a positive

indicator of COVID-19, whereas for males it indicated flu or

cold over COVID-19.

Discussion

Principal results

Here we demonstrated that self-report symptom data

gathered from large, distributed populations using web-based

daily symptom surveys can be used to create predictive models

for onset of COVID-19, with some ability to differentiate from
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FIGURE 4

Sex di�erences in COVID-19 classifiers enables improved performance and symptom importance in both sexes. The means ± 1 std dev for the

beta coe�cients from logistic regression bootstrapping for males (A) and females (B).

other respiratory illnesses, including influenza (flu) and the

common cold. We feel that such models can be trained to

have sufficient precision that it is time to consider their utility

in real-world screening efforts. Results reported here highlight

the promise of predictive models that use differences between

subpopulations of respondents to increase their accuracy, as

we show here by highlighting differences by sex. In comparing

sexes, we found that our symptom-based models could generate

ranked lists of those symptoms most likely to be informative

for someone being screened from a specific subpopulation

(i.e., a patient being female or male affects interpretation of

their symptoms).

There remains a sex imbalance in the development

of screening tools, with women often disproportionately

underrepresented (Dijkstra et al., 2008; Day et al., 2016;

Larrazabal et al., 2020). Our work shows that there is no

additional burden to gather data on both sexes, and that treating

sex as a biological variable reveals meaningful differences that

may improve screening efforts for both sexes. The finding that a

model we derived of these data performed better in detecting

COVID-19 on females than males across evidence matrices

could reflect increased symptom reporting rate in females as

compared to males. Future work should further assess the sex

difference we observed in our symptom reports.

Our symptom profile data appear consistent with previously

observed real-world data (Giacomelli et al., 2020;Wu et al., 2020;

Yang et al., 2020), and support the hypothesis that symptoms

alone could be sufficient to separate different illnesses in large

scale screening efforts. In fact, our model reached its best results

for an evidence matrix generated from the published literature

(references of where we got the symptom list), as opposed to the

evidence matrix derived from our own data set. This indicates

that we did not overfit our model to the data, and further

reinforces the idea that the network is capturing differences in

symptoms appropriate to COVID-19. This supports the notion

that there is a shared profile of symptoms that characterize

COVID-19 and that we can detect these symptoms using web-

based daily symptom surveys; moreover, these symptoms differ

from those reported by individuals who are ill with flu or

cold. Our findings support the hypothesis that web-based daily

symptom survey methodology could be a relatively inexpensive

and rapid tool to augment public health situational awareness.

In this context, we would like to remind those interested that

classical metrics (specifically precision, recall, and F1 measure)

can be misleading in the context of a Bayesian network. The

capacity of such a network would be to serve as a screening

tool, not a classification (i.e., diagnostic) tool. For example, from

the point of view of a screening tool, one positive hit within a

window of potential illness for an individual might be enough

to be helpful, whereas classical precision and recall would define

only one positive hit within the window of potential illness as

failing to classify every illness day successfully. The result could

be precision and recall scores that do not correlate well-with

real-world usefulness.

Limitations

We collected data between March, 2020 and November,

2020. As a result, the symptoms reported most likely all

correspond to the alpha variant of COVID-19, which was

the dominant variant at that time. Although results about

the specific symptoms observed are therefore most relevant

to that original variant, these analyses lay key groundwork

for approaching the development of algorithms to predict

subsequent COVID-19 variants (e.g., Delta, Omicron) or other

respiratory illnesses.

Frontiers in BigData 08 frontiersin.org

https://doi.org/10.3389/fdata.2022.1043704
https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org


Klein et al. 10.3389/fdata.2022.1043704

One potential concern for using symptom screening in

COVID-19 is the potential to miss asymptomatic individuals.

Our model does not address this concern, and so might be more

useful deployed over populations than as a reliable screening tool

aimed specifically at individuals. Furthermore, while we show

evidence that different illnesses can be classified successfully,

the FPRs are still higher than is desired for reliable real-

world discrimination among illnesses. Further research should

evaluate how to rapidly implement surveys to support real-

world public health efforts for specific populations and disease

outbreaks. Given the low cost of deploying such methods over

large populations, we expect that with proper development, the

added information for public health surveillance and individual

decision support (e.g., seeking a test or isolation) would be

valuable even with this caveat.

Finally, this analysis was done with a limited sample size

of 229 COVID-19 positive participants. This limitation was

to ensure that all 229 had confirmed COVID-19 cases, rather

than other illnesses, and to ensure availability of sufficient

self-report survey data. Repeating our approach using larger

samples of COVID-19 positive individuals would allow for

broader symptom modeling comparisons. Additionally, such

larger populations could be used to evaluate symptom profile

differences between other groupings beyond sex, as in ethnicity,

age, urban vs. rural living, etcetera.

Conclusion

Symptom reports from web-based daily symptom surveys

collected via smartphones provide sufficient information

to build COVID-19 screening models. These models have

the potential to discriminate between illnesses based on

symptom prevalence and timing. Such surveys can be deployed

inexpensively and broadly, making them an excellent candidate

for development to support public health efforts as well as,

in some cases, possibly useful tools for individual screenings

(as in indications for getting a confirmatory test). Combining

such efforts with more diverse populations, and integrating

other sources of information (e.g., electronic medical records)

could contribute to more nimble, discriminative, and widely-

deployable public health tools for use in response to future

pandemic outbreaks.
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