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Automated characterization of spatial data is a kind of critical geographical intelligence. As
an emerging technique for characterization, spatial Representation Learning (SRL) uses
deep neural networks (DNNs) to learn non-linear embedded features of spatial data for
characterization. However, SRL extracts features by internal layers of DNNs, and thus
suffers from lacking semantic labels. Texts of spatial entities, on the other hand, provide
semantic understanding of latent feature labels, but is insensible to deep SRLmodels. How
can we teach a SRL model to discover appropriate topic labels in texts and pair learned
features with the labels? This paper formulates a new problem: feature-topic pairing, and
proposes a novel Particle Swarm Optimization (PSO) based deep learning framework.
Specifically, we formulate the feature-topic pairing problem into an automated alignment
task between 1) a latent embedding feature space and 2) a textual semantic topic space.
We decompose the alignment of the two spaces into: 1) point-wise alignment, denoting
the correlation between a topic distribution and an embedding vector; 2) pair-wise
alignment, denoting the consistency between a feature-feature similarity matrix and a
topic-topic similarity matrix. We design a PSO based solver to simultaneously select an
optimal set of topics and learn corresponding features based on the selected topics. We
develop a closed loop algorithm to iterate between 1) minimizing losses of representation
reconstruction and feature-topic alignment and 2) searching the best topics. Finally, we
present extensive experiments to demonstrate the enhanced performance of our method.
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1 INTRODUCTION

Critical infrastructures (e.g., transportation networks, power networks, social networks, water supply
networks) often consist of spatially distributed entities that interact with each other, and have
generated massive spatial-networked behavior data. Analyzing such data can identify trends, forecast
future behavior, and detect anomalies. To enable effective analysis, it is critical to desire a new
capability of automated characterization that effectively extract feature vectors from spatio-
networked data.

As one of the emerging techniques, representation learning can be adapted to learn non-linear
embedded features of spatial network data, which we call spatial representation learning (SRL). There
has been a rich body in SRL, including node embedding, autoencoder, random walk, adversarial
learning, generative learning basedmethods with spatial data (Wang and Li, 2017;Wang et al., 2018a;
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Wang et al., 2018b; Chandra et al., 2019; Jean et al., 2019; Wang
et al., 2019a; Wang et al., 2019b; Zhang Y. et al., 2019; Shan et al.,
2020; Wang et al., 2020c; Wang et al., 2020d; Wang et al., 2021).
Although these works achieved remarkable success, the model
interpretability is still a big limitation that hinders these SRL
methods from applying in more secure, fair, and rigorous
scenarios.

Lacking model interpretability is possible to cause damaging
or controversial consequences in incomplete scenarios that are
not well-studied (Doshi-Velez and Kim, 2017). For instance, in
the autonomous driving scenario, the end-to-end autopilot
system brings high safety risks for drivers1. In 2015, Google’s
photo app classifies images of black people as gorillas, which
exposes the limitation of algorithms2. More seriously, widely used
crime prediction software prefers to provide higher risk scores of
future crimes for black defendants3. Model interpretability is one
of the most important approaches to overcome these limitations.
Thus how to enhance the model interpretability attracts much
attention of researchers (Elshawi et al., 2019; Hong et al., 2020;
Stiglic et al., 2020; Poursabzi-Sangdeh et al., 2021). But, many
existing works reflect that there is a trade-off between model
performance and model interpretability (Mori and Uchihira,
2019; Saisubramanian et al., 2020). Can we not only improve
the model interpretability but also keep the model performance
becomes the research point of this paper.

To relieve the limitations of prior literature and expand the
application scenarios of SRL approaches, a novel SRL model

should understand not just which features are effective, but also
what these effective features stand for. This issue relates to two
tasks: 1) deep representation learning; 2) label generation and
matching for latent embedded features. In response, we formulate
the problem as a task of feature-topic pairing (Figure 1), which is
to align a latent embedding feature space, consisting of multiple
latent features, and a textual semantic topic space, consisting of
multiple topic labels during SRL. The basic idea is to teach a
machine to extract topic labels from texts, and then pair the labels
with learned features. To that end, we propose to develop a novel
deep learning framework to unify feature learning, topic selection,
feature-topic matching.

There are three unique challenges (Figure 2) in addressing this
problem. 1) Label Generation Challenge. The semantically-rich
texts of spatial entities describe their types, functions, and
attribute-related information. For instance, on a real estate
website, the texts of a residential community describe crime
rates and events, great school ratings, nearby transportation
facilities, grocery stores, companies, and universities. These
texts, if properly analyzed, will help to identify which
underlying features truly attract residents to pay more to live.
However, these spatial texts are all unstructured, how can we
construct a textual semantic topic space for spatial entities to
support feature-topic pairing? 2) Measurement Challenge. Be
sure to note that we aim to teach a machine to automatically
perform the automated pairing between embedded features and
topic labels in a self-optimizing fashion. As a result, a
measurement is needed to quantify the alignment or matching
score between the topic label space and the embedding feature
space, in order to guide the machine about how to search.
However, there is no standard measurement for quantifying
the topic-embedding space alignment. Thus, what does form
of measurement should be adopted? And how can we integrate
the suitable measurement into the whole self-optimizing
framework? 3) Optimization Challenge. Since the model needs
to decide an optimized topic label subset, the feature-topic pairing
problem evolves multiple machine learning tasks, including
feature learning, topic label selection, and feature-topic
matching. If the three tasks are separately completed step by
step, there is no guarantee that they are globally optimized. So,
how can we develop a deep optimization framework to jointly and
simultaneously unify the three tasks?

To solve the three challenges, we develop a new PSO-based
framework (named AutoFTP) that enclose the optimizations of
feature learning, topic selection, and feature-topic pairing in a
loop. Specifically, our contributions are:

1) Formulating the feature-topic pairing problem. Motivated by
lacking feature labels in SRL, we formulate and develop a new
problem: feature topic pairing. In the proposed model, we
propose a new strategy: we first let an optimizer to
automatically select K topics; the optimizer then guides the
representation learner to learn K latent features that optimally
align with the K topics.

2) Generating candidate topic labels. We propose a three step
mining method to generate candidate topic labels. Specifically,
we first extract keywords from the texts of all spatial entities.

FIGURE 1 | The motivation of the feature-topic pairing problem: bridging
the gap between feature embedding space and topic semantic space in
representation learning.

1https://www.brookings.edu/blog/techtank/2016/08/18/autopilot-fatality-reveals-
risks-of-technology-testing/
2https://www.wsj.com/articles/BL-DGB-42522
3https://www.propublica.org/article/machine-bias-risk-assessments-in-criminal-
sentencing
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Then, we learn keyword embedding feature vectors with a pre-
trained word model (He, 2014). Finally, we cluster all keyword
embeddings by maximizing inter-topic distances and
minimizing intra-topic distances to generate topics as
candidate feature labels.

3) Quantifying feature-topic alignmentmeasurement.We identify
two types of feature-topic alignments: 1) point-wise alignment,
and 2) pair-wise alignment. First, the point-wise alignment is to
describe the correlation between an embedding feature vector
and a categorical topic distribution. In particular, we maximize
the correlation so that the distance between the distribution of
the embedding vector space and the distribution of the topic
semantic vector space can be minimized. The underlying
motivation of point-wise alignment is originated from the
fact that: if a topic density is high in describing a spatial
entity, the topic’s corresponding feature value is expected to
be large to co-vary with the topic density. In this way, we align
the distribution covariance of the two spaces. Second, the pair-
wise alignment is to describe the consistency between a feature-
feature similarity matrix and a topic-topic similarity matrix. In
particular, we use the feature-feature similarity graph to
describe the topology of the latent embedding feature space,
and use the topic-topic similarity graph to describe the topology
of the textual semantic topic space. If the two spaces are aligned,
the two graphs (represented by matrices) are similar as well.

4) Optimization in the loop. We develop a Particle Swarm
Optimization (PSO)-based algorithm. In this algorithm, we
first simultaneously optimize the representation learning loss,
point-wise alignment loss, pair-wise alignment loss, and
downstream task loss as the feedback for PSO. Guided by
the feedback, the PSO based algorithm selects a better K-sized
topic subset for feature-topic pairing. In particular, based on
the loss function value, PSO iteratively generates topic masks
(i.e., 0–1 indicators to select or deselect) to search the optimal
topics for space pairing until the learning objective converges.

In this way, the PSO jointly achieves topic selection, feature-
topic pairing, and latent feature learning.

