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Spatial classification with limited observations is important in geographical applications
where only a subset of sensors are deployed at certain spots or partial responses are
collected in field surveys. For example, in observation-based flood inundation mapping,
there is a need to map the full flood extent on geographic terrains based on earth imagery
that partially covers a region. Existing research mostly focuses on addressing incomplete
or missing data through data cleaning and imputation or modeling missing values as
hidden variables in the EM algorithm. These methods, however, assume that missing
feature observations are rare and thus are ineffective in problems whereby the vast majority
of feature observations are missing. To address this issue, we recently proposed a new
approach that incorporates physics-aware structural constraint into the model
representation. We design efficient learning and inference algorithms. This paper
extends our recent approach by allowing feature values of samples in each class to
follow a multi-modal distribution. Evaluations on real-world flood mapping applications
show that our approach significantly outperforms baseline methods in classification
accuracy, and the multi-modal extension is more robust than our early single-modal
version. Computational experiments show that the proposed solution is computationally
efficient on large datasets.
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1 INTRODUCTION

Given a spatial raster framework with explanatory feature layers, a spatial contextual layer (e.g., an
elevation map), and a set of training samples with class labels outside the framework, the spatial
classification problem aims to learn a model that can predict the class layer Du et al. (2019); Jiang
(2019, 2020); Shekhar et al. (2015); Wang P. et al. (2018); Zhang et al. (2019); Karpatne et al. (2016);
Jiang (2019). We particularly focus on spatial classification with limited feature observations,
i.e., only limited pixel locations in the raster framework have explanatory feature data available.
For example, observation-based flood inundation extent mapping aims to classify all pixels in the
raster framework into flood and dry classes, even in the case whereby only a part of the pixels have
corresponding spectral features. In this example, the elevation values are available for all pixels in the
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framework, but only limited pixel locations have spectral data
(e.g., a drone or aerial plane could not cover the entire region due
to limited time during a flood disaster).

The problem is important in many applications such as flood
extent mapping. Flood extent mapping is crucial for disaster
management, national water forecasting, and energy and food
security Jiang and Shekhar (2017); Jiang et al. (2019); Xie et al.
(2018). For example, during hurricane floods, first responders
needed to know where the floodwater is in order to plan rescue
efforts. In national water forecasting, accurate flood extent maps
can be used to calibrate and validate the NOAA National Water
Model National Oceanic and Atmospheric Administration
(2018b). In current practice, flood extent maps are mostly
produced by forecasting models, whose accuracy is often
unsatisfactory in a high spatial resolution Cline (2009);
Merwade et al. (2008). Other ways to generate flood maps
involve sending a field crew on the ground (e.g., recording
high watermarks), but the process is both expensive and time-
consuming. A promising alternative is to utilize Earth observation
data from remote sensors. However, sensor observations often
have limited spatial coverage due to only a subset of sensors being
deployed at certain spots, making it a problem of spatial
classification with limited feature observations. For example,
during a flood disaster, a drone can only collect spectral
images in limited areas due to time limit. Though we use
flood mapping as a motivation example, the problem is
general for other applications such as water quality monitoring
Yang and Jin (2010) in river networks.

The problem poses several unique challenges that are not well
addressed by traditional classification techniques. First, there are
limited feature observations on samples in the raster framework
due to only a subset of sensors being deployed in certain regions.
In other words, only a subset of samples have complete
explanatory feature values, making it hard to predict classes
for all samples. Second, among the sample pixels with
complete explanatory feature values, their feature values may
contain rich noise and obstacles (e.g., clouds and shadows).
Third, the explanatory features of image pixels can be subject
to class confusion due to heterogeneity. For instance, pixels of tree
canopies above flood water have the same spectral features as
trees in dry areas, yet the classes of these pixels are different.
Finally, the number of pixel locations can be very large for high-
resolution data (e.g., hundreds of millions of pixels). This requires
scalable algorithms.

Over the years, various techniques have been developed to
address missing feature observations (or incomplete data) in
classification García-Laencina et al. (2010). Existing methods
can be categorized into data cleaning or imputation, extending
classification models to allow for missing values, and modeling
missing features as hidden variables in the EM algorithm. Data
cleaning will remove samples that miss critical feature values.
Data imputation focuses on filling in missing values either by
statistical methods Little and Rubin (2019) (e.g., mean feature
values from observed samples) or by prediction models (e.g.,
regression) based on observed samples Batista and Monard
(2002); Bengio and Gingras (1996); Rubin (2004); Schafer
(1997); Yoon and Lee (1999). There are also approaches that

