
TYPE Original Research

PUBLISHED 17 November 2022

DOI 10.3389/fdata.2022.1029307

OPEN ACCESS

EDITED BY

Yao Ma,

New Jersey Institute of Technology,

United States

REVIEWED BY

Xiao Wang,

Beijing University of Posts and

Telecommunications (BUPT), China

Senzhang Wang,

Central South University, China

*CORRESPONDENCE

Xia Hu

xia.hu@rice.edu

SPECIALTY SECTION

This article was submitted to

Machine Learning and Artificial

Intelligence,

a section of the journal

Frontiers in Big Data

RECEIVED 27 August 2022

ACCEPTED 26 October 2022

PUBLISHED 17 November 2022

CITATION

Zhou K, Huang X, Song Q, Chen R and

Hu X (2022) Auto-GNN: Neural

architecture search of graph neural

networks. Front. Big Data 5:1029307.

doi: 10.3389/fdata.2022.1029307

COPYRIGHT

© 2022 Zhou, Huang, Song, Chen and

Hu. This is an open-access article

distributed under the terms of the

Creative Commons Attribution License

(CC BY). The use, distribution or

reproduction in other forums is

permitted, provided the original

author(s) and the copyright owner(s)

are credited and that the original

publication in this journal is cited, in

accordance with accepted academic

practice. No use, distribution or

reproduction is permitted which does

not comply with these terms.

Auto-GNN: Neural architecture
search of graph neural networks

Kaixiong Zhou1, Xiao Huang2, Qingquan Song3, Rui Chen4 and

Xia Hu1*

1DATA Lab, Department of Computer Science, Rice University, Houston, TX, United States,
2Department of Computing, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR,

China, 3LinkedIn, Sunnyvale, CA, United States, 4Samsung Research America, Silicon Valley, CA,

United States

Graph neural networks (GNNs) have been widely used in various graph analysis

tasks. As the graph characteristics vary significantly in real-world systems, given

a specific scenario, the architecture parameters need to be tuned carefully

to identify a suitable GNN. Neural architecture search (NAS) has shown its

potential in discovering the e�ective architectures for the learning tasks in

image and language modeling. However, the existing NAS algorithms cannot

be applied e�ciently to GNN search problem because of two facts. First, the

large-step exploration in the traditional controller fails to learn the sensitive

performance variationswith slight architecturemodifications inGNNs. Second,

the search space is composed of heterogeneous GNNs, which prevents the

direct adoption of parameter sharing among them to accelerate the search

progress. To tackle the challenges, we propose an automated graph neural

networks (AGNN) framework, which aims to find the optimal GNN architecture

e�ciently. Specifically, a reinforced conservative controller is designed to

explore the architecture space with small steps. To accelerate the validation,

a novel constrained parameter sharing strategy is presented to regularize

the weight transferring among GNNs. It avoids training from scratch and

saves the computation time. Experimental results on the benchmark datasets

demonstrate that the architecture identified by AGNN achieves the best

performance and search e�ciency, comparing with existing human-invented

models and the traditional search methods.

KEYWORDS

graphneural networks, automatedmachine learning, neural architecture search, deep

and scalable graph analysis, reinforcement learning

1. Introduction

Graph neural networks (GNNs) (Micheli, 2009) have emerged as predominant

tools to model graph data at various domains, such as social media (Grover and

Leskovec, 2016) and bioinformatics (Zitnik and Leskovec, 2017). Following the message

passing strategy (Hamilton et al., 2017), GNNs learn a node’s representation via

recursively aggregating the representations of its neighbors and itself. The learned node

representations could be employed to deal with different tasks efficiently.

The success of GNNs is usually accompanied with careful architecture parameter

tuning, aiming to adapt GNNs to the different types of graph data. For example, attention

heads in the graph attention networks (Velickovic et al., 2017) are selected for the

citation networks and the protein–protein intermodule data. These human-invented

Frontiers in BigData 01 frontiersin.org

https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org/journals/big-data#editorial-board
https://www.frontiersin.org/journals/big-data#editorial-board
https://www.frontiersin.org/journals/big-data#editorial-board
https://www.frontiersin.org/journals/big-data#editorial-board
https://doi.org/10.3389/fdata.2022.1029307
http://crossmark.crossref.org/dialog/?doi=10.3389/fdata.2022.1029307&domain=pdf&date_stamp=2022-11-17
mailto:xia.hu@rice.edu
https://doi.org/10.3389/fdata.2022.1029307
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fdata.2022.1029307/full
https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org

Zhou et al. 10.3389/fdata.2022.1029307

architectures not only require the manual trials in selecting the

architecture parameters, but also tend to obtain the suboptimal

performance when they are transferred to other graph data.

Based on these observations, we investigate how to automatically

identify the optimal architectures for the different scenarios.

Neural architecture search (NAS) has attracted increasing

research interests (Elsken et al., 2018). Its goal is to find the

optimal neural architecture in the predefined search space

to maximize the model performance on a given task. It has

been widely reported that the new architectures discovered

by NAS algorithms outperformed the human-invented ones

at many domains, such as the image classification (Zoph and

Le, 2016) and semantic image segmentation (Liu et al., 2019).

Motivated by the previous superior success of NAS, we propose

to investigate whether an efficient and effective NAS framework

could be developed for the network analytics problems.

However, the direct application of existing NAS algorithms

to find GNN architectures is non-trivial, due to the two

challenges as follows. First, the traditional search controller of

NAS is inefficient to discover a well-performing GNN architecture.

GNNs are specified by a sequence of modules, including

aggregation, combination and activation. Considering node

classification task, the classification performances of GNNs

vary significantly with the slight modification of a module.

For example, over graph convolutional networks (GCN) (Kipf

and Welling, 2017), the test accuracy drops even if we slightly

change the aggregation function from sum to mean pooling.

The traditional controller samples the wholemodule sequence to

formulate a new architecture at each search step. After validating

the new architecture, the controller gets updates as the result

of the mixed module modifications. It would be hard for the

traditional controller to learn the following relationship: which

part of the architecture modifications improves or degrades the

model performance. Second, the widely adopted technique in

NAS such as parameter sharing (Pham et al., 2018) is not suitable

to GNN architectures. The parameter sharing trains common

weights and transfers them to every newly sampled architecture,

aiming to avoid training from scratch and measure the new

architecture quickly. But it fails to share weights between any

two heterogeneous GNN architectures, which have the distinct

output statistics. The output statistics of a model is defined by

the mean, variance, or value interval of its neuron activation

values. Suppose that we have weights deeply trained in a GNN

architecture with Sigmoid activation function, bounding the

neural outputs within interval [0, 1]. If we transfer the weights

to another architecture possessing Linear function with loose

activation interval [−∞,+∞], the neural output values may

be too large to be back propagated steadily by the gradient

decent optimizer.