Finally, we evaluate our method using Beijing’s urban
geography and mobility data. For comparison we
implemented a broad range of other algorithms. Results
showed that our method consistently outperformed the
competing methods. We perform ablation study,
interpretability, robustness check, stability, sensitivity to
justify our technical insights.

2 PRELIMINARIES AND PROBLEM
STATEMENT

In this section, we introduce key definitions of AutoFTP and the
problem statement.

2.1 Particle Swarm Optimization
PSO is a heuristic optimization algorithm that finds an optimal
solution in a dynamic environment, by imitating the social
activity of a flock of birds. Figure 3 shows the origin of PSO.
A flock of eagles wants to capture a rabbit. To achieve the goal, all
eagles exchange information related to the position of the rabbit.
Each eagle updates its position based on its current status,
velocity, the position where it knew is closest to the rabbit,
and the position where the flock knew is closest to the rabbit,
until the rabbit is captured.

Similarly, solving the feature-topic pairing problem can be
analogized as a task of searching the optimal matching solutions
in a dynamic environment. Specifically, we can view the eagles as a
set of binary topic selector, which are to select the optimized subset of
topics from a candidate topic set for feature-topic pairing. The
choices of these binary topic selectors are iteratively updated in order
to converge into the ultimate most matched topic-feature pairs.

FIGURE 2 | Key challenges and main tasks of the feature-topic pairing problem.
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During the iterative process, all the binary topic selectors jointly
share the changes of objective function losses (i.e., the losses of
representation construction, feature-topic alignment, and
downstream predictive task), so the topic selector knows how to
update the topic selection next round.

2.2 Definitions
Definition 1: Spatial Entity. A spatial entity is a geographical concept
that consists of a range (e.g. a circle area with a radius of 1mile) and a
location (i.e. the latitude and longitude of a center). The spatial entity

also includes various Points-of-Interest (POIs) of different categories
(e.g., buildings of education, shopping, medical, banking, etc.).

Definition 2: Point-wiseAlignment. To tackle feature-topic pairing,
we assume there are 1) an embedding vector that describes the features
of a spatial entity and 2) a corresponding topic distribution associated
to a spatial entity, which are extracted by optimization. To achieve
feature-topic alignment, we propose a point-wise alignment to
describe the correlation between features and topics. Figure 4A
shows an example of point-wise alignment, we expect to maximize
the correlation between the selected topic vector and the spatial

FIGURE 3 | The origin of PSO: a flock of eagles is preying on a rabbit. To capturing the rabbit quickly, each eagle records where is the closest position to the rabbit
during its history exploration (pBest). Meanwhile, all eagles share the closest position to the rabbit where the flock knew (gBest). All eagles explore any position based on
their velocity, pBest, and gBest until the rabbit is captured.

FIGURE 4 | Two kinds of space alignment.
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embedding vector. The larger the correlation between the two vectors
is, the larger the similarity between the two vectors larger is.

Definition 3: Pair-wise Alignment. We propose another
perspective (pair-wise) to model the feature-topic alignment. For
each entity-entity pair, we compute their feature-feature similarity
and topic-topic similarity, and obtain: 1) a topic-topic similarity
matrix S; 2) a feature-feature similarity matrix S′. We measure the
consistency between the two matrices as the pairwise alignment.

Figure 4B shows an example of pair-wise alignment, we aim to
let the topic-topic similarity matrix S as close as the feature-
feature similarity matrix S′ possible.

2.3 The Feature-topic Pairing Problem
The feature-topic pairing problem aims to pair the latent features
extracted by representation learning, with the explicit topics of
texts of a spatial entity. Formally, given a set of N spatial entities,
the n-th entity is described by multiple graphs (e.g., a POI-POI
distance graphGd

n and a POI mobility connectivity Gm
n , defined in

Section 3.3) and a topic distribution tn extracted from textual
descriptions En. Let ~rn be the embedding vector of the n-th entity.
The objective is to optimize a function that measures
representation loss and feature-topic alignment:

~R � argmax~rn ∑N
n�1

f ~rn|tn, Gd
n, G

m
n , K( ), (1)

where ~R � {~rn}Nn�1 ∈ RN×K are the embeddings of all spatial
entities, K is the number features of an embedding vector.

3 THE PROPOSED METHOD-AUTOFTP

In this section, we first introduce an overview of our AutoFTP
framework, then present its technical details.

3.1 Framework Overview
Figure 5 shows our proposed framework. First, we construct a
semantic topic space by extracting topic distribution from the
corresponding texts of spatial entities. Then, we initialize a feature
embedding space based on the geographical structures of spatial
entities. Next, we utilize a PSO-based topic selector to select the
optimal K topics for pairing with the spatial embeddings coming
from the feature embedding space. During the pairing process,
the losses of spatial representation learner, point-wise alignment,
pair-wise alignment, and downstream tasks are regarded as
feedback to update the topic selector for the next pairing
iteration. With the development of the learning iteration, the
feature embedding space aligns to the topic semantic space
gradually. Finally, the learned spatial embeddings of AutoFTP
are effective and semantically rich. Here, to validate the
effectiveness of AutoFTP, we apply the framework to predict
the real estate price (downstream tasks) of the residential
communities (spatial entities) based on spatial embeddings of
the communities. The more accurate the prediction is, the more
effective the learned embedding is. In addition, the AutoFTP can
be generalized to other spatial representation learning problems
with graphs and texts.

3.2 Textual Topic Extraction
To derive the textual semantic topic space, we extract the topic
distributions of spatial entities from texts generated by location
based social networks. Traditional topic models, such as LDA (Blei
et al., 2003), PSLA (Hofmann, 2013), are implemented based on
bag-of-words. These methods ignore word orders in sentences. To
improve the performances of topic modeling, we employ a pre-
trained deep word embedding model (He, 2014) to generate topics.

As illustrated in Figure 6, we first collect the text descriptions
of all entities. Besides, we extract keywords from texts using the
TextRank algorithm (Mihalcea and Tarau, 2004) and leverage a

FIGURE 5 | An overview of AutoFTP. In the framework, we first construct a topic semantic space based on the texts of spatial entities. Then, we initialize a
embedding feature space based on the geographical structures of spatial entities. Later, we employ a PSO-based framework to conduct feature-topic pairing through
jointly optimizing representation learning, point-wise alignment, pair-wise alignment, and downstream task over learning iterations.
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pre-trained language model (He, 2014) to learn the
corresponding word embedding of each keyword. Moreover,
we exploit a Gaussian Mixture Model (GMM) to cluster the
keyword embeddings into T topics. The clustering model
provides a topic label for each keyword. To explain the
labeling process, we take the i-th keyword’s embedding
vector xi as an example. First, we assume that the T topics
obey a Gaussian Mixture Distribution (GMD). Then we
randomly initialize the parameters of GMD. Next, we use the
Expectation Maximization (EM) algorithm to find the optimal
parameters of the GMD. Finally, we calculate the probability of
xi (a.k.a., membership), belonging to each topic based on the
GMD, and select the topic with the highest probability as the
label of xi. After that, we propose to construct the topic
distribution vector of each spatial entity. In particular, for
the n-th entity, the topic vector tn is a T dimensional vector,
where each dimension indicates a topic, and is filled by the
number of associated keywords.

3.3 Graph Extraction of Spatial Entities
In order to learn the embedding feature vectors of spatial entities,
we propose to construct the graph-structured topology of each
spatial entity. This is because there is inherent spatial
autocorrelation between each two spatial entities, according to
the geographical first law. We describe a spatial entity in terms of
its POIs, by building two graphs. 1) POI-POI distance graph:
denoted by Gd, where POI categories are nodes and the average
distances between POI categories are edge weights. 2) POI-POI
mobility graph: denoted by Gm, where nodes are POI categories,
and edge weights are human mobility connectivity. The number
of POI categories in this paper is M, and the two graphs are
extracted via the method in (Wang et al., 2018a). Specifically, we
first use a parametric function to estimate POI visit probability
based on a taxi GPS trace data: P(ς) � β1

β2
· ς · exp(1 − ς

β2
), where ς

denotes the distance between a POI and a drop-off position in a
taxi trace, β1 � maxςP(ς), and β2 � argmaxςP(ς). We calculate the
visited probability of all POIs according to the formula. We sum
up the probability of POIs belonging to the same POI category to
calculate the visited probability of the POI category. Finally, we
calculate the connectivity strength between POI categories as:

C
ij
→ � Pi · Pj, if i≠ j

0, otherwise,
{ where Pi and Pj represent the

visited probability of POI category i and POI category j
respectively; C

ij
→ indicates the connectivity between POI

category i and j.

