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Representing bacteria with
unique genomic signatures

Diem-Trang Pham and Vinhthuy Phan*

Department of Computer Science, University of Memphis, Memphis, TN, United States

Classifying or identifying bacteria in metagenomic samples is an important

problem in the analysis of metagenomic data. This task can be computationally

expensive since microbial communities usually consist of hundreds to

thousands of environmental microbial species. We proposed a new method

for representing bacteria in a microbial community using genomic signatures

of those bacteria. With respect to the microbial community, the genomic

signatures of each bacterium are unique to that bacterium; they do not exist

in other bacteria in the community. Further, since the genomic signatures of

a bacterium are much smaller than its genome size, the approach allows for

a compressed representation of the microbial community. This approach uses

a modified Bloom filter to store short k-mers with hash values that are unique

to each bacterium. We show that most bacteria in many microbiomes can be

represented uniquely using the proposed genomic signatures. This approach

paves the way toward new methods for classifying bacteria in metagenomic

samples.
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1. Introduction

Metagenomics is the study of analyzing genomes contained in environmental

samples. Recent metagenomic studies revealed that the knowledge of the microbial

composition in the human gut shows certain complexmechanisms of disorders of human

health (Handelsman et al., 2007), such as diverse as diabetes, depression and rheumatoid

arthritis. And although the dysbiosis has been proved to link to the gastrointestinal

tract (Eloe-Fadrosh and Rasko, 2013), it can be on any exposed surface or mucus

membrane, such as the skin or the respiratory system. This variation can impact the

human health (Martín et al., 2014). A challenge in metagenomics that is caused by

large and complex metagenomic data is the identification and classification of bacteria

in microbial communities that consist of thousands or more environmental microbial

species (Teeling and Fo, 2012; Sharpton, 2014). A number of approaches have been

developed, including alignment reads to reference genomes, analyzing taxonomically

informative gene markers, clustering sequences, assembling sequences into genomes and

using k-mer based approach. In any approach, it requires a set of reference genomes as

a database or an index. In alignment approach, the metagenome sequences (or reads)

from the environment are aligned to the reference genome database. In k-mer based

approach, an index is created from k-mers of the reference genomes, and this index

is used in identification or profiling. While alignment approach has been shown to be
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accurate, they require large amounts of time and resources.

There are many approaches that utilize gene markers or

k-mer have been introduced to reduce the running time

while still achieving the high accuracy (Lindgreen et al.,

2016).

A Bloom filter is a probabilistic data structure that provides

very fast membership queries. This useful data structure

has been used in several applications in bioinformatics and

metagenomics. FACS (Stranneheim et al., 2010) creates a Bloom

filter for each reference genome and inserts all k-mers in

the filter. Later in query, if a match was found for a k-

mer, a match score is computed and it has to surpass a

threshold to be classified to a reference genome. BFCounter

(Melsted and Pritchard, 2011) introduces an application of

Bloom filter to count the k-mers efficiently. BioBloom tool

(Chu et al., 2014) applied Bloom filter to create a filter-

based sequence-screening tool which was claimed to be faster

than BWA, Bowtie 2 and FACS. And another research in

building Bloom filters (Pellow et al., 2017) with one-sided

k-mers, two-sided k-mers and sparse k-mers data structures

improves the performance of the Bloom filter, which will

be useful in genome assembly, sequence comparison and

sequence search applications. Sequence Bloom Tree (Solomon

and Kingsford, 2016), another application of Bloom Filter, is

a method for querying thousands of short-read sequencing

in RNA-seq experiments for expressed isoforms. This method

was able to search large collections of RNA-seq experiments

for a given transcript order of magnitude faster than existing

approaches.

Most of the existing work use one Bloom filter for each

genome, this may not efficiently represent a microbiome

or community. In this work, we introduce a method that

uses a modified Bloom filter to store unique signatures

of bacteria. As such, it can be used to provide unique

representation of bacteria in microbiomes. We also show

that this method can be used to retrieve species in two

microbiomes.

2. Methods

Similar to other existing profiling methods, our

method consists of two procedures. The first procedure

builds an index based on the genomes of all the bacteria

that might exist in metagenomic samples. The index

stores unique genomic signatures of each genome in the

microbiome. Once an index is built, it can be used to

identify, classify or profile metagenomic samples. Given

reads in a metagenomic sample, the second procedure,

known as the querying phase, makes a query for each

read to identify which bacterial genome the read may

come from.