handle missing values by the multi-task strategy (i.e., partition
different patterns of missing values into different tasks) as in
García-Laencina et al. (2013); Zhou et al. (2011); Wang et al.
(2018a). Another approach focuses on classification models and
algorithms that allow for missing feature values in learning and
prediction without data imputation. For example, a decision tree
model allows for samples with missing features in learning and
classification Quinlan (1989, 2014); Webb (1998). During
learning, for a missing feature value in a sample, a probability
weight is assigned to each potential feature value based on its
frequency in observed samples. During classification, a decision
tree can explore all possible tree traversal paths for samples with
missing features and select the final class prediction with the
highest probability. Similarly, there are some other models that
have been extended to allow for missing feature values, such as
neural network ensembles Jiang et al. (2005), and support vector
machine Chechik et al. (2007); Pelckmans et al. (2005); Smola
et al. (2005). The last category is to model missing feature values
as hidden variables and use the EM (Expectation-Maximization)
algorithm for effective learning and inference Ghahramani Z. and
Jordan M. I. (1994, 1994a); McLachlan and Krishnan (2007);
Williams et al. (2007). Specifically, the joint distribution of all
samples’ features (both observed and missing features) can be
represented by a mixture model with fixed but yet unknown
parameters. In the EM algorithm, we can use initialized
parameters and observed features to estimate the posterior
distribution of hidden variables (missing features), and then
further update the parameters for the next iteration. However,
all these existing methods assume that incomplete feature
observations are rare and thus cannot be effectively applied to
our problem where the vast majority of samples have missing
features (i.e., limited feature observations).

To fill this gap, we recently proposed a new approach that
incorporates physics-aware structural constraints into model
representation Sainju et al. (2020b). Our approach assumes
that a spatial contextual feature (elevation map) is fully
observed for every sample location, and establishes the
topography constraints (i.e., water flow directions across
elevation contours) from the elevation map He and Jiang
(2020); Jiang (2020). The advantage of such physical
constraints is that it provides a global dependency structure of
class labels (i.e., flood or dry) across locations beyond a spatial
neighborhood. We design efficient algorithms for model
parameter learning and class inference and conduct
experimental evaluations to validate the effectiveness and
efficiency of the proposed approach against existing works.
Motivated by the observations that sample features can be
heterogeneous with multiple modalities, this paper extends our
recent approach by allowing for multi-modal feature distribution
in each class. We also propose the parameter learning algorithms
for the extended model. In summary, the paper makes the
following contributions:

• We extend the model by allowing feature values of samples
in each class to follow a multi-modal distribution.

• We evaluated the proposed model on two real-world
hydrological datasets. Results show that the new multi-
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modal solution is more robust than the previous single-
modal version especially when feature distribution in
training samples is multi-modal.

• Computation experiments show that the proposed solution
is scalable to a large data volume.

2 PROBLEM STATEMENT

2.1 Preliminaries
Here we define several basic concepts that are used in the problem
formulation.

A spatial raster framework is a tessellation of a 2D plane into a
regular grid of N cells. The framework can containm explanatory
feature layers (e.g., spectral bands in satellite imagery), a potential
field layer (e.g., elevation), and a class layer (e.g., flood or dry).

Each pixel in a raster framework is a spatial data sample,
denoted by sn � (xn, ϕn, yn), where n ∈ N, 1≤ n≤N , xn ∈ Rm×1 is
a vector of m non-spatial explanatory feature values with each
element corresponding to a feature layer, ϕn ∈ R is a pixel’s
potential field value, and yn ∈ {0, 1} is a binary class.

A raster framework with all samples is denoted by
F � {sn|n ∈ N, 1≤ n≤N}, non-spatial explanatory feature
matrix of all samples are denoted by X � [x1, . . . , xN]T , the
potential field vector is denoted by Φ � [ϕ1, . . . , ϕN ]T , and the
class vector is denoted by Y � [y1, . . . , yN]T .

In a raster framework, it may happen that only a limited
number of samples have non-spatial explanatory features being
observed. We define O as the set of indices for these fully
observed samples. Samples with fully observed (complete)
explanatory features are denoted by {xn|n ∈ O}. Their feature
matrix is denoted by Xo.

2.2 Problem Definition
Given a raster framework with the explanatory features of a
limited number of samples Xo, the potential field layer of all
samples in the framework Φ � [ϕ1, . . . , ϕN ]T , and a set of
training pixels with class labels, the problem aims to learn a
classifier f to predict the class layer Y � f (Xo,Φ). For example, in
flood extent mapping, the explanatory feature layers are spectral
bands of earth imagery; the spatial contextual layer is geographic
terrains based on elevation, and the target class layer are classes of

flood or dry. We assume that the elevation values are available for
all pixels in the framework (assuming that these values do not
frequently change over time) but only limited pixel locations have
spectral observations (e.g., a drone or aerial plane could not cover
the entire region). Figure 1 shows a toy example of a raster
framework that consists of 64 samples with a one-dimensional
explanatory feature and a potential field layer. There are only
eight samples with observed explanatory features (four non-
empty cells in Figure 1B). The goal is to learn a model that
can predict the class layer in Figure 1C.