3.4 Particle Swarm Optimization Based
Feature-Topic Pairing
3.4.1 Spatial Representation Learner
To learn the representations of spatial entities, we utilize the
Graph Auto Encoder (GAE) (Kipf and Welling, 2016) to
construct latent embedding space. Specifically, to learn the
embedding feature vector of the n-th entity, the encoder has
two GCN layers. The encoding calculation process can be
formulated as follows:

Ân � An + In,

~An � D̂
−
1
2

n ÂnD̂
−
1
2

n ,

zn � ~AnRelu ~AnXnW
(0)
n( )W(1)

n

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
(2)

where An, In, ~An, D̂n own the same shape RM×M. Moreover, An is
the adjacency matrix, In is the identity matrix, ~An is the
symmetrically normalized adjacency matrix, D̂n is the degree
matrix. In addition, Xn ∈ RM×U is the feature matrix of the
graph, in which U is the feature dimension; W(1)

n ∈ RU×H is the

FIGURE 6 | Obtaining the topic vectors of spatial entities.
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weight matrix of the first GCN layer, in which H is the output
dimension of the layer;W(2)

n ∈ RH×K is the weight matrix of the
second GCN layer; zn ∈ RM×K is the output embedding of the
encoder. The decoder recovers the adjacency matrix according
to zn:

Âp � σ znzn′( ). (3)

The optimization objective is to minimize the reconstruction
loss between the original graph, denoted by the adjacency matrix
Ân, and the reconstructed graph, denoted by the adjacency
matrix Â

p

n:

LR � ∑N
n�1

‖ Ân − Â
p

n( )‖2 (4)

We apply the GAE to the POI-POI distance graph Gd
n and the

POI-POI mobility graph Gm
n of the n-th spatial entity. After that,

we obtain the node representations of Gd
n and Gm

n , denoted by
znd ∈ RM×K and znm ∈ RM×K. Then, we aggregate znd and znm by
averaging all node embeddings together to attain the graph
embedding of Gd

n and Gm
n respectively. Finally, we integrate

the graph embeddings of Gd
n and Gm

n into the unified spatial
embedding of the entity by averaging calculation, denoted by
rn ∈ RK.

3.4.2 Measuring the Alignment of Embedding and
Semantic Spaces
To pair features with topics, we conduct space alignment from the
point-wise and pair-wise perspectives. Referring to definitions
Section 2.2 and Section 2.3, we aim to align the topic semantic
space and feature embedding space from the coordinate system
and information contents respectively. During the aligning
process, we minimize the point-wise alignment loss LP and
pair-wise alignment loss LC. To be convenient, we take the n-
th entity as an example to explain the calculation process.

1) Point-wise Alignment Loss: LP. We first select K values from
the topic vector tn as the vector ťn ∈ RK, which contains the
most representative semantics in the semantic space. Then, we
maximize the correlation between t ̌n and the spatial
embedding rn, which is equal to minimize the negative
correlation between the two vectors. The formula of the
minimizing process as follows:

LP � −∑N
n�1

cov ťn, rn( )
δ t ̌n( )δ rn( ), (5)

where cov(.) denotes the covariance calculation; δ(.) denotes the
standard deviation.

2) Pair-wise Alignment Loss: LC. We first construct the topic-
topic similarity matrix S and the feature-feature similarity
matrix S′. Specifically, for S ∈ RK×K, we calculate the
similarity between any two topics. For S′ ∈ RK×K, we
calculate the similarity between two features of spatial
embeddings. We keep the pair-wise consistency between S
and S′ by minimizing the Frobenius norm, as follows:

LC � ‖S − S′‖F. (6)

3.4.3 Supervised PSO For Automatic Topic Selection
As introduced above, we select K topics so the representation
learner can learn a K-sized embedding vector in terms of K topics
to achieve feature-topic alignment. However, how can the
machine automatically identify the best K and select the most
appropriate K topics?

A naive idea is that we can select K topics randomly at each
iteration until we traverse all topic combinations and find the
best topic subset based on the objective function. The
searching process, however, is time-consuming and
computationally expensive. Moreover, the topic selection
problem belongs to the combinatorial optimization field,
which is hard to solve by derivative-based optimization
algorithms. Thus, a quickly and derivative-free optimization
algorithm should be selected as our optimizer. Considering the
high time complexity for traversing all possible subsets to find
the optimal result, we propose to formulate the joint task of
feature learning, topic selection, topic and feature matching
into a PSO problem.

The PSO-based optimization framework is as illustrated in
Figure 7. Specifically, we first randomly initialize a number of
particles in PSO, where a particle is a binary topic mask (i.e., the
mask value of 1 indicates “select” and the mask value of 0
indicates “deselect”). In other words, a set of particles select a
subset of topics. A multi-objective deep learning model, whose
objective function includes the losses of graph reconstruction,
semantic alignment, and the regression estimator in the
downstream task, is trained to learn spatial representations,
using each selected topic subset. As an application, we use the
embedding of spatial entities (residential communities) to predict
their real estate prices, and the loss of the regression model
LReg is:

LReg � 1
N

∑N
n�1

cn − cpn( )2, (7)

where cn is the golden standard real estate price and cpn is the
predicted price. Next, we calculate the fitness of each particle
according to the total loss of the deep model. The fitness can be
calculated by:

Fitness � LC + LP + LR + LReg. (8)

Then, we utilize the fitness to inform all particles how far they
are from the best solution. Next, each particle moves forward to
the solution based on not only its current status but also all
particles’ movement. After the fitness value of PSO converges,
PSO identifies the best topic subset. Finally, the semantically-rich
embeddings of spatial entities, given by: ~R � {~rn}Nn�1.

4 EXPERIMENTAL RESULTS

In this section, we present extensive experiments with real world
data to answer the following research questions: Q1. How
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effective is our proposed AutoFTP in spatial representation
learning? Q2. How effective is each loss function of AutoFTP?
Are they all necessary for spatial representation learning? Q3.
Howwell does AutoFTP work in space alignment? Do the learned
spatial embeddings contain semantic meanings? Q4. How about
the robustness of AutoFTP? Does it always outperform other
baselines? Q5. How about the stability and sensitivity of
AutoFTP?

4.1 Experimental Setup
4.1.1 Data Description
Table 1 shows the statistics of five data sources used in the
experiments. Firstly, the taxi traces data describes the GPS
trajectory of taxis in Beijing in 3 months. The format of each
trace record is < trip id, distance, travel time, average speed,
pick-up time, drop-off time, pick-up location, drop-off
location >. Secondly, the residential regions, texts, and real
estate price data sources are crawled from www.fang.com.
In experiments, the residential regions are treated as spatial
entities. The texts reflect the urban utilities and characteristics
of spatial entities from multiple perspectives such as traffic
condition, economic development, demographic situation,
and etc. The real estate prices indicate the average value of
the real estate of each spatial entity in 6 months. Thirdly, the
POIs are extracted from www.dianping.com, which is a POI
(small businesses such as restaurants, banks, gas stations,
shopping markets) review website in China. Each POI is
described in a format of < POI id, POI category, latitude,
longitude >.

4.1.2 Application: Real Estate Price Prediction
Our proposed method (AutoFTP) can learn a list of vectorized
representations for all spatial entities. Therefore, as a downstream
application, we can apply these representations to train a
regression model to predict the average real estate price of
these spatial entities. Specifically, we first apply AutoFTP to
learn a series of representations of spatial entities based on
their geographical structural information and related text
descriptions. Then, we build up a deep neural network (DNN)
model for predicting average real estate price of each spatial entity
according to its corresponding representation. To be convenient,
we take the n-th spatial entity as an example to explain the
regression model. The formulation of DNN is

f(~rn,w) � w · g(~rn) + b, where ~rn is the representation of the
n-th spatial entity, g(~rn) is the nonlinear transformation of ~rn,
w is the weight term, and b is the bias term. We want to minimize
the difference between predicted price f(~rn,w) and real price yn.
Thus, the objective of the DNN is min 1

N∑N
n�1(yn − f(~rn,w))2,

where N is the total number of spatial entities.