We propose the automated graph neural networks (AGNN)

to tackle the aforementioned challenges. Specifically, it could

be separated as answering two research questions. (i) How

do we design the search controller tailored to explore the

well-performing GNN architectures efficiently? (ii) Given the

emerging heterogeneous GNN architectures during the search

progress, how do we make the parameter sharing feasible? In

summary, our contributions are described as follows:

• We build up the most comprehensive search space to

cover the elementary, deep and scalable GNN architectures.

The search space incorporates the recent techniques, such

as skip connections and batch training, to explore the

promising models on large-scale graphs.

• We design an efficient controller by considering the key

property of GNN architectures into search progress—

the variation of node distinguishing power with slight

architecture modifications.

• We define the heterogeneous GNN architectures in the

context of parameter sharing. A constrained parameter

sharing strategy is proposed to enhance the functional

effectiveness of transferred weights in the new architecture.

• We conduct the extensive experiments to search the

elementary, deep, and scalable GNNs, which delivers the

most superior results on both small and large-scale graph

datasets. Comparing with existing NAS, AGNN achieves

the double wins in the search efficiency and effectiveness.

2. Related work

2.1. Graph neural networks

The core idea of GNNs is to learn the node embedding

representations recursively from the representations at the

previous layer. The graph convolutions at each layer is realized

by a series of manipulations, including the message passing

and self updating. A variety of GNNs based on spatial graph

convolutions has been developed, including GNN models with

the different aggregation mechanisms (Hamilton et al., 2017;

Corso et al., 2020), and the different attentions (Vaswani et al.,

2017; Velickovic et al., 2017). Recently, the deep GNNs have

been widely studied to learn the high-order neighborhood

structures of nodes (Chen et al., 2020; Zhou et al., 2020). Given

the large-scale graphs in real-world application, several scalable

GNNs are proposed by applying the batch training (Chang and

Lin, 2010; Zeng et al., 2019).

2.2. Neural architecture search

NAS has been widely explored to facilitate the automation

of designing and selecting good neural architectures. Most

of NAS frameworks are built up based on reinforcement

learning (RL) (Baker et al., 2016; Zoph and Le, 2016). RL-based

approaches adopt a recurrent controller to generate the variable-

length strings of neural architectures. The controller is updated

with policy gradient after evaluating the sampled architecture

on the validation set. To tackle the time cost bottleneck of NAS,

Frontiers in BigData 02 frontiersin.org

https://doi.org/10.3389/fdata.2022.1029307
https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org

Zhou et al. 10.3389/fdata.2022.1029307

parameter sharing (Pham et al., 2018) is proposed to transfer the

weights well trained before to a new sampled architecture, and

avoids training from scratch.

2.3. Graph NAS

As far as we know, the only prior work on conjoining the

researches of GNNs and NAS is GraphNAS (Gao et al., 2019).

To be specific, GraphNAS directly applies the reinforcement

learning search method and the traditional parameter sharing.

Following this pioneer work, the recent efforts of graph NAS

either modify the search space for their specific downstream

tasks (Ding et al., 2020; You et al., 2020; Zhao et al., 2020a;

Cai et al., 2021; Wei et al., 2021), or apply the different search

methods (Li and King, 2020; Shi et al., 2020; Zhao et al., 2020b).

For example, targeting at the graph classification problem,

previous work (Cai et al., 2021; Wei et al., 2021) incorporates the

operation of feature filtration or graph pooling into the search

space. Besides the reinforcement learning searched algorithm,

several differentiable search frameworks have been developed

to improve search efficiency. For example, Zhao et al. (2020b)

and Ding et al. (2021) relax the discrete search space to be

continuous, where each graph module is represented by the

probabilistic combination of various candidate functions. The

evolutionary algorithm is used to generate architecture with

generic operations of crossover and mutation (Shi et al., 2020).

3. Search space

Before going to the technique details, we first unify the

terminologies used under the graph NAS framework. We use

the term “architecture” to refer to an available graph neural

networks that could be applied for the downstream application.

Specifically, GNN architecture is characterized by multiple

independent dimensions, such as aggregation function and

hidden units. Along each architecture dimension, there are a

series of candidate modules provided to support the automated

architecture engineering. For example, we have candidates

{SUM,MEAN,MAX} at the dimension of aggregation function.

The search space is then constructed by Cartesian product of

all the dimensions, which contains a large amount of available

architectures. NAS is to iteratively sample the next architecture,

and moves toward the optimal architecture in the search space

as close as possible (Chen et al., 2021).

Following the popular message passing strategy (Gilmer

et al., 2017), GNNs are stacked by a series of graph convoutional

layers. Formally, the graph convolutions at the k-th layer are:

h
(k)
i = AGGRE({a

(k)
ij W(k)x

(k−1)
j : j ∈ N (i)});

x
(k)
i = σ (COM(W(k)x

(k−1)
i , h

(k)
i)). (1)

x
(k)
i ∈ R

d(k) denotes the representation embedding of

node i learned at the k-th layer. N (i) denotes the set of

neighbors adjacent to node i. W(k) ∈ R
d(k)×d(k−1)

is trainable

weight. a
(k)
ij denotes the edge weight between nodes i and j.

Functions AGGRE and COM are applied to aggregate neighbor

embeddings and combine themwith the node itself, respectively.

σ denotes the activation function. Based on above equation, we

define the comprehensive search space to support the searches

of elementary, deep and scalable GNNs for various applications.

We categorize the search dimensions as following, and list their

candidate modules in Supplementary Section S2.

• Elementary dimensions. We use the term “elementary

GNNs” to represent the widely applied models in

literature, which often contain less than three layers. The

elementary dimensions are: (I) hidden units specifying

d(k); (II) attention function used to compute a
(k)
ij ; (III)

number of attention heads; (IV) aggregation function; (V)

combination function; and (VI) activation function.

• Deep dimensions. We include dimension of (VII) skip

connections to allow the stacking of deep GNNs. To be

specific, at layer k, the embeddings of up to k − 1 previous

layers could be sampled and combined to the current

layer’s output.

• Scalable dimensions. The dimension of (VIII) batch

size is included to facilitate the computation on large-

scale graphs.