2.1. Set membership determination with
bloom filters

A Bloom filter is a space-efficient probabilistic data structure

used for set membership queries. Technically, a Bloom filter is

an M-bit array B, which is initially all zeros, together with a set

of n hash functions. To prepare a Bloom filter for identifying

elements in a universe of elements, each element xi is hashed to

obtain n hashed values h1(xi), · · · , hn(xi). Each entry B(hj(xi)) is

set to 1.

To check whether an item y exists in B, n hash values

h1(y), · · · , hn(y) are computed. If all values are 1, the query

answer is True. If not, it is False.

In membership querying, a Bloom filter does not make a

false negative. A query to an element in the universe, which is

stored in the filter, always correctly returns True. A false positive,

however, can happen. Due to the nature of simply setting all

hashed entries to 1 in the filter building phase, it is possible that

the query of an element z that is not stored in the filter actually

returns True. It is known that to minimize the probability of

getting false positives, the optimal number of hash functions

should be b ln 2
m , where b is the size (number of bits) of the filter,

and m is the number of elements stored in the filter (Bloom,

1970).

2.2. Finding k-mers with genome-unique
hash values

Given a set of referenced bacterial genomes that might exist

in the metagenomic environment of interest, an index, F, which

is a modified Bloom filter, is built to store unique genomic

signatures of each genome.

The index, F, is an array with m entries. During the

processing of referenced genomes, k-mers from these genomes

are hashed into F using n randomly generated hash functions.

A k-mer x is hashed into n entries h1(x), · · · , hn(x) of F. After

all referenced genomes are processed, an entry of F with a

positive value g corresponds to a k-mer, whose hash values are

unique to genome g. This allows F to be used in ways similar

to those of a Bloom filter to detect genomes that are present

in the metagenomic sample. The construction of F consists of

two main phases. In each phase, all genomes are sequentially

processed by Algorithm 1. In both phases, Algorithm 1 shares

a common goal: it attempts to identify k-mers with hash values

that are unique to the genome. It does this by going through each

k-mer of the genome and marking all n locations (determined

by n hash values) with dirty or with the genome id. A location

is dirty (set to -1) if two k-mers on two different genomes get

hashed to it. If a location is not dirty, it stores the id of some

genome. If a k-mer x of genome g1 is hashed to an entry that

holds the id of another genome, say g2, then that x is not unique
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1: positions = []

2: for k-mer k at position pos in genome gid do

3: unique = True

4: idx = []

5: for each hash function f do

6: v = f (k)

7: idx.append(v)

8: if F[v] 6= 0 and F[v] 6= gid then

9: unique = False

10: if unique then

11: if phase == 2 then

12: positions.append(pos)

13: for each value v in idx do

14: F[v] = gid

15: else

16: for each value v in idx do

17: F[v] = −1

18: if phase == 2 then

19: Reduce(F, gid, positions)

Algorithm 1. ProcessGenome(F, gid, phase).

and all entries h1(x), · · · , hn(x) of F are set to dirty. If x is

deemed unique, the genome id is stored in all of these entries.

Suppose that after Phase 1, genomes g1, · · · , gl are processed

sequentially in this order. Entries in F with values g1 may not

correspond to k-mers with unique hash values. To see this,

suppose k-mer x appears in both g1, k-mer y appears in g2, and

some of the hash values of x and y are the same. Because g2

is processed after g1, all the entries corresponding to the hash

values of y are set to dirty, but not all the entries corresponding

to the hash values of x are set to dirty.

It is, however, important to understand that after Phase 1,

entries in F with values gl will in fact correspond to k-mers

in genome gl with hash values unique to this genome. Since gl
is processed last, if an entry in F has value gl, it means some

k-mer in gl with hash values that do not collide with any k-

mer in all the other genomes that are already processed. Thus,

this k-mer has hash values that are unique; no other k-mer in

any other genome shares one of these hash values. Therefore,

when a genome is processed by Algorithm 1 after all of the

other genomes have already been processed, all of k-mers with

unique hash values in that genome are correctly marked in F.

This means that after Phase 2, when all genomes are processed

again by Algorithm 1, all k-mers with unique hash values in all

genomes will be correctly marked in F.