4.1.3 Evaluation Metrics
We evaluated our method using a real estate price prediction task
(Section 4.1.2). We took the feature representation vectors of
residential communities as inputs, and predicted their real estate
prices. We compared the golden-standard prices yn with the
predicted prices ŷn in terms of four metrics: 1)

RMSE �

1
N∑N

n�1(yn − ŷn)2
√

; 2) MAE � 1
N ∑N

n�1|(yn − ŷn)|; 3)

MAPE� 100
N ∑N

n�1|yn−ŷn

yn
|; 4) MSLE� 1

N∑N
n�1(log(1+yn)− log(ŷn +1))2.

The regression loss and optimization algorithm are controlled to be the

same. The lower the four metrics are, the more effective the spatial embedding

features are.

4.1.4 Baseline Algorithms
We compared our proposed method with seven widely-used and
robust representation learning (embedding) methods as follows:
1) AttentionWalk (Abu-El-Haija et al., 2018) utilizes a novel
attention model to automatically learn the hyper-parameters of
random-walk based network embedding methods, which
improves the flexibility and performance of the model. We set
the learning rate as 0.01, the regularization parameters as 0.5. 2)
ProNE (Zhang J. et al., 2019) formulates the network embedding
as sparse matrix factorization to improve the calculation speed,
and conducts the propagation process in the spectrally modulated
space to enhance the representation. We adopt the default
parameter setting in (Zhang J. et al., 2019). 3) GatNE (Cen
et al., 2019) is a random-walk based network embedding
method, which considers the information of different
attributes of nodes to enhance the graph representation. We
set the number of walks as 20, walk length as 10, window size as 5,
patience as 5. 4) GAE (Kipf and Welling, 2016) utilizes GCN to
learn the node representations in the encode-decoder paradigm
by minimizing the reconstruction loss. We set the number of
GCN layers as 2 and the learning rate as 0.0001. 5) DeepWalk
(Perozzi et al., 2014) is an extension of the word2vec model
(Mikolov et al., 2013), which brings the idea of truncated random
walks to a network embedding scenario. We set the number of
walks as 80, walk length as 10, and window size as 5. 6) Node2Vec
(Grover and Leskovec, 2016) is an enhanced version of
DeepWalk, which considers the homogeneity and structural
equivalence of networks during embedding process. We set the
number of walks as 80, walk length as 10, window size as 5, return
parameter p as 0.25 and in-out parameter q as 4. 7) Struc2Vec
(Ribeiro et al., 2017) learns the node representation by
considering the structural identity of nodes in the network.
We set the number of walks as 80 and walk length as 10.

Besides, there are four losses in AutoFTP: reconstruction loss
LR, point-wise alignment loss LP, pair-wise alignment loss LC,
and regression lossLReg. The four losses provide the optimization
direction of AutoFTP. To study the benefits of each part, we

TABLE 1 | Statistics of the experimental data.

Data sources Properties Statistics

Taxi Traces Number of taxis 13,597
Time period Apr.–Aug. 2012

Residential regions Number of residential regions 2,990
Time period of transactions 04/2011–09/2012

POIs Number of POIs 328,668
Number of POI categories 20

Texts Number of textual descriptions 2,990
Time Period 04/2011–09/2012

Real Estate Prices Number of real estate prices 41,753
Time Period 12/2011–06/2012
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develop four internal variants of AutoFTP: 1) AutoFTPR, which
only keepsLR of AutoFTP; 2)AutoFTP

(R+P), which keepsLR and
LP of AutoFTP; 3) AutoFTP(R+C), which keeps LR and LC of
AutoFTP; 4) AutoFTP(R+P+C), which keeps LR, LP, and LC of
AutoFTP. The dimension of embeddings in all models is 20.

4.1.5 Hyperparameters, Source Code, and
Reproducibility
We detailed the hyperarameters and the steps of our algorithm in
the Appendix. We released our code4 to help to reproduce
experimental results.

4.1.6 Environmental Settings
The experimental studies were conducted in the Ubuntu 18.04.3
LTS operating system, plus Intel(R) Core(TM) i9-9920X CPU@
3.50GHz, 1 way SLI Titan RTX and 128GB of RAM, with
the framework of Python 3.7.4, Tensorflow 2.0.0, and Pyswarm
1.3.0.

4.2 Overall Performance (Q1)
Table 2 shows the comparison of all the 11 models. As can be
seen, AutoFTP, in overall, outperforms the baseline algorithms in
terms of RMSE, MAE, MAPE and MSLE. A possible reason for
this observation is that compared with other baseline algorithms,
AutoFTP not just captures geographical structural information
but also preserves rich semantics of spatial entity. Besides,
the regression estimator (the downstream task) of AutoFTP
provides a clear learning direction (accuracy) for spatial
representation learning. Thus, in the downstream predictive
task, the spatial embedding features learned by AutoFTP beats
all baselines.

In addition, another interesting observation is that among
all baseline models, GatNE outperforms others in terms of all
evaluation metrics. Such observation shows that GatNE
considers different attributed information of nodes in spatial
graphs of spatial entities. Thus, the spatial embedding features
learned by GatNE are more effective compared with other
baseline models. Moreover, after further observing Table 2,

we can find that the predictive performances of GAE are better
than most random-walk based approaches, except GatNE. Such
observation indicates that the graph convolution-based
methods (GAE, AutoFTP) are more suitable than the
random-walk based approaches (other baselines) in
modeling geographical structure information. In summary,
the overall performance experiment shows the superiority
and effectiveness of AutoFTP compared with other baseline
models.

4.3 Study of AutoFTP Variants (Q2)
To validate the necessity of each loss of AutoFTP, we internally
compared the performances of AutoFTP with the performances
of the variants of AutoFTP.Table 2 shows the ranking orders of the
predictive accuracies of the compared methods are: AutoFTP >
AutoFTP(R+P+C) > AutoFTP(R+P) > AutoFTP(R+C) > AutoFTPR. A
potential interpretation for the observation is that with the increase
of optimization objective (loss), AutoFTP captures more
characteristics of spatial entities from representation learning,
point-wise alignment, pair-wise alignment, and regression task.
In addition, compared with AutoFTP(R+P) and AutoFTP(R+C), we
find that the predictive performance of AutoFTP(R+P) is better than
AutoFTP(R+C). A plausible reason for the observation is that the
features of spatial entities captured by point-wise alignment are
more indicative for spatial entities compared with them learned
by pair-wise alignment. Moreover, another interesting
observation is that AutoFTP outperforms other variants by a
large margin. Such observation indicates that the regression loss
LReg provides a clear optimization direction for AutoFTP,
which preserves the features related to the downstream task
into spatial embeddings. To sum up, the ablation study
experiment demonstrates the four loss functions of AutoFTP
are necessary for capturing the representative features in spatial
entities during spatial representation learning process.

4.4 Study of the Interpretability of Spatial
Embeddings (Q3)
The space alignment in AutoFTP is implemented from two
perspectives: point-wise alignment and pair-wise alignment.
The two kinds of alignment make the learned spatial
embeddings contain more semantic meaning and interpretability.

TABLE 2 | Overall Performance with respect to RMSE, MAE, MAPE and MSLE. (The smaller value is, the better performance is).

RMSE Outperform MAE Outperform MAPE Outperform MSLE Outperform

AutoFTP 18.646 — 16.192 — 58.851 — 0.2267 —

AttentionWalk 21.418 +14.9% 19.712 +21.7% 68.590 +16.6% 0.2907 +28.2%
ProNE 21.830 +17.1% 19.929 +23.1% 69.188 +17.6% 0.2949 +30.1%
GatNE 21.229 +13.9% 19.288 +19.1% 67.043 +13.9% 0.2854 +25.9%
GAE 21.338 +14.4% 19.676 +21.5% 68.579 +16.5% 0.2894 +27.6%
DeepWalk 23.561 +26.4% 21.987 +35.8% 76.038 +29.2% 0.3321 +46.5%
Node2Vec 22.688 +21.7% 21.084 +30.2% 73.135 +24.3% 0.3152 +39.0%
Struc2Vec 21.589 +15.8% 19.937 +23.1% 69.423 +17.9% 0.2942 +29.7%
AutoFTPR 21.965 +17.8% 20.283 +25.3% 70.991 +20.6% 0.2928 +29.1%
AutoFTP(R+P) 20.509 +9.99% 18.921 +16.8% 66.477 +12.9% 0.2681 +18.3%
AutoFTP(R+C) 21.014 +12.7% 19.413 +19.8% 67.920 +15.4% 0.2773 +22.3%
AutoFTP(R+P+C) 20.211 +8.39% 18.676 +15.3% 65.685 +11.6% 0.2636 +16.3%

4https://www.dropbox.com/sh/cst7yegcp1yvwax/AAB_3xBtgGDod10ULgncI-
4La?dl�0
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4.4.1 Study of the Point-wise Alignment
To analyze the point-wise alignment, we picked communities
(spatial entities) 497, 1,043, 1,126, and 1,232 as examples to plot
their corresponding embedding vectors against their
corresponding topic vectors. Meanwhile, we extracted the

topic names of the most significant 6 topics. Figure 8 shows
AutoFTP keeps the point-wise consistency between the semantic
feature space and the embedding space. Moreover, the learned
spatial embeddings contain abundant semantic meanings. We
can infer the urban functions for each community based on

FIGURE 7 | The optimization process of the PSO topic selector.