We highlight that most of existing search space only cover

the elementary dimensions (Gao et al., 2019). In particular,

although the batch size is contained in the search space

of You et al. (2020), it is used for the graph classification

instead of the node classification problem concerned in this

work. The technical implementation of batch sampling for

these two problems are significantly different: While the graph

classification samples independent graphs as a batch similar to

tradition machine learning tasks, the node classification samples

dependent nodes to formulate a subgraph.We are aware that the

skip connections are searched in Zhao et al. (2020a). But it only

optimize the connection choice at the last layer of a three-layer

GNN. They fail to explore the deep and scalable models (Chiang

et al., 2019; Chen et al., 2020), which have been recently widely

explored to boost GNNs’ performances.

4. Reinforced conservative controller

In the traditional search controller of reinforcement learning

(RL)-based NAS, a recurrent neural networks (RNN) encoder

is applied to specify the neural architecture strings (Zoph and

Le, 2016; Pham et al., 2018). At each search step, the RNN

encoder will sample the string elements one by one, and use

them to formulate a new architecture. After validating the new

Frontiers in BigData 03 frontiersin.org

https://doi.org/10.3389/fdata.2022.1029307
https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org

Zhou et al. 10.3389/fdata.2022.1029307

FIGURE 1

Illustration of AGNN with a three-layer GNN search along elementary dimensions. Controller takes the best architecture as input, and applies

RNN encoder to sample the alternative modules for each dimension. We select the dimension (e.g., activation function) deserved to be

explored, and modify the preserved best architecture with the alternative modules.

architecture, a scalar reward is used to update the RNN encoder.

However, it is problematic to directly apply this traditional

controller to find the well-performing GNN architectures. The

main reason is that GNNs’ performances may vary significantly

with the slight modifications along a single dimension (e.g.,

aggregation function). The traditional controller would be

hard to learn about which part of architecture modifications

contributingmore or less to the performance improvement, thus

failing to identify the powerful modules of a certain dimension

in the future search process.

In order to search GNN architectures efficiently, we

propose a new controller named reinforced conservative neural

architecture search (RCNAS), as shown in Figure 1. It is

built up upon RL-based exploration boosted with conservative

exploitation. To be specific, there are three key components: (1)

a conservative exploiter, which screens out the best architecture

found so far; (2) a guided architecture explorer, which slightly

modifies themodules of certain dimensions in the preserved best

architecture; and (3) a reinforcement learning trainer that learns

the relationship between the slight architecture modifications

and model performance change.

4.1. Conservative exploiter

The conservative exploiter is applied to keep

the best architecture found so far. In this way, the

following architecture modifications are performed

upon a reliable parent architecture, which ensures fast

exploitation toward the better offspring architectures in

the huge search space. If the offspring GNN outperforms

its parent, the best neural architecture is updated;

otherwise, it will be kept and reused to generate the next

offspring GNN.

4.2. Guided architecture explorer

The guided architecture explorer is proposed to modify

the best architecture, via choosing the dimensions deserved

for exploration. As shown in Figure 1, we use the example

of the activation function being selected. Correspondingly,

the modules of activation function in a three-layer GNN

architecture are changed to ELU, ReLU, and Tanh, respectively.

The details are introduced as follows.

4.2.1. RNN encoders

As shown in the middle part of Figure 1, for each dimension

c, an RNN encoder is implemented to sample a series of new

modules. These modules are potential to be used to update

the n layers in the preserved GNN correspondingly. First, a

subarchitecture string is generated by removing the original

modules of the concerned dimension. This subarchitecture

represents the input status that asks formodule padding. Second,

following an embedding layer, the n new modules are sampled

layer by layer.

Specifically, RNN encoder of dimension c decides the

sampling probability distribution at layer k as: Pc
k
= P(k|θ c) ∈

R
m×1, 1 ≤ k ≤ n. θ c denotes the trainable parameters,

and m denotes the module cardinality. The module at layer

k is randomly sampled based on distribution Pc
k
. Reusing

the example of activation function dimension in Figure 1,

{ELU, ReLU, Tanh} are generated and prepared to modify the

preserved architecture.

4.2.2. Modification guider

It is responsible to choose the architecture dimensions to

modify the preserved GNNs.We note that NAS is encouraged to

explore the search space along the direction with a great amount

Frontiers in BigData 04 frontiersin.org

https://doi.org/10.3389/fdata.2022.1029307
https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org

Zhou et al. 10.3389/fdata.2022.1029307

of uncertainty. The uncertainty of a dimension could be defined

by the entropy of sampling probability. Formally, the decision

entropy of dimension c is: Ec =
∑n

i=1−Pci logP
c
i . The larger

the Ec is, the higher is the probability of exploring uncertain

dimension c.

Given the decision entropies {· · · ,Ec, · · · } of all the

dimensions, the modification guider randomly chooses

dimensions C = {c1, · · · , cs} with size |C| = s. We use

the default value of s = 1 to achieve the goal of minimum

architecture modification. We provide the hyperparameter

study of s in Appendix, which shows the model performance

generally decreases with the increasing of size s. This validate

our motivation to explore the search space of GNN architectures

with small steps.

4.2.3. Architecture modifier

We modify the modules of the preserved best architecture

according to list C. For each dimension within list C, the

corresponding original modules are replaced with the newly

sampled ones. Considering the case of C = {activation function}

in Figure 1, the sampledmodules {ELU, ReLU, Tanh} are applied

for the activation functions in the three-layer GNN, while

keeping the other modules in the preserved architecture

unchanged. After the architecture modifications, the offspring

GNN is evaluated to estimate its model performance.

4.3. Reinforcement learning trainer

We use REINFORCE rule (Sutton et al., 2000) to update

RNN encoder. For each modified dimension c ∈ C, we compute

the gradients of parameters θc by the following rule (Zoph and

Le, 2016):

∇θc J(θc) =

n∑

k=1

E[(R− Bc)∇θc log P̂
c
k]. (2)

P̂c
k
represents the probability of sampled module at layer k,

given by the corresponding element from vector Pci . R denotes

the reward (i.e., validation performance) by evaluating the

new offspring architecture. Bc denotes the reward baseline of

dimension c for variance reduction in reinforcement learning.

Let Mb and Mo denote the model performances of the

preserved best architecture and the new offspring, respectively.

We propose the following reward shaping: R = Mo − Mb,

which represents the model performance variation due to

the architecture modification. Using the same reward, RNN

encoders of all the s dimensions within list C are updated based

on Eq. (2).

The proposed RCNAS solves the inefficiency problem in

the conventional controller by utilizing a small value of s.

The conventional controller used in GraphNAS (Gao et al.,

2019) generates modules of all the dimensions to formulate a

new architecture each time, which is mathematically equivalent

to s ≫ 1 in RCNAS. Reward R is obtained as the result

of mixed architecture modifications on all the dimensions.