2.3. Query phase: Reads processing

Given reads from a metagenomic sample, the main task is

to identify which bacteria exist in the sample. This boils down

1: selected = [positions[0]]

2: for i = 1; i < len(positions); i = i+ 1 do

3: if selected[len(selected)− 1]+ ω < positions[i] then

4: selected.append(positions[i])

5: else

6: Let x be the k-mer at positions[i] in genome gid

7: for each hash function f do

8: F[f (x)] = −1

9: for each position p in selected do

10: Let x be the k-mer at p in genome gid

11: for each hash function f do

12: F[f (x)] = gid

Algorithm 2. Reduce(F, gid, positions).

to processing reads and determining which bacterial genomes

they most likely belong to. While all existing methods we are

aware of process all reads in the metagenomic samples, the

proposedmethod processes just enough reads to cover a fraction

of bacterial genomes. This typically results in choosing a small

random samples of reads for processing.

If a processed read belongs to a genome g and also contains

a k-mer x with unique hash values stored in F, there is a good

chance that the read will be correctly identified to belong to g.

The read is not recognized if the k-mer x has a sequencing error

or a genetic variant. A genetic variant can occur because the

genome of the bacterium in the sample is likely not the same

as the referenced genome of the same bacteria used to create F.

A processed read that does not belong to genome g might

also be mistakenly identified to belong to g if it has a sequencing

error or a genetic variant that results in a k-mer with hash

value(s) collide with one of the k-mers of g stored in F.

Given a read to be processed, all k-mers are passed into k-

mer processing to classify its gi. Let V be the set of classified gi of

all k-mers of the read. If V consists of only 0 and/or –1, then the

read is discarded. If, however, V consists of positive values, i.e.,

genome ids, then one of three different strategies can be used to

determine which genome the read belongs to.

2.3.1. Majority

If there is a positive number, g, in V with frequency greater

than 50%, then g is predicted to be the genome that contains

the read. If there is no such number, then the read is discarded.

This strategy is effective in the presence of significant amounts

of sequencing errors and/or genetic variants. In such cases, a

k-mer of the read can be misidentified to be a unique k-mer

of a different bacteria. But if there are not too many of such

mistakes, a majority of positive identification can identify the

correct genome.
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FIGURE 1

Read processing. The majority strategy predicts the read comes from G1. The First-hit strategy predicts the read comes from G2. The

One-or-nothing strategy discards the read.

2.3.2. First-hit

K-mers are processed sequentially.When the first k-mer that

has a positive hash value, g, is encountered, no additional k-mers

are processed. g is predicted to be the genome that contains the

read. This strategy is effective when k-mers stored in F are highly

unique so that the first hit is most likely correct.

2.3.3. One-or-nothing

If V has only one positive value, g, then g is predicted to be

the genome that contains the read. If this is not the case, the

read is discarded. This strategy is highly conservative. If there is

a disagreement, i.e., two genomes identified by different k-mers

of the reads, the read is discarded from consideration.

Figure 1 gives an example on how each strategy classifies a

read to a reference genome.

In order to optimize the running time of query phase, reads

are distributed to different cores for processing.

3. Results

3.1. Experimental setup

To assess performance of ourmethod, we used twomicrobial

communities, with included 457 and 2,850 reference genomes,

respectively. The first community consists of 457 reference

genomes, named S1, combined from three metagenomes

used by Mende et al. (2012) in a study of metagenomic

assembly. To create a set of reference genomes, we extracted

accession numbers from reads in these three metagenomes.

This information allowed us to retrieve from NCBI reference

genomes for the bacteria, from which the reads were created.

The second community, named S2, includes genomes used in

CAMI challenge (Sczyrba et al., 2017).

First, we show some statistics of the indexes of each reference

genome set. Second, we compare results on different querying

strategies. And finally, we also show the difference of indexes

when using different number of hash functions.

3.2. Representing bacteria using unique
signatures

We now report how the two microbial communities

can be represented by unique genomic signatures. For

the first set of bacterial genomes S1, we used 2 hash

functions, k-mer of length 31 and the size of the index is

8GB. The index was built in two phases. All 457 genomes

have unique signatures. Total number of signatures is

248,758,006. Minimum number of unique signatures

is 152 and maximum number of unique signatures

is 1,720,014.

As the more hash functions are used in building index,

the more hash values are computed for each k-mer and the

more unique it is. But that will also reduce the number of

k-mers with unique hash values for each genome. Although

larger genomes have a sufficient number of k-mers with

unique hash values, smaller genomes have only a few of

such unique k-mers. For this bacterial genome set S2, we

build two indexes with the same k-mer size and index size,

and only vary the number of hash functions to compare the

effect on querying performance when different number of

hash functions were used to build the index. Both indexes

are built in 1 phase. All the genomes have unique signatures.