FIGURE 8 | Illustration of Point-wise Alignment with sample communities.

FIGURE 9 | Illustration of pair-wise alignment.
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Figure 8. For instance, the community #497 exhibits high weights
on some specific topics, such as, functional facilities, general
education, and construction materials. Such observation indicates
that this community is probably a large residential area with well-
decorated apartments and general education institutions. The
community #1043 and #1126 all have high weights in
entertainment, higher education, parks, etc. We can speculate that
they are both residential regions nearby universities. This is because
the facilities belonging to these topics indicates the two communities
are very likely to be in a college town. For the community #1232, it
exhibits high weights in district, entertainment and convenience
related categories. We can infer that the community is a commercial
district with many transportation facilities.

4.4.2 Study of the Pair-wise Alignment
To observe the pair-wise alignment, we visualized the pair-wise
topic similarity matrix and pair-wise feature matrix by heat map
respectively. As illustrated in Figure 9, we can find that the two
matrices are similar with only minor differences. The observation
indicates that the embedding feature space is well-matched with
the semantic feature space.

4.4.3 Study of the Interpretability
The results of section 4.4.1 and section 4.4.2 shows that the
feature embedding space and the topic semantic embedding space
are aligned well. To study the interpretability of spatial
embeddings further, we built up a tree model for real estate
price prediction and then analyze the feature importance based
on the semantic labels of the spatial embeddings. Specially, we
exploited a random forest model to predict the real estate price of
spatial entities based on the corresponding embeddings. Then, we
collected the feature importance of the model as illustrated in
Figure 10. We can find that the semantic labels of top 5
dimensions in the embeddings that affects the real estate price
prediction are “Entertainment”, “Transportation”, “Security”,
“Education”, and “Business”. The three most representative
keywords in each semantic label, as shown in Table 3. In
common sense, the 5 semantic labels are the most important
factors that people consider for buying an estate (Boiko et al.,
2020). In other words, they affect the real estate price heavily.
Thus, the feature importance analysis experimental results are

reasonable. In summary, this experiment validates that AutoFTP
can select the most significant topic semantics for feature-topic
automatically. In addition, the semantic labels of the spatial
embeddings can be regarded as an auxiliary information to
improve the interpretability of the embeddings.

4.5 Robustness Check (Q4)
To evaluate the robustness of AutoFTP, we divided the
embeddings into 5 groups (HaiDian, ChongWen, FengTai,
ShiJingShan, FangShan) according to the geographical district
of spatial entities. Figure 11 shows that AutoFTP consistently
outperforms the baselines, and performs more stably than the
baselines across the five districts. Such observation indicates that
AutoFTP captures the unique local features of different spatial
groups. There are two possible reasons for the observation: 1) the
semantic alignment of AutoFTP injects the distinct semantic
characteristics of spatial entities into the learned embeddings; and
2) the customized regression estimator provides a clear
optimization objective for AutoFTP. Overall, the robustness
check experiment demonstrates that AutoFTP outperforms
other baseline models in not only the global zone but also
each local spatial sub-areas.

4.6 Study of the Stability and Sensitivity (Q5)
In this section, we fully evaluated the stability and parameter
sensitivity of AutoFTP. We first examined the stability of
AutoFTP by analyzing the training losses of AutoFTP and
convergence of PSO optimization part. To observe the
changing trend of each loss objectively, we scaled the value of
losses into [0 ∼ 1] and visualized them in Figure 12A. We can find
that all losses (reconstruction lossLR, regression lossLReg, point-
wise loss LP, pair-wise loss LC) reach convergence over training
iterations. Especially,LR andLReg reach equilibrium quickly only
after 10 epochs. This observation validates the training stability of
AutoFTP.We also analyzed the convergence of PSO. As shown in
Figure 12B, the PSO optimization part reaches convergence after
65 epochs, which further indicates the stable performance of
AutoFTP. For the parameter sensitivity evaluation, we
investigated the influence of the parameter K (the dimension
of final embeddings and the number of significant topics) for the
model performance and the training time. The same to
Figure 12A, we scaled the value of all metrics into [0 ∼ 1]
and visualized them in Figure 12C. We can find that the
value of K affects the model performance heavily. The
observation is reasonable because K determines the
information content of the final learned embeddings. The
plots in Figure 12D show that the larger K is, the longer the

FIGURE 10 | Feature importance of spatial embeddings.

TABLE 3 | Semantic labels and top 3 keywords.

Semantic label Keywords

Entertainment Work Out, Tennis Court, Golf Court
Transportation Facilities Highways, High Speed Rail, Bus Stations
Security Surveillance, Firefighting, Emergency
Education Primary School, High School, University
Business Commercial Street, Canal, Satellite City
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training time is. A potential reason for the observation is that the
larger Kmeans that we need to try more topic subsets for feature-
topic pairing.

5 RELATED WORK

Graph Representation Learning with Latent Semantics. Graph
representation learning refers to techniques that preserve the
structural information of a graph into a low-dimensional vector
(Wang et al., 2016; Abu-El-Haija et al., 2018; Zhang J. et al., 2019;
Cen et al., 2019; Wang et al., 2020b). However, owing to
traditional graph representation learning models are
implemented by deep neural networks, the learned
embeddings lack interpretability. Recently, to overcome this
limitation, researchers leveraged the texts related to graphs to
learn semantically rich representations. For instance, Mai et al.
implemented an entity retrieval academic search engines that
incorporate the text embedding and knowledge graph embedding
for accelerating retrieving speed (Mai et al., 2018). Xiao et al.
improved the semantic meaning of knowledge graph’s
embedding by integrating both graph triplets and textual
descriptions of spatial entities (Xiao et al., 2017). Different
from these studies, in this paper, based on spatial entities data
composing by spatial graphs and related texts, we propose a new
representation learning framework that unifies feature
embedding learning and feature-topic pairing together in a
closed-loop manner by a PSO based optimization method.

Topic Models in Spatio-temporal Domain. Topic models aim
to automatically cluster words and expressions patterns for

characterizing documents (Xun et al., 2017; Lee and Kang,
2018; Hu et al., 2019). Recently, to understand the hidden
semantics of spatial entities, many researchers applied topic
models in the spatio-temporal data mining domain (Zheng
et al., 2017; Huang et al., 2019; Huang et al., 2020). For
instance, Zhao et al. discovered representative and
interpretable human activity patterns from transit data
automatically by a spatio-temporal topic model (Zhao et al.,
2020). Yao et al. tracked spatio-temporal and semantic
dynamics of urban geo-topics based on an improved dynamic
topic model that embeds spatial factors of pairwise distances
between tweets (Yao and Wang, 2020). These successful
applications validate the effectiveness of topic models for
extracting semantics in spatio-temporal domains. However,
traditional topic models only focus on word frequency in texts
but neglect the semantics of words. Recently, the success of many
pre-trained language models (Vaswani et al., 2017; Kenton and
Toutanova, 2019; Yang et al., 2019) brings hope for producing
more reasonable topic distribution. Thus, in this paper, we
employ a pre-trained language model to get the embeddings of
keywords and utilize Gaussian Mixture Model to extract topic
distribution based on the embeddings.

Explainable Artificial Intelligence (XAI) With artificial
intelligence methods are applied in multiple scenarios
successfully, how to improve the model explainability
becomes a big challenge. In the traditional machine learning
domain, researchers employ some simple models that own the
explainability naturally such as linear models, decision trees,
rule-based models, and etc to explain the modeling process
(Burkart and Huber, 2021; Lakkaraju et al., 2016; Lakkaraju

FIGURE 11 | Robustness check according to geographical district.