When updating a specific RNN encoder, REINFORCE rule

will introduce noise derived from the other dimensions. It is

hard to distinguish the contribution of module samples of each

dimension to the final model performance. RNN encoder will

fail to learn the following relationship accurately: the model

performance and the module selections of certain dimension.

In contrast, by applying the extreme case of s = 1 in RCNAS,

reward R is estimated by slightly modifying one architecture

dimension. REINFORCE rule only updates the corresponding

RNN encoder to learn the above relationship exclusively.

This would facilitate the controller to identify the powerful

modules of each dimension, and explore the well-performing

offspring architectures.

5. Constrained parameter sharing

Compared with training from scratch, the parameter sharing

reduces the computation cost by forcing the explored neural

architecture to share the common weights (Pham et al., 2018).

The transferred weights should work effectively in the new

architecture, and estimate its performance as accurately as

training from scratch. However, the traditional strategy cannot

share weights among the heterogeneous GNN architectures

stably for a few reasons. We say that two neural architectures

are heterogeneous if they have the significantly distinct output

statistics. For example, the output intervals of activation

functions Sigmoid and Linear are [0, 1] and [−∞,+∞],

respectively. The activation values of Linear may be overly large

in the offspring architecture, if its weights are transferred from

ancestor equipped with activation function of Sigmoid. The

output explosion would lead to unstable training of the offspring

architecture. Furthermore, the trainable weights in connection

layers, like batch normalization and skip connections, are deeply

coupled in the ancestor architecture to connect the specific

successive layers. These weights are hard to be transferred to the

offspring to bridge another successive layers well.

To tackle the above challenges, we propose constrained

parameter sharing strategy as illustrated in Figure 2. The

trainable weights are transferred in a layer-wise fashion. For each

layer in the new offspring architecture, it share weights from

suitable ancestor by satisfying three constraints:

• The ancestor and offspring architectures have the same

shapes of trainable weights, in order to enable the

transferred weights being used directly. The weight shapes

are specified by both the hidden units and attention heads.

• The ancestor and offspring architectures have the same

attention and activation functions. The attention function

Frontiers in BigData 05 frontiersin.org

https://doi.org/10.3389/fdata.2022.1029307
https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org

Zhou et al. 10.3389/fdata.2022.1029307

FIGURE 2

Illustration of the constrained parameter sharing strategy between the ancestor and o�spring architectures in layer 2. The trainable weights of a

layer are shared when they have the same shapes (constraint 1), attention and activation functions (constraint 2). Constraint 3 avoids sharing in

the batch normalization (BN) and skip connection (SC).

collects the relevant neighbors, and the activation function

squashes the output to a specific interval. Both of them

largely determine the output statistics of a layer.

• The weights of the connection layers are not shared. The

connection layers contain the batch normalization and skip

connections. We train each offspring architecture with a

few epochs (e.g., 5 or 20 epochs in our experiment) to adapt

these connection weights to the new successive layers.

6. Experiments

We experiment on the node classification task with the goal

of answering the five research questions. Q1: How does the

elementary GNN architecture discovered by AGNN compare

with the human-inventedmodels and the ones searched by other

methods? Q2: How effective is AGNN to build up the deep

architecture? Q3: How scalable is AGNN to explore superior

model on large-scale graphs? Q4: How efficient is the proposed

RCNAS controller compared with the ones in other search

methods? Q5: Whether the constrained parameter sharing

transfers weights effectively to the offspring architectures?

We provide the explanation of discovered architectures in

Supplementary Sections S4–S6.

6.1. Datasets

To study the neural architecture search of elementary and

deep GNNs, we use the benchmark node classification datasets

of Cora, Citeseer, and Pubmed (Sen et al., 2008) under the

transductive setting, and apply PPI under the inductive setting

(Zitnik and Leskovec, 2017). To search the scalable GNNs, we

use large-scale graphs of Reddit (Hamilton et al., 2017) and

ogbn-products (Hu et al., 2020). Their dataset statistics are in

Supplementary Section S1.

6.2. Baseline methods

• Human-invented GNNs : The message-passing based

GNNs as shown in Eq. (1) are considered for fair

comparison, except the one combined with the pooling

layer or other advanced techniques. Considering the

elementary GNNs, we apply baseline models of Chebyshev

(Defferrard et al., 2016), GCN (Kipf and Welling, 2017),

GraphSAGE (Hamilton et al., 2017), GAT (Velickovic

et al., 2017), LGCN (Gao et al., 2018). For deep

GNNs, we consider state-of-the-art (SOTA) models of

PairNorm (Zhao and Akoglu, 2019), SGC (Wu et al., 2019),

JKNet (Xu et al., 2018), and APPNP (Klicpera et al., 2018).

For scalable GNNs, we use baseline models of GraphSAGE

(Hamilton et al., 2017), Cluster-GCN (Chiang et al., 2019),

and GraphSAINT (Zeng et al., 2019).

• NAS approaches: We note that most of existing NAS

methods cannot be applied directly to search deep and

scalable GNNs. We use GraphNAS (Gao et al., 2019), the

most popular NAS model based on reinforcement learning,

as baseline to search elementary GNNs. The random

search is implemented to sample architectures randomly,

serving as a strong baseline to evaluate the efficiency and

effectiveness of the sophisticated NAS.

6.3. Training details

Following the previous configurations (Velickovic et al.,

2017; Gao et al., 2018), we search the two-layer and three-

layer elementary GNNs for the transductive and inductive

Frontiers in BigData 06 frontiersin.org

https://doi.org/10.3389/fdata.2022.1029307
https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org

Zhou et al. 10.3389/fdata.2022.1029307

TABLE 1 Classification accuracy (in percent) under transductive learning.

Framework Model Cora Citeseer Pubmed

#Layers #Params Accuracy #Params Accuracy #Params Accuracy

GNNs

Chebyshev 2 0.09M 81.2 0.09M 69.8 0.09M 74.4

GCN 2 0.02M 81.5 0.05M 70.3 0.02M 79.0

GAT 2 0.09M 83.0± 0.7 0.23M 72.5± 0.7 0.03M 79.0± 0.3

LGCN 2 0.05M 81.6± 0.4 0.12M 70.4± 1.1 0.02M 77.3± 1.2

NAS

GraphNAS-w/o share 2 0.09M 82.7± 0.4 0.23M 73.5± 1.0 0.03M 78.8± 0.5

GraphNAS-with share 2 0.07M 83.3± 0.6 1.91M 72.4± 1.3 0.07M 78.1± 0.8

Random-w/o share 2 0.37M 81.4± 1.1 0.95M 72.9± 0.2 0.13M 77.9± 0.5

Random-with share 2 2.95M 82.3± 0.5 0.95M 69.9± 1.7 0.13M 77.9± 0.4

AGNN
AGNN-w/o share 2 0.05M 83.6 ± 0.3 0.71M 73.8 ± 0.7 0.07M 79.7 ± 0.4

AGNN-with share 2 0.37M 82.7± 0.6 1.90M 72.7± 0.4 0.03M 79.0± 0.5

Datasets are based on full splitting: all nodes except those in the validation and test sets will be used for training. The bold values indicate the highest accuracy at each column. #Number

of parameters.