3 APPROACH

In this section, we introduce our proposed approach. We start
with physics-aware structural constraints and then introduce our
probabilistic model and its learning and inference algorithms. We
will introduce our approach in the context of the flood mapping
application, but the proposed method can be potentially
generalized to other applications such as material science
Wales et al. (1998), Wales (2003) and biochemistry
Edelsbrunner and Koehl (2005); Günther et al. (2014).

3.1 Physics-Aware Structural Constraint
The main idea of our proposed approach is to establish a spatial
dependency structure of sample class labels based on the physical
constraint from the spatial potential field layers (e.g., water flow
directions based on elevation). An illustration is provided in
Figure 2. Figure 2A shows the elevation values of eight pixels in
one dimensional space (e.g., pixels on a row in Figure 1). Due to
gravity, water flows from high locations to nearby lower locations.
If location 4 is flooded, locations 1 and 3 must also be flooded.
Such a dependency structure can be established based on the
topology of the potential field surface (e.g., elevation). Figure 2B
shows a directed tree structure that captures the flow dependency
structure. If any node is flood, then all sub-tree nodes must also be
flood due to gravity. The structure is also called split tree in
topology Carr et al. (2003); Edelsbrunner and Harer (2010),
where a node represents a vertex on a mesh surface (spatial
potential field) and an edge represents the topological
relationships between vertices. We can efficiently construct the
tree structure from a potential field map following the topological

FIGURE 1 | An illustration problem example. (A) Spatial potential field (elevation) (B) Partially observed non-spatial feature values (C)Ground truth classes (green for
dry, orange for flood).
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order of pixels based on the union-find operator (its time
complexity is O(NlogN)) Carr et al. (2003). We omit details
due to space limit. It is worth noting that although our illustrative
example in Figure 2 is in one-dimensional space for simplicity,
the structure is readily applicable to two-dimensional space Jiang
and Sainju (2019). We can create a single tree structure for the
entire elevation map in Figure 1A.

3.2 Model Probabilistic Formulation
Now we introduce our approach that integrates physics-aware
structural constraint into the probabilistic model formulation to
handle limited feature observations. The overall idea of the model
structure is similar to Xie et al. (2018); Jiang et al. (2019); Jiang
and Sainju (2019); Sainju et al. (2020a); Jiang and Sainju (2021).
Figure 3 illustrates the overall model structure. It consists of two
layers: a hidden class layer with unknown sample classes (yn) and
an observation layer with limited sample feature vectors (xn).
Each node is a spatial data sample (raster pixel). Edge directions
represent a dependency structure based on physical constraints.

The joint distribution of all samples’ features and classes are in
Eq. 1, where Pn is the set of parent nodes in the dependency tree,
and yk∈Pn ≡ {yk

∣∣∣∣k ∈ Pn} is the set of parent classes. For a leaf node
n, Pn � ∅, and P(yn

∣∣∣∣∣yk∈Pn) � P(yn).

P(Xo,Y) � P(Xo|Y)P(Y) � ∏
n∈O

P(xn
∣∣∣∣yn)∏

N

n�1
P(yn

∣∣∣∣∣yk∈Pn) (1)

The sample feature distribution in each class is assumed i.i.d.
Gaussian for simplicity, as shown in Eq. 2, where μyn and Σyn are
the mean and covariance matrix of feature vector xn for class
yn (yn � 0, 1).

P(xn
∣∣∣∣yn) ∼ N(μyn,Σyn) (2)

The class transitional probability follows a partial order. For
instance, because of gravity, if any parent’s class is dry, the child’s
class must be dry. On the other hand, if all parents’ classes are
flood, then the current child’s class has a high probability of being
flood too. Consider flood as class 1 and dry as class 0, then the
previous assumption is actually conditioned on the product of
parent classes yPn ≡ ∏

k∈Pn

yk, as expressed in Table 1, where π and ρ
are parameters for class transitional probability and class prior
probability.

3.3 Model Parameter Learning and Class
Inference
Model parameters consist of the mean and covariance matrix of
features in each class, the prior class probability, and the class
transition probability. We denote the entire set of parameters as
Θ � {ρ, π, μc,Σc

∣∣∣∣c � 0, 1}. Learning parameters poses two
challenges: first, Eq. 1 contains both unknown parameters and
hidden class variables Y � [y1, . . . , yN ]T that are non-i.i.d.;

FIGURE 2 | Illustration of partial order class dependency (A) Eight consecutive locations in 1D space (B) Partial order constraint in a reverse tree.

FIGURE 3 | Illustration of model structure.

TABLE 1 | Class transition probability and prior probability.