Table 1 shows the total, the minimum, and the maximum

number of signatures of each index. We found that the 3-

hash-function index had fewer signatures than the 2-hash-

function index. This is likely because as more hash values were

computed, there was a higher chance of having collisions of

those hash values. Figure 2 shows the distribution of number

of unique signatures for each genome in genome set S2 in the

change of number of hash functions when building index for

set S2.

3.3. Querying

In order to evaluate the retrieval capability of our two

indexes, we downloaded two simulated samples for querying.We
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FIGURE 2

Number of unique signatures for each genome in genome set S2 in the change of number of hash functions.

TABLE 1 Comparison on number of signatures in the change of

number of hash functions when building index for set S2.

Number of hash functions Min Max Total

2 544 386,709 400,769,054

3 211 145,005 150,366,923

use the 10 species dataset by Mende et al. (2012) which consists

of genomic reads from 10 genomes in S1, and the RH_S001

dataset from Sczyrba et al. (2017) consists of 302 genomes

from S2. We will refer to these datasets as 10 species and

RH_S001 in subsequent discussions. Reads from 10 species and

RH_S001 are paired-end and were simulated with charateristics

of Illumina sequencing technology with length of 75 and 150 bp,

respectively. The 10 species dataset is used to query bacteria in

S1, and the RH_S001 is queried in S2.

Performance was measured in terms of precision, recall

and F1-score as accuracy of the predicting process. Precision is

computed as the number of correctly queried bacteria divided

by the total number of predicted bacteria. Recall is the number of

correctly queried bacteria divided by the total number of bacteria

that actually exist in the sample. F1-score is the harmonic mean

of precision and recall.

The 10 species sample is queried on index of set S1 using

majority strategy. We were able to query all 10 species, results

in recall of 100%. However, there are many incorrect querying,

this leads to low precision of 2.6%. The F1-score is 5%. We also

evaluated the performance of different querying strategies. As

TABLE 2 E�ect of di�erent number of querying strategies.

Query strategy Precision Recall F1-score

Majority 0.026 1.000 0.051

First-hit 0.026 0.990 0.051

One-or-nothing 0.028 0.987 0.053

TABLE 3 E�ect of di�erent number of hash functions.

Number of hash functions Precision Recall F1-score

2 0.316 0.601 0.414

3 0.296 0.601 0.396

described earlier, the majority query strategy looks at all k-mers

and picks the genome that shows up at least 50% among all k-

mers. The one-or-nothing query strategy picks a genome only if

it is the only genome predicted by all k-mers of the read. The

first-hit strategy picks the first genome that is predicted by some

k-mer of the read. Each of these strategies has its own pros and

cons. And the most appropriate strategy depends on the dataset.

Table 2 shows the performance resulted from each of the three

query strategies.

We found that the performance resulted from the three

query strategies was very similar. Both majority and first-hit

strategies had lower precision, but higher recall than one-or-

nothing. One-or-nothing, by design, is more conservative, and

therefore, should have fewer false positives, and higher precision

than the other two strategies.
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The RH_S001 sample is queried on the index of set S2 using

themajority strategy. There are 162 out of 302 genomes correctly

predicted. Only 5 genomes in the sample are missing as there

may have sequencing errors in the reads that causes wrong

prediction to other genomes. Another reason is that no read has

the exact unique signatures in the index. This leads to a precision

of 26%, recall of 97% and F1-score is 41%.

Table 3 shows the effect on querying performance when two

or three hash functions were used to build the index. We found

that using 2 hash functions to build an index resulted in a slightly

better overall performance than using 3 hash functions. While

recall rates were similar, precision rates were higher when 2 hash

functions were used. In this experiment, we used the majority

strategy, and having more signatures could be useful for this

querying strategy to reduce the false positive, which improves

the precision.

4. Discussion

We introduced a method for representing bacteria in a

microbial community uniquely. We showed that our method

could be used to query reads inmetagenomic samples. Amethod

for efficiently representing bacteria in a microbial community

would be useful for post-processing in order to have an accurate

identification of bacteria, which requires more analysis as well as

data interpretation on the query outputs. And due to the close

relationship between the microbiome and health, improving

the accuracy of bacteria identification would help to make

metagenomic analysis more meaningful in understanding the

human microbiome in health and disease. There is room to

find parameters that can improve the performance of the query

phase. Also, additional improvements can be made in the future

to determine these choices more appropriately under different

criteria.

Similar to most of other k-mer based approaches, when the

database consists of hundreds of thousands reference genomes,

it is challenging for the proposed method to obtain unique

signatures for some genome, especially very small genomes. This

method, however, can be promising for microbiomes that are

not too big, e.g., skin, oral, or gut microbiomes.
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