FIGURE 12 | Study the stability and sensitivity of AutoFTP. (A) Training Losses. (B) Training PSO Cost. (C) Parameter Sensitivity. (D) K vs. Training Time.
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et al., 2017). For instance (Lundberg et al., 2020), improved the
global interpretability of tree models by combining many local
feature explanations of each prediction and obtained good
performance on three medical machine learning problems by
applying these models (Wang and Rudin, 2015). provided a
Bayesian framework for learning falling rule lists that do not
rely on traditional greedy decision tree learning approaches to
improve the explainability of classification models. Although
these approaches can improve the model interpretability, the
model performance often is sacrificed. Recently, the excellent
predictive performance of deep learning models leads the
techniques have been applied in many scenarios such as
fraud detection, credit evaluation, healthcare, etc. But
explainability is the key limitation of the deep learning
models. To improve the model explainability, XAI on deep
learning attracts much attention from researchers (Gunning,
2017; Selvaraju et al., 2017; Samek and Müller, 2019; Agarwal
et al., 2020). For instance (Selvaraju et al., 2017), proposed a
gradient-weighted class activation mapping method to
highlight the import regions in the image for predicting the
concept. (Agarwal et al., 2020). proposed neural additive
models that learns a linear combination of neural networks
for depicting the complex relationships between input features
and the output. However, these models focus on studying the
relationship between the embeddings and outputs, but cannot
provide explicit semantic meanings. Different from these
studies, we try to give explicit semantic labels for the
learned embeddings through the alignment between the
feature embedding space and topic semantic space.

Comparison with Prior Literature As an emerging feature
extraction technique, deep SRL has demonstrated the power
in automated geographic and spatial feature extraction.
However, SRL inherits drawbacks of traditional DNNs,
such as: the embedding feature space lacks semantic
interpretation. Texts can provide more interpretation, but
spatial text mining has developed separately. Now, there is
cross and increasing interests in both fields to benefit from the
advances of the other. Our study targets at an unexplored area
at the intersection between representation learning in
geospatial data and topic label mining in texts. We develop
and formulate a new problem: feature-topic pairing, to
address the alignment challenges of the feature embedding
space and the semantic topic space. The self-optimizing
solution unifies representation learning, topic label
selection, feature-topic matching in a PSO framework. This
framework can be generalized to other integrated tasks, such
as, representation learning integrated with not just topic
based selection, but also causal selection, or other
constrained selection over features, in various application
senarios. This is how this study differentiates from and
advances prior literature.

6 CONCLUSION

We presented a novel spatial representation learning (SRL)
framework, namely AutoFTP. The spatial embeddings
produced by traditional SRL models lack semantic meaning.
To overcome this limitation, we formulated the feature-topic
paring problem. We proposed a novel deep learning framework
to unify representation learning, topic label selection, and
feature-topic pairing. Specifically, we designed a
segmentation-embedding-clustering method to generate
candidate feature topic labels from texts. We developed an
integrated measurement to measure the pointwise and
pairwise alignment between topic label and embedding
feature space. We devised a PSO based optimization
algorithm to effectively solve the joint task of feature
learning and feature-topic pairing. Our method integrated
spatial graphs and associated texts to learn effective
embedding features with visible labels. Extensive experiments
demonstrated the effectiveness of AutoFTP by comparing it
with other baseline models. The topic labels of the learned
features were shown by many case studies and the feature
importance analysis of a downstream task. For future work,
we plan to extend our approach from geospatial networks to
other applications that consist of graphs and texts, such as social
media and software code safety.

DATA AVAILABILITY STATEMENT

Publicly available datasets were analyzed in this study. This data
can be found here: https://www.dropbox.com/sh/
woqh4qvuzq1788r/AAB5Vz1DSeJiLKxq-POHLMAVa?dl�0.

AUTHOR CONTRIBUTIONS

DW proposes the main idea, finishes major experiments,
writes the paper. KL helps accomplish partial experiments
and writes some paragraphs in the paper. DM helps
improve the presentation of the paper PW helps modify
some typos and errors in the paper C-TL improves the
presentation and language of the paper YF improves the
presentation of the paper and provides the experimental
data and devices.

FUNDING

This research was partially supported by the National Science
Foundation (NSF) via the grant numbers: 1755946, 2040950,
2006889, 2045567, 2141095.

Frontiers in Big Data | www.frontiersin.org October 2021 | Volume 4 | Article 76289913

Wang et al. Automated Feature-Topic Pairing for SRL

https://www.dropbox.com/sh/woqh4qvuzq1788r/AAB5Vz1DSeJiLKxq-POHLMAVa?dl=0
https://www.dropbox.com/sh/woqh4qvuzq1788r/AAB5Vz1DSeJiLKxq-POHLMAVa?dl=0
https://www.dropbox.com/sh/woqh4qvuzq1788r/AAB5Vz1DSeJiLKxq-POHLMAVa?dl=0
https://www.frontiersin.org/journals/big-data
www.frontiersin.org
https://www.frontiersin.org/journals/big-data#articles


REFERENCES

Abu-El-Haija, S., Perozzi, B., Al-Rfou, R., and Alemi, A. A. (2018). Watch Your
Step: Learning Node Embeddings via Graph Attention.Adv. Neural Inf. Process.
Syst. 31, 9180–9190.

Agarwal, R., Frosst, N., Zhang, X., Caruana, R., and Hinton, G. E. (2020). Neural
Additive Models: Interpretable Machine Learning with Neural Nets.

Blei, D., Ng, A., and Jordan, M. (2003). Latent Dirichlet Allocation Journal of
Machine Learning Research.3

Boiko, D., Parygin, D., Savina, O., Golubev, A., Zelenskiy, I., and Mityagin, S. (2020).
“Approaches toAnalysis of Factors Affecting the Residential Real Estate Bid Prices in
Case of Open Data Use,” in Electronic Governance and Open Society: Challenges in
Eurasia. Editors A. Chugunov, I. Khodachek, Y. Misnikov, and D. Trutnev (Cham:
Springer International Publishing), 360–375. doi:10.1007/978-3-030-39296-3_27

Burkart, N., and Huber, M. F. (2021). A Survey on the Explainability of Supervised
Machine Learning. jair 70, 245–317. doi:10.1613/jair.1.12228

Cen, Y., Zou, X., Zhang, J., Yang, H., Zhou, J., and Tang, J. (2019). “Representation
Learning for Attributed Multiplex Heterogeneous Network,” in Proceedings of
the 25th ACM SIGKDD International Conference on Knowledge Discovery &
Data Mining, 1358–1368. doi:10.1145/3292500.3330964

Chandra, D. K., Wang, P., Leopold, J., and Fu, Y. (2019). “Collective Representation
Learning on Spatiotemporal Heterogeneous Information Networks,” in Proceedings
of the 27th ACM SIGSPATIAL International Conference on Advances in
Geographic Information Systems, 319–328. doi:10.1145/3347146.3359104

Doshi-Velez, F., and Kim, B. (2017). Towards a Rigorous Science of Interpretable
Machine Learning. arXiv preprint arXiv:1702.08608.

Elshawi, R., Al-Mallah, M. H., and Sakr, S. (2019). On the Interpretability of
Machine Learning-Based Model for Predicting Hypertension. BMC Med.
Inform. Decis. Mak. 19, 146–232. doi:10.1186/s12911-019-0874-0

Grover, A., and Leskovec, J. (2016). “node2vec: Scalable Feature Learning for
Networks,” in Proceedings of the 22nd ACM SIGKDD international conference
on Knowledge discovery and data mining, New York, NY, August 2016,
855–864. doi:10.1145/2939672.2939754KDD2016

Gunning, D. (2017). “Explainable Artificial Intelligence (Xai),” in Defense
Advanced Research Projects Agency (DARPA), Nd Web 2.