TABLE 2 Test accuracy of the human-invented and searched architectures under the inductive learning.

Framework Model Layers
PPI

Params F1 score

GNNs

GraphSAGE 2 0.39M 0.612

GAT 3 0.89M 0.973± 0.002

LGCN 4 0.85M 0.772± 0.002

GraphNAS-w/o share 3 4.1M 0.985± 0.004

NAS

GraphNAS-with share 3 1.4M 0.960± 0.036

Random-w/o share 3 1.4M 0.984± 0.004

Random-with share 3 1.4M 0.977± 0.011

AGNN
AGNN-w/o share 3 4.6M 0.992 ± 0.001

AGNN-with share 3 1.6M 0.991± 0.001

The bold values indicate the highest accuracy at each column.

learning, respectively. The layer numbers for deep model

search and scalable model search are 16 and 3, respectively.

A total of 1,000 architectures are explored iteratively during

the search progress. The classification accuracies are averaged

via randomly initializing the optimal architecture 10 times.

The details of training hyperparameter setting are listed in

Supplementary Section S3.

6.4. Results

6.4.1. Search of elementary GNNs

We search the elementary GNNs with 2–3 layers, and

compare with the human-invented GNNs and NAS methods

to answer question Q1. The test performances of human-

invented GNNs are reported directly from their papers. Tables 1,

2 summarize the classification results and parameter sizes for the

transductive and inductive learning, respectively. We make the

following observations.

❶ The neural architectures discovered by AGNN without

parameter sharing achieve the most superior accuracies on

all the benchmarks. Comparing with the human-invented

GNNs, AGNN without parameter sharing delivers the average

improvement of 2.8%, owing to the careful selection of

each architecture axis. Comparing with GraphNAS and

random search, our AGNN is more effective to explore the

outperforming models. At each search step, the whole neural

architecture is sampled and reconstructed in GraphNAS and

random search. In contrast, our AGNN exploits the best

architecture to provide a reliable start, and explores the search

space by only modifying a specific module class. Therefore,

it provides a good trade-off between the exploitation and

exploration to pursue the outperforming models.

❷ AGNN with parameter sharing generally outperforms

the human-invented GNNs. Although the parameter sharing

Frontiers in BigData 07 frontiersin.org

https://doi.org/10.3389/fdata.2022.1029307
https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org

Zhou et al. 10.3389/fdata.2022.1029307

TABLE 3 Classification accuracy (in percent) of 16-layer GNNs.

Model Cora Citeseer Pubmed

GCN 22.02± 6.24 19.78± 1.95 37.94± 0.53

PairNorm 44.23± 7.26 27.45± 7.22 68.59± 7.30

SGC 72.10± 0.00 71.03± 1.18 70.20± 0.00

JKNet 74.54± 3.72 54.33± 7.74 69.98± 6.26

APPNP 79.38± 0.62 72.13± 0.53 77.07± 0.66

Random 83.76± 0.42 71.55± 0.94 79.01± 0.47

AGNN 84.06 ± 0.29 72.04 ± 0.89 79.51 ± 0.32

Datasets are based on public splitting. The bold values indicate the highest accuracy at

each column.

TABLE 4 Node classification accuracies (in percent) on large-scale

graphs.

Model Reddit ogbn-products

GraphSASE 95.96± 0.03 78.70± 0.36

ClusterGCN 95.94± 0.05 78.97± 0.33

GrarphSAINT 95.46± 0.08 79.08± 0.24

Random 95.90± 0.04 79.13± 0.58

AGNN 96.47 ± 0.04 79.37 ± 0.69

The bold values indicate the highest accuracy at each column.

brings performance deterioration, they could accelerate the

search progress by avoiding training from scratch for each

searched models. We provide trade-off study between the model

performance and computation time in the following.

6.4.2. Search of deep GNNs

To answer question Q2, we search the deep GNNs with

16 layers, and compare with other search algorithms as well as

SOTAmodels. We also include the evolutionary algorithm as an

another strong baseline, where the best architecture found so is

reserved for the following random mutation.

We note that GraphNAS cannot be directly applied to search

deep model due to its simplified search space. The classification

accuracies are listed (Table 3). ❸ The results show that the novel

deep architectures identified by AGNN consistently deliver the

outperforming accuracies. Comparing with the human-invented

models, AGNN optimizes the skip connections at each layer to

tackle the over-smoothing issue, which is the key bottleneck in

developing deep GNNs (Zhou et al., 2020). Due to the large

search space of skip connections, the random search may be

inefficient to explore the well-performing architectures given the

certain search steps.

6.4.3. Search of scalable GNNs

To answer questionQ3, we further search the training batch

size of GNNs on large-scale graphs: Reddit and ogbn-products.

We note that all of other NAS frameworks cannot support

the scalable optimization on graphs with more than 200K

nodes. Comparing with scalable GNNs and random search, we

list the classification accuracy in Table 4. ❹ By searching the

appropriate batch size, skip connections, etc., AGNN could explore

the outperforming scalable GNNs for each large-scale dataset.

6.4.4. Search e�ciency comparison

To answer question Q4, we compare the search efficiencies

of AGNN, GraphNAS and random search. Given the total

of 1,000 search steps, the search efficiency is represented by

the progression of the average performance in the top-10

architectures found so far. From Figure 3, wemake the following

observation.

❺ AGNN is much faster to identify the well-performing

architectures during the search progress. At each step, the

top-10 architectures discovered by AGNN have the better

average performance comparing with GraphNAS and random

search. The remarkable efficiency of AGNN is contributed by

the exploitation and conservative exploration abilities within

RCNAS controller: the best architecture is used preserved for

modification; and the smallest amendment on one module class

is applied. As explained before, RCNAS controller optimizes the

module samples accurately to push the search direction toward

the good architectures.

6.4.5. Parameter sharing e�ectiveness

We study the effectiveness of the proposed constrained

parameter sharing to answer question Q5. The effective

transferred weights should couple into the new architectures

to estimate them as accurate as training from scratch. Over

AGNN framework, we compare the constrained sharing with

the relaxed one in GraphNAS as well as training from scratch.

The cumulative distribution of classification performances are

shown in Figure 4 for the 1,000 sampled architectures, where we

make the observation.

For the cumulative distribution, X-axis denotes the

cumulative performance and the Y-axis is the corresponding

probability, where the lower curve has the better estimation

of the sampled architectures. ❻ The constrained parameter

sharing strategy estimates the new architectures similar to the

ground truth of training from scratch. Compared with the

relaxed sharing, the cumulative distribution curves of the

constrained sharing are much closer to those of training from

scratch. Given a certain cumulative probability in Y-axis, the

constrained sharing reaches those neural architectures with

better model performances than the relaxed one. That is because

the parameter sharing is allowed only among the homogeneous

Frontiers in BigData 08 frontiersin.org

https://doi.org/10.3389/fdata.2022.1029307
https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org

Zhou et al. 10.3389/fdata.2022.1029307

FIGURE 3

The progression of top-10 averaged performance of AGNN, GraphNAS, and random search. (A) PPI and (B) Citeseer.

FIGURE 4

The cumulative distribution of validation accuracies of the 1,000 sampled architectures for AGNN under the constrained/relaxed/without

parameter sharing. (A) PPI and (B) Citeseer.

architectures with similar output statistics. Combined with a

few epochs to warm up weights in the connection layers, these

constraints ensure the shared weights to be effective in the newly

sampled architectures.

6.4.6. Influence of architecture modification

We study how the different scales of architecture

modifications affect the search efficiency of AGNN. While

the preserved architecture is modified at the minimum level

when modification size s = 1, the architecture string will be

resampled completely similar to the traditional controller if

s = 6. Specially, considering s = 1, 3, and 6, we show the top-10

architecture progressions on PPI and Citeseer in Figure 5.

Since the modification scales affect the coupling of shared

weights to the child architectures, AGNN is evaluated under the

parameter sharing.

❼ It is observed that the progression efficiency decreases

with the increment of s. Specifically, we re-evaluate the best

architectures identified with different modification sizes on

PPI. The F1 scores of s = 1, 3 and 6 are 0.991, 0.987,

and 0.982, respectively, which also decrease with s. The

benefits of smaller s in searching neural architectures are

due to the following two facts. First, the offspring tends

Frontiers in BigData 09 frontiersin.org

https://doi.org/10.3389/fdata.2022.1029307
https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org

Zhou et al. 10.3389/fdata.2022.1029307

FIGURE 5

The progression of top-10 averaged performance for AGNN under modification size s = 1, 3, and 6 on PPI (left) and Citeseer (right).

TABLE 5 The trade-o� between node classification performance and computation time cost for AGNN.

Model
#Epochs Cora Citeseer Pubmed PPI

T/I Time Accuracy Time Accuracy Time Accuracy Time F1 score

AGNN-w/o share 200 / 20 27.76 83.6± 0.3% 23.42 73.8± 0.7% 28.85 79.7± 0.4% 34.36 0.992± 0.001

AGNN-with share 5 / 1 1.57 41.9± 2.5% 4.60 67.7± 1.3% 2.51 77.4± 0.7% 3.48 0.953± 0.055

AGNN-with share 20 / 5 4.34 82.7± 0.6% 6.61 72.7± 0.7% 7.42 79.0± 0.5% 12.57 0.991± 0.001

AGNN-with share 50 / 10 11.70 80.2± 0.6% 11.09 72.5± 0.2% 10.42 79.1± 0.2% 22.62 0.991± 0.001

Time in second is evaluated to measure the time cost taken to search and train a new architecture. Symbols T and I denote the transductive and inductive learning, respectively. #Epochs

a/b denotes the number of training epochs a and b for these two learning.

TABLE 6 Test performance comparison of the transferred architecture

to the optimal ones on Citeseer and Pubmed.

Model Citeseer Pubmed

AGNN-w/o share 73.8± 0.7% 79.7± 0.4%

Transferred model 71.8± 0.7% 78.5± 0.4%

to have the similar structure and output statistics as the

preserved input architecture, since it is generated with a

slight modifications. The shared weights would be more

effective in the offspring to estimate the model performance

accurately. Second, compared with s > 1, the controller

of s = 1 changes the specific module class to obtain

the corresponding performance variation. By removing the

interference from other module classes, the specific RNN

encoder exactly learns the relationship between the module

samples of certain class and model performance. Through

training the RNN encoder iteratively, it tends to sample good

modules to formulate the well-performing architectures in the

future search.

6.4.7. Trade-o� between performance and time
cost

Training from scratch learns the weights of the sampled

architectures accurately to improve search reliance, which help

approximate to the optimal architecture. However, it incurs

an enormous computational cost. Our constrained sharing

provides a trade-off between the search performance and

computation time. Through transferring weights to avoid

complete training, the constrained strategy uses another few

epochs to warm up the weights of sampled architectures to

promise an accurate model estimation to some degree. Themore

epochs it takes, the better search performance it may achieve.

We study this trade-off by considering the series of warm-

up epochs {5, 20, 50} / {1, 5, 10} for the transductive/inductive

settings. The discovered model performance and time cost are

shown in Table 5. Note that time cost is estimated under the

following environments: PyTorch implementation, test machine

of GeForce GTX-1080 Ti with 12GB GPU.

Some notable features about the trade-off could be

summarized from Table 5. First, the warm-up epoch of 5/1 is

insufficient to train the new architecture well to estimate its

classification ability accurately. A worse neural architecture may

be identified and tested finally in the given task. Especially

Frontiers in BigData 10 frontiersin.org

https://doi.org/10.3389/fdata.2022.1029307
https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org

Zhou et al. 10.3389/fdata.2022.1029307

in dataset Cora, the classification accuracy is even much

worse than the human-invented neural networks. Second, the

warm-up epoch of 20/5 achieves a good balance between the

search performance and the time cost. It obtains the accuracy

or F1 score comparable to training from scratch with 200

epochs, but only consumes a small amount of time. Third,

the model performances are similar for the warm-up epochs

of 50/10 and 20/5, although the former one takes much

more time to train the new architectures. That is because the

parameter sharing helps transfer the well-trained weights from

the ancestor architecture. A few epochs would be enough to

adapt these weights to the new architecture to estimate its

classification performance.

6.4.8. Model transfer

Following the model evaluation of NAS in other

domains (Pham et al., 2018; Zoph et al., 2018), we delve

into the research problem of understanding whether the

discovered GNNs could be generalized to the different tasks.

To be specific, we transfer the architecture identified on Cora

to the node classification tasks on Citeseer and Pubmed. We

apply the neural architecture found without parameter sharing

by AGNN. Table 6 shows the classification accuracies of the

transferred architecture, compared with the original optimal

ones in Table 1.