He, H. (2014). HanLP: Han Language Processing. [Dataset].
Hofmann, T. (2013). Probabilistic Latent Semantic Analysis. arXiv preprint arXiv:

1301.6705.
Hong, S. R., Hullman, J., and Bertini, E. (2020). Human Factors in Model

Interpretability: Industry Practices, Challenges, and Needs. Proc. ACM
Hum.-Comput. Interact. 4, 1–26. doi:10.1145/3392878

Hu, N., Zhang, T., Gao, B., and Bose, I. (2019). What Do Hotel Customers
Complain about? Text Analysis Using Structural Topic Model. Tourism
Manage. 72, 417–426. doi:10.1016/j.tourman.2019.01.002

Huang, L., Wen, Y., Guo, W., Zhu, X., Zhou, C., Zhang, F., et al. (2020). Mobility
Pattern Analysis of Ship Trajectories Based on Semantic Transformation and
Topic Model. Ocean Eng. 201, 107092. doi:10.1016/j.oceaneng.2020.107092

Huang, Q., Huang, C., Huang, J., and Fujita, H. (2019). Adaptive Resource
Prefetching with Spatial-Temporal and Topic Information for Educational
Cloud Storage Systems. Knowledge-Based Syst. 181, 104791. doi:10.1016/
j.knosys.2019.05.034

Jean, N., Wang, S., Samar, A., Azzari, G., Lobell, D., and Ermon, S. (2019).
“Tile2vec: Unsupervised Representation Learning for Spatially Distributed
Data,” in Proceedings of the AAAI Conference on Artificial Intelligence, 33.
3967–3974. doi:10.1609/aaai.v33i01.33013967

Kenton, J. D. M.-W. C., and Toutanova, L. K. (2019). “Bert: Pre-training of Deep
Bidirectional Transformers for Language Understanding,” in Proceedings of
NAACL-HLT, 4171–4186.

Kipf, T. N., and Welling, M. (2016). Variational Graph Auto-Encoders. arXiv
preprint arXiv:1611.07308.

Lakkaraju, H., Bach, S. H., and Jure, L. (2016). “Interpretable Decision Sets: A Joint
Framework for Description and Prediction,” in Proceedings of the 22nd ACM
SIGKDD international conference on knowledge discovery and data mining,
2016. 1675–1684. doi:10.1145/2939672.2939874

Lakkaraju, H., Kamar, E., Caruana, R., and Leskovec, J. (2017). Interpretable &
Explorable Approximations of Black Box Models. arXiv preprint arXiv:
1707.01154.

Lee, H., and Kang, P. (2018). Identifying Core Topics in Technology and
Innovation Management Studies: A Topic Model Approach. J. Technol.
Transf. 43, 1291–1317. doi:10.1007/s10961-017-9561-4

Lundberg, S. M., Erion, G., Chen, H., DeGrave, A., Prutkin, J. M., Nair, B., et al.
(2020). From Local Explanations to Global Understanding with
Explainable Ai for Trees. Nat. Mach. Intell. 2, 56–67. doi:10.1038/
s42256-019-0138-9

Mai, G., Janowicz, K., and Yan, B. (2018). “Combining Text Embedding and
Knowledge Graph Embedding Techniques for Academic Search Engines,” in
Semdeep/NLIWoD@ ISWC, 77–88.

Mihalcea, R., and Tarau, P. (2004). “Textrank: Bringing Order into Text,” in
Proceedings of the 2004 conference on empirical methods in natural language
processing.

Mikolov, T., Sutskever, I., Chen, K., Corrado, G. S., and Dean, J. (2013).
“Distributed Representations of Words and Phrases and Their
Compositionality,” in Advances in Neural Information Processing Systems,
3111–3119.

Mori, T., and Uchihira, N. (2019). Balancing the Trade-Off between Accuracy and
Interpretability in Software Defect Prediction. Empir. Softw. Eng. 24, 779–825.
doi:10.1007/s10664-018-9638-1

Perozzi, B., Al-Rfou, R., and Skiena, S. (2014). “Deepwalk: Online Learning of
Social Representations,” in Proceedings of the 20th ACM SIGKDD
international conference on Knowledge discovery and data mining (New
York: ACM), 701–710.

Poursabzi-Sangdeh, F., Goldstein, D. G., Hofman, J. M., Wortman Vaughan, J. W.,
andWallach, H. (2021). “Manipulating and Measuring Model Interpretability,”
in Proceedings of the 2021 CHI Conference on Human Factors in Computing
Systems, 1–52. doi:10.1145/3411764.3445315

Ribeiro, L. F., Saverese, P. H., and Figueiredo, D. R. (2017). “struc2vec: Learning
Node Representations from Structural Identity,” in Proceedings of the 23rd
ACM SIGKDD international conference on knowledge discovery and data
mining, 385–394.

Saisubramanian, S., Galhotra, S., and Zilberstein, S. (2020). “Balancing the Tradeoff
between Clustering Value and Interpretability,” in Proceedings of the AAAI/
ACM Conference on AI, Ethics and Society (New York: ACM), 351–357.
doi:10.1145/3375627.3375843

Samek, W., andMüller, K.-R. (2019). “Towards Explainable Artificial Intelligence,”
in Explainable AI: interpreting, explaining and visualizing deep learning
(Springer), 5–22. doi:10.1007/978-3-030-28954-6_1

Selvaraju, R. R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., and Batra, D.
(2017). “Grad-cam: Visual Explanations from Deep Networks via Gradient-
Based Localization,” in Proceedings of the IEEE international conference on
computer vision, 618–626. doi:10.1109/iccv.2017.74

Shan, S., Li, Z., Yang, Q., Liu, A., Zhao, L., Liu, G., et al. (2020). Geographical
Address Representation Learning for Address Matching. World Wide Web 23,
2005–2022. doi:10.1007/s11280-020-00782-2

Stiglic, G., Kocbek, P., Fijacko, N., Zitnik, M., Verbert, K., and Cilar, L. (2020).
Interpretability of Machine Learning-Based Prediction Models in Healthcare.
Wiley Interdiscip. Rev. Data Mining Knowledge Discov. 10, e1379. doi:10.1002/
widm.1379

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., et al.
(2017). “Attention Is All You Need,” in Proceedings of the 31st International
Conference on Neural Information Processing Systems, 6000–6010.

Wang, D., Cui, P., and Zhu, W. (2016). “Structural Deep Network Embedding,” in
Proceedings of the 22nd ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining (New York: ACM), 1225–1234.
doi:10.1145/2939672.2939753

Wang, D., Wang, P., Liu, K., Zhou, Y., Hughes, C. E., and Fu, Y. (2021). “Reinforced
Imitative Graph Representation Learning for mobile User Profiling: An
Adversarial Training Perspective,” in Proceedings of the AAAI Conference
on Artificial Intelligence, 35. 4410–4417.

Wang, D., Wang, P., Zhou, J., Sun, L., Du, B., and Fu, Y. (2020a). “DefendingWater
Treatment Networks: Exploiting Spatio-Temporal Effects for Cyber Attack
Detection,” in 2020 IEEE International Conference on Data Mining (ICDM)
(IEEE), 32–41. doi:10.1109/icdm50108.2020.00012

Wang, F., and Rudin, C. (2015). “Falling Rule Lists,” in Proceedings of the
Eighteenth International Conference on Artificial Intelligence and Statistics
of Proceedings of Machine Learning Research, San Diego, California, USA.

Frontiers in Big Data | www.frontiersin.org October 2021 | Volume 4 | Article 76289914

Wang et al. Automated Feature-Topic Pairing for SRL

https://doi.org/10.1007/978-3-030-39296-3_27
https://doi.org/10.1613/jair.1.12228
https://doi.org/10.1145/3292500.3330964
https://doi.org/10.1145/3347146.3359104
https://doi.org/10.1186/s12911-019-0874-0
https://doi.org/10.1145/2939672.2939754
https://doi.org/10.1145/3392878
https://doi.org/10.1016/j.tourman.2019.01.002
https://doi.org/10.1016/j.oceaneng.2020.107092
https://doi.org/10.1016/j.knosys.2019.05.034
https://doi.org/10.1016/j.knosys.2019.05.034
https://doi.org/10.1609/aaai.v33i01.33013967
https://doi.org/10.1145/2939672.2939874
https://doi.org/10.1007/s10961-017-9561-4
https://doi.org/10.1038/s42256-019-0138-9
https://doi.org/10.1038/s42256-019-0138-9
https://doi.org/10.1007/s10664-018-9638-1
https://doi.org/10.1145/3411764.3445315
https://doi.org/10.1145/3375627.3375843
https://doi.org/10.1007/978-3-030-28954-6_1
https://doi.org/10.1109/iccv.2017.74
https://doi.org/10.1007/s11280-020-00782-2
https://doi.org/10.1002/widm.1379
https://doi.org/10.1002/widm.1379
https://doi.org/10.1145/2939672.2939753
https://doi.org/10.1109/icdm50108.2020.00012
https://www.frontiersin.org/journals/big-data
www.frontiersin.org
https://www.frontiersin.org/journals/big-data#articles


Editors G. Lebanon and S. V. N. Vishwanathan (San Diego, CA: PMLR), 38.
1013–1022.