❽ It is observed that the test accuracies of the transferred

architecture are a little bit worse than those of the discovered

optimal ones. The experimental results validate our previous

research motivations—there is none a graph neural networks

could generalize to a series of different graph-structured

data. Given a specific graph analysis task, it is crucial to

carefully identify a well-performing architecture to optimize the

desired performance.

7. Conclusion

In this paper, we present AGNN to find the optimal

graph neural architecture given a node classification task.

The comprehensive search space, RCNAS controller and

constrained parameter sharing strategy together are designed

specifically for the optimization of elementary, deep, and

scalable GNNs. The experimental results show that the

discovered neural architectures achieve quite the competitive

performances on popular benchmark datasets and large-scale

graphs. The proposed RCNAS controller searches the well-

performing architectures more efficiently, and the shared

weights could be more effective in the offspring network

under constraints.

Data availability statement

The original contributions presented in the study are

included in the article/Supplementary material, further inquiries

can be directed to the corresponding author.

Author contributions

KZ and XHu contributed to the whole framework. XHua,

QS, and RC contributed to the paper revising. All authors

contributed to the article and approved the submitted version.

Funding

This work partially supported by NSF (#IIS-1750074, #IIS-

1900990, and #IIS-18490850).

Conflict of interest

Author QS was employed by LinkedIn. Author RC was

employed by Samsung Research America.

The remaining authors declare that the research was

conducted in the absence of any commercial or financial

relationships that could be construed as a potential conflict

of interest.

Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed

or endorsed by the publisher.

Author disclaimer

The views, opinions, and/or findings contained in this paper

are those of the authors and should not be interpreted as

representing any funding agencies.

Supplementary material

The Supplementary Material for this article can be

found online at: https://www.frontiersin.org/articles/10.3389/

fdata.2022.1029307/full#supplementary-material

Frontiers in BigData 11 frontiersin.org

https://doi.org/10.3389/fdata.2022.1029307
https://www.frontiersin.org/articles/10.3389/fdata.2022.1029307/full#supplementary-material
https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org

Zhou et al. 10.3389/fdata.2022.1029307

References

Baker, B., Gupta, O., Naik, N., and Raskar, R. (2016). Designing neural network
architectures using reinforcement learning. arXiv. doi: 10.48550/arXiv.1611.
02167

Cai, S., Li, L., Deng, J., Zhang, B., Zha, Z.-J., Su, L., et al. (2021). “Rethinking
graph neural architecture search from message-passing,” in Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition (Nashville, TN:
IEEE), 6657–6666.

Chang, W.-L., and Lin, T.-H. (2010). “A cluster-based approach for automatic
social network construction,” in 2010 IEEE Second International Conference on
Social Computing (Minneapolis, MN: IEEE), 601–606.

Chen, M., Wei, Z., Huang, Z., Ding, B., and Li, Y. (2020). Simple
and deep graph convolutional networks. arXiv preprint arXiv:2007.02133.
doi: 10.48550/arXiv.2007.02133

Chen, Y.-W., Song, Q., and Hu, X. (2021). Techniques for automated
machine learning. ACM SIGKDD Explorat. Newslett. 22, 35–50.
doi: 10.1145/3447556.3447567

Chiang, W.-L., Liu, X., Si, S., Li, Y., Bengio, S., and Hsieh, C.-J.
(2019). “Cluster-gcn: an efficient algorithm for training deep and large graph
convolutional networks,” in Proceedings of the 25th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining (Anchorage, AL: ACM),
257–266.

Corso, G., Cavalleri, L., Beaini, D., Liò, P., and Veličković, P. (2020). Principal
neighbourhood aggregation for graph nets. arXiv preprint arXiv:2004.05718.
doi: 10.48550/arXiv.2004.05718

Defferrard, M., Bresson, X., and Vandergheynst, P. (2016). “Convolutional
neural networks on graphs with fast localized spectral filtering,” in NeuIPS
(Barcelona: Conference on Neural Information Processing Systems).

Ding, Y., Yao, Q., and Zhang, T. (2020). Propagation model search for graph
neural networks. arXiv preprint arXiv:2010.03250. doi: 10.48550/arXiv.2010.03250

Ding, Y., Yao, Q., Zhao, H., and Zhang, T. (2021). “Diffmg: differentiable meta
graph search for heterogeneous graph neural networks,” in Proceedings of the 27th
ACM SIGKDD Conference on Knowledge Discovery and Data Mining (Singapore:
ACM), 279–288.

Elsken, T., Metzen, J. H., and Hutter, F. (2018). Neural architecture search: a
survey. arXiv. doi: 10.1007/978-3-030-05318-5_3

Gao, H., Wang, Z., and Ji, S. (2018). “Large-scale learnable graph convolutional
networks,” in Proceedings of the 24th ACM SIGKDD International Conference on
Knowledge Discovery & Data Mining (London: ACM), 1416–1424.

Gao, Y., Yang, H., Zhang, P., Zhou, C., and Hu, Y. (2019). Graphnas:
graph neural architecture search with reinforcement learning. arXiv.
doi: 10.48550/arXiv.1904.09981

Gilmer, J., Schoenholz, S. S., Riley, P. F., Vinyals, O., and Dahl,
G. E. (2017). Neural message passing for quantum chemistry. arXiv.
doi: 10.48550/arXiv.1704.01212

Grover, A., and Leskovec, J. (2016). “node2vec: scalable feature learning for
networks,” in Proceedings of the 22nd ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining (San Fransisco, CA: ACM), 855–864.

Hamilton, W., Ying, Z., and Leskovec, J. (2017). “Inductive representation
learning on large graphs,” in Advances in Neural Information Processing Systems
(Long Beach, CA), 1024–1034.

Hu, W., Fey, M., Zitnik, M., Dong, Y., Ren, H., Liu, B., et al. (2020).
Open graph benchmark: datasets for machine learning on graphs. arXiv preprint
arXiv:2005.00687. doi: 10.48550/arXiv.2005.00687

Kipf, T. N., and Welling, M. (2017). “Semi-supervised classification with graph
convolutional networks,” in ICLR (Toulon: International Conference on Learning
Representations).

Klicpera, J., Bojchevski, A., and Günnemann, S. (2018). Predict then
propagate: graph neural networks meet personalized pagerank. arXiv preprint
arXiv:1810.05997. doi: 10.48550/arXiv.1810.05997

Li, Y., and King, I. (2020). “Autograph: automated graph neural network,” in
International Conference on Neural Information Processing (Bangkok: Springer),
189–201.

Liu, C., Chen, L.-C., Schroff, F., Adam, H., Hua, W., Yuille, A. L., et al.
(2019). “Auto-deeplab: hierarchical neural architecture search for semantic image
segmentation,” in Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition (Long Beach, CA: IEEE), 82–92.

Micheli, A. (2009). Neural network for graphs: a contextual constructive
approach. IEEE Trans. Neural Netw. 20, 498–511. doi: 10.1109/TNN.2008.2010350

Pham, H., Guan, M. Y., Zoph, B., Le, Q. V., and Dean, J. (2018). Efficient neural
architecture search via parameter sharing. arXiv. doi: 10.48550/arXiv.1802.03268

Sen, P., Namata, G., Bilgic, M., Getoor, L., Galligher, B., and Eliassi-
Rad, T. (2008). Collective classification in network data. AI Mag. 29, 93–106.
doi: 10.1609/aimag.v29i3.2157

Shi, M., Wilson, D. A., Zhu, X., Huang, Y., Zhuang, Y., Liu, J., et al. (2020).
Evolutionary architecture search for graph neural networks.Knowl. Based Syst. 247,
108752. doi: 10.1016/j.knosys.2022.108752

Sutton, R. S., McAllester, D. A., Singh, S. P., and Mansour, Y. (2000). “Policy
gradient methods for reinforcement learning with function approximation,” in
Advances in Neural Information Processing Systems (Denver, CO), 1057–1063.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., et al.
(2017). “Attention is all you need,” in Advances in Neural Information Processing
Systems (Long Beach, CA) 5998–6008.

Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Lio, P., and Bengio, Y.
(2017). Graph attention networks. arXiv 1. doi: 10.48550/arXiv.1710.10903

Wei, L., Zhao, H., Yao, Q., and He, Z. (2021). “Pooling architecture search for
graph classification,” in Proceedings of the 30th ACM International Conference on
Information and Knowledge Management (Gold Coast, QLD: ACM), 2091–2100.

Wu, F., Zhang, T., Souza Jr, A. H., d., Fifty, C., Yu, T., et al. (2019).
Simplifying graph convolutional networks. arXiv preprint arXiv:1902.07153.
doi: 10.48550/arXiv.1902.07153

Xu, K., Li, C., Tian, Y., Sonobe, T., Kawarabayashi, K.-I., and Jegelka, S.
(2018). Representation learning on graphs with jumping knowledge networks.
arXiv preprint arXiv:1806.03536. doi: 10.48550/arXiv.1806.03536

You, J., Ying, Z., and Leskovec, J. (2020). “Design space for graph neural
networks, in Advances in Neural Information Processing Systems, Vol. 33
(Vancouver, BC).

Zeng, H., Zhou, H., Srivastava, A., Kannan, R., and Prasanna, V. (2019).
Graphsaint: graph sampling based inductive learning method. arXiv preprint
arXiv:1907.04931. doi: 10.48550/arXiv.1907.04931

Zhao, H., Wei, L., and Yao, Q. (2020a). “Simplifying architecture search for
graph neural network,” in International Conference on Information and Knowledge
Management (Galway).

Zhao, L., and Akoglu, L. (2019). Pairnorm: tackling oversmoothing in gnns.
arXiv preprint arXiv:1909.12223. doi: 10.48550/arXiv.1909.12223

Zhao, Y., Wang, D., Gao, X., Mullins, R., Lio, P., and Jamnik, M.
(2020b). Probabilistic dual network architecture search on graphs. arXiv preprint
arXiv:2003.09676. doi: 10.48550/arXiv.2003.09676

Zhou, K., Huang, X., Li, Y., Zha, D., Chen, R., andHu, X. (2020). Towards deeper
graph neural networks with differentiable group normalization. arXiv preprint
arXiv:2006.06972. doi: 10.48550/arXiv.2006.06972

Zitnik, M., and Leskovec, J. (2017). Predicting multicellular function
through multi-layer tissue networks. Bioinformatics 33, i190-i198.
doi: 10.1093/bioinformatics/btx252

Zoph, B., and Le, Q. V. (2016). Neural architecture search with reinforcement
learning. arXiv. doi: 10.48550/arXiv.1611.01578

Zoph, B., Vasudevan, V., Shlens, J., and Le, Q. V. (2018). “Learning transferable
architectures for scalable image recognition,” in CVPR, 8697–8710.

Frontiers in BigData 12 frontiersin.org

https://doi.org/10.3389/fdata.2022.1029307
https://doi.org/10.48550/arXiv.1611.02167
https://doi.org/10.48550/arXiv.2007.02133
https://doi.org/10.1145/3447556.3447567
https://doi.org/10.48550/arXiv.2004.05718
https://doi.org/10.48550/arXiv.2010.03250
https://doi.org/10.1007/978-3-030-05318-5_3
https://doi.org/10.48550/arXiv.1904.09981
https://doi.org/10.48550/arXiv.1704.01212
https://doi.org/10.48550/arXiv.2005.00687
https://doi.org/10.48550/arXiv.1810.05997
https://doi.org/10.1109/TNN.2008.2010350
https://doi.org/10.48550/arXiv.1802.03268
https://doi.org/10.1609/aimag.v29i3.2157
https://doi.org/10.1016/j.knosys.2022.108752
https://doi.org/10.48550/arXiv.1710.10903
https://doi.org/10.48550/arXiv.1902.07153
https://doi.org/10.48550/arXiv.1806.03536
https://doi.org/10.48550/arXiv.1907.04931
https://doi.org/10.48550/arXiv.1909.12223
https://doi.org/10.48550/arXiv.2003.09676
https://doi.org/10.48550/arXiv.2006.06972
https://doi.org/10.1093/bioinformatics/btx252
https://doi.org/10.48550/arXiv.1611.01578
https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org

	Auto-GNN: Neural architecture search of graph neural networks
	1. Introduction
	2. Related work
	2.1. Graph neural networks
	2.2. Neural architecture search
	2.3. Graph NAS

	3. Search space
	4. Reinforced conservative controller
	4.1. Conservative exploiter
	4.2. Guided architecture explorer
	4.2.1. RNN encoders
	4.2.2. Modification guider
	4.2.3. Architecture modifier

	4.3. Reinforcement learning trainer

	5. Constrained parameter sharing
	6. Experiments
	6.1. Datasets
	6.2. Baseline methods
	6.3. Training details
	6.4. Results
	6.4.1. Search of elementary GNNs
	6.4.2. Search of deep GNNs
	6.4.3. Search of scalable GNNs
	6.4.4. Search efficiency comparison
	6.4.5. Parameter sharing effectiveness
	6.4.6. Influence of architecture modification
	6.4.7. Trade-off between performance and time cost
	6.4.8. Model transfer

	7. Conclusion
	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Publisher's note
	Author disclaimer
	Supplementary material
	References