Wang, H., and Li, Z. (2017). “Region Representation Learning via Mobility Flow,”
in Proceedings of the 2017 ACM on Conference on Information and
Knowledge Management, 237–246. doi:10.1145/3132847.3133006

Wang, P., Fu, Y., Xiong, H., and Li, X. (2019a). “Adversarial Substructured
Representation Learning for mobile User Profiling,” in Proceedings of the
25th ACM SIGKDD International Conference on Knowledge Discovery & Data
Mining, 130–138. doi:10.1145/3292500.3330869

Wang, P., Fu, Y., Zhang, J., Li, X., and Lin, D. (2018a). Learning Urban
Community Structures. ACM Trans. Intell. Syst. Technol. 9, 1–28.
doi:10.1145/3209686

Wang, P., Fu, Y., Zhang, J., Wang, P., Zheng, Y., and Aggarwal, C. (2018b). “You
Are How You Drive: Peer and Temporal-Aware Representation Learning
for Driving Behavior Analysis,” in Proceedings of the 24th ACM SIGKDD
International Conference on Knowledge Discovery & Data Mining,
2457–2466.

Wang, P., Fu, Y., Zhou, Y., Liu, K., Li, X., and Hua, K. A. (2020b). “Exploiting
Mutual Information for Substructure-Aware Graph Representation Learning,”
in IJCAI, 3415–3421. doi:10.24963/ijcai.2020/472

Wang, P., Li, X., Zheng, Y., Aggarwal, C., and Fu, Y. (2019b). “Spatiotemporal
Representation Learning for Driving Behavior Analysis: A Joint Perspective of
Peer and Temporal Dependencies,” in IEEE Transactions on Knowledge and
Data Engineering. doi:10.1109/tkde.2019.2935203

Wang, P., Liu, K., Jiang, L., Li, X., and Fu, Y. (2020c). “Incremental mobile User
Profiling: Reinforcement Learning with Spatial Knowledge Graph for Modeling
Event Streams,” in Proceedings of the 26th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining, 853–861. doi:10.1145/
3394486.3403128

Wang, S., Cao, J., Chen, H., Peng, H., and Huang, Z. (2020d). SeqST-GAN. ACM
Trans. Spat. Algorithms Syst. 6, 1–24. doi:10.1145/3378889

Xiao, H., Huang, M., Meng, L., and Zhu, X. (2017). “Ssp: Semantic Space Projection
for Knowledge Graph Embedding with Text Descriptions,” in Thirty-First
AAAI Conference on Artificial Intelligence.

Xun, G., Li, Y., Zhao, W. X., Gao, J., and Zhang, A. (2017). “A Correlated Topic
Model Using Word Embeddings,” in Proceedings of the Twenty-Sixth
International Joint Conference on Artificial Intelligence (Melbourne: IJCAI),
4207–4213. doi:10.24963/ijcai.2017/588

Yang, Z., Dai, Z., Yang, Y., Carbonell, J., Salakhutdinov, R. R., and Le, Q. V. (2019).
Xlnet: Generalized Autoregressive Pretraining for Language Understanding.
Adv. Neural Inf. Process. Syst. 32, 5753–5763.

Yao, F., andWang,Y. (2020).TrackingUrbanGeo-TopicsBased onDynamicTopicModel.
Comput. Environ. Urban Syst. 79, 101419. doi:10.1016/j.compenvurbsys.2019.101419

Zhang, J., Dong, Y., Wang, Y., Tang, J., and Ding, M. (2019a). Prone: Fast and
Scalable Network Representation Learning. IJCAI 19, 4278–4284. doi:10.24963/
ijcai.2019/594

Zhang, Y., Fu, Y., Wang, P., Li, X., and Zheng, Y. (2019b). “Unifying Inter-region
Autocorrelation and Intra-region Structures for Spatial Embedding via
Collective Adversarial Learning,” in Proceedings of the 25th ACM SIGKDD
International Conference on Knowledge Discovery & Data Mining, 1700–1708.
doi:10.1145/3292500.3330972

Zhao, Z., Koutsopoulos, H. N., and Zhao, J. (2020). Discovering Latent Activity
Patterns from Transit Smart Card Data: A Spatiotemporal Topic Model.
Transportation Res. C: Emerging Tech. 116, 102627. doi:10.1016/
j.trc.2020.102627

Zheng, R., Liu, Q., Rao, W., Yuan, M., Zeng, J., and Jin, Z. (2017). “Topic Model-
Based Road Network Inference from Massive Trajectories,” in 2017 18th IEEE
International Conference on Mobile Data Management (MDM) (IEEE),
246–255. doi:10.1109/mdm.2017.41

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations, or those of
the publisher, the editors and the reviewers. Any product that may be evaluated in
this article, or claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Copyright © 2021 Wang, Liu, Mohaisen, Wang, Lu and Fu. This is an open-access
article distributed under the terms of the Creative Commons Attribution License (CC
BY). The use, distribution or reproduction in other forums is permitted, provided the
original author(s) and the copyright owner(s) are credited and that the original
publication in this journal is cited, in accordance with accepted academic practice. No
use, distribution or reproduction is permitted which does not comply with these terms.

Frontiers in Big Data | www.frontiersin.org October 2021 | Volume 4 | Article 76289915

Wang et al. Automated Feature-Topic Pairing for SRL

https://doi.org/10.1145/3132847.3133006
https://doi.org/10.1145/3292500.3330869
https://doi.org/10.1145/3209686
https://doi.org/10.24963/ijcai.2020/472
https://doi.org/10.1109/tkde.2019.2935203
https://doi.org/10.1145/3394486.3403128
https://doi.org/10.1145/3394486.3403128
https://doi.org/10.1145/3378889
https://doi.org/10.24963/ijcai.2017/588
https://doi.org/10.1016/j.compenvurbsys.2019.101419
https://doi.org/10.24963/ijcai.2019/594
https://doi.org/10.24963/ijcai.2019/594
https://doi.org/10.1145/3292500.3330972
https://doi.org/10.1016/j.trc.2020.102627
https://doi.org/10.1016/j.trc.2020.102627
https://doi.org/10.1109/mdm.2017.41
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/big-data
www.frontiersin.org
https://www.frontiersin.org/journals/big-data#articles


APPENDIX

Reproducing the Algorithm
To claim AutoFTP clearly, we provide the pseudo-code of the
learning process of AutoFTP. As illustrated in Algorithm 1, the
framework includes three steps: (i) initializing the parameters of
PSO, (ii) optimizing multiple objectives of AutoFTP, (iii) and
outputting the final spatial embeddings. The framework takes
topic vectors, POI-POI distance graphs, and POI-POI mobility
graphs of spatial entities as input, and final semantically-rich
embeddings as output.

For initializing the parameters of PSO (Line 1–5 in Algorithm
1), we first generate M particles as a particle swarm. Then, we
initialize the position (topic mask) and velocity of each particle.
Specifically, we sampleK values from the uniform distributionU(0,
1) as the position vector, and sample K values from the uniform
distribution U(−1, 1) as the velocity vector. Next, we update each
particle’s best known position (pBest) and the swarm’s best known
position (gBest) based on each particle’s position.

For optimizing multiple objectives of AutoFTP (Line 6–20 in
Algorithm 1), we first check that if the optimization process
achieves the termination conditions. If best topic mask is not
found or the training iteration does not surpass the max iteration
limitation, we optimize the objectives continually. Otherwise, we
output the final spatial representations. During the optimization
process, for one iteration, we utilize one particle to do feature-topic
pairing. Specifically, we first update the velocity of the particle
based on the old velocity, the gap between the current position and
pBest, and the gap between the current position and gBest. Then,
we generate a new position vector (topic mask) based on the
velocity vector (Line 10–11 inAlgorithm 1). In the two lines,ω, ϕp,
ϕg are weights, and c is the learning rate of the corresponding
items. Then, we filter K topics by the topic mask and generate the

basic embedding of a spatial entity. In addition, we align the
semantics of the K topics and the features of the basic
embedding, and accomplish a downstream task simultaneously
(Line 12–15 in Algorithm 1). Moreover, we evaluate the
performance of the particle, and update the value of pBest and
gBest for next optimization iteration (Line 16–20, inAlgorithm 1).

For outputting final spatial embeddings (Line 21–23 in
Algorithm 1), we copy the learned spatial representation as
the final semantically-rich representations of spatial entities.

Algorithm 1 | Automatic Feature-Topic Pairing (AutoFTP).
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