P(yn
∣∣∣∣yPn) yPn = 0 yPn = 1

yn � 0 1 1 − ρ

yn � 1 0 ρ

P(yn)

yn � 0 1 − π

yn � 1 π
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second, the number of samples (N) can be huge (e.g., millions of
pixels).

We use an expectation-maximization (EM) algorithm together
with message (belief) propagation. The main idea of the EM
algorithm is to first initialize a parameter setting, and compute the
posterior expectation of log-likelihood (Eq. 1) on hidden class
variables (E-step). The posterior expectation is a function of
unknown parameters. Thus, we can update parameters by
maximizing the posterior expectation (M-step). The two steps
can repeat iteratively until the parameter values converge. One
remaining issue is the calculation of posterior expectation of log-
likelihood on hidden class variables. This requires to compute the
marginal posterior distribution of P(yn, yk∈Pn

∣∣∣∣∣O,Θ0) and P(yn)
for each node sn. This is very challenging due to the high
dimensionality of Y. To address this challenge, we use message
propagation. For message propagation, we use the sum and
product algorithm Kschischang et al. (2001); Ronen et al.
(1995). Propagation of message along tree nodes is similar to
marginalizing out variables in the joint distribution in Eq. 1. Due
to the space limit, we only show the major steps in the following
discussion.

The message passing process is based on the sum-product
algorithm, which involves tree traversal operations. After
parameters learning, we can infer class variables by
maximizing the joint probability. We use a dynamic
programming algorithm called max-sum Rabiner (1989). It is
similar to the above sum and product algorithm. The main
difference is that we replace the sum operation with a max
operation during message propagation.

3.4 Intuitions on How the Model Works
The main intuition behind how our model handles limited
observations is that the model can capture physical constraints
between sample classes. The spatial structural constraints are
derived from the potential field layer that is fully observed on the
entire raster framework, regardless of whether non-spatial
features are available or not. The topological structure in a
split tree is consistent with the physical law of water flow
directions on a topographic surface based on gravity. In this
sense, even though many samples in the raster framework do not
have non-spatial explanatory features observed, we can still infer
their classes based on information from the pixels in the upstream
or downstream locations.

Another potential question is how our model can effectively
learn parameters given very limited observations. This question
can be answered from the perspective of how model learning
works. The major task of model learning is to effectively update
parameters of P(xn

∣∣∣∣yn) for observed pixels in the test region, so
that we can infer the posterior class probabilities on these pixels
and further infer hidden classes on other pixels. As long as the
training samples could give the model a reasonable initial
estimate of posterior class probabilities on the observed pixels
(e.g., truly dry pixels having a higher probability of being dry), the
update of parameters should be effective. This is because that
parameter updates are largely weighted average of the sample
mean and covariance matrices on fully observed pixels. The

corresponding weights are the posterior class probability of
observed samples.

3.5 Extension to Multi-modal Feature
Distribution
This subsection introduces an extension to our proposed model.
In the conference version, the joint distribution of all sample
features and classes follow a conditional independence
assumption based on the tree structure derived from physical
constraint (Eq. 1). Sample feature distribution in each class is
assumed i.i.d. Gaussian (Eq. 2). In real-world datasets, the actual
sample feature distribution in each class can be multi-modal,
violating the earlier assumption on a single-modal Gaussian
distribution. To account for this observation, we extend our
model to allow for multi-modal sample feature distribution in
each class. Specifically, we assume that sample features follow an
i.i.d. mixture of Gaussian distribution.

For the extended model, the joint distribution of all observed
samples’ features and classes can be expressed the same way as
Eq. 1. The joint probability can be decomposed into local factors,
i.e., the conditional distribution of features in each class and class
transitional probability. The assumption on class transitional
probability for non-leaf nodes and prior class probability for
leaf nodes remain the same as before (Table 1). What is different
is the conditional probability of sample feature vector given its
class. In the extended multi-modal model, sample feature in each
class is assumed i.i.d. mixture Gaussian distribution, as shown in
Eq. 3, where μiyn and Σi

yn are the mean and covariance matrix of
the i-th Gaussian component of feature vector xn for class yn
(yn � 0, 1), ϕiyn is the probability of a sample in class yn belonging
to the ith Gaussian componentN (μiyn ,Σi

yn), Kyn is the number of
Gaussian components (modes) in the feature distribution of
samples in class yn.

P(xn
∣∣∣∣yn) ∼ ∑

Kyn

i�1
ϕi
yn
N (μi

yn
,Σi

yn), yn � 0, 1 (3)

Based on the extended probabilistic formulation, we can use the
same EM algorithm with message propagation for parameter
learning. The entire set of parameters can be denoted as
Θ � {ρ, π, ϕic, μic,Σi

c

∣∣∣∣1≤ i≤Kc, c � 0, 1}. The EM algorithm
involves iterations with each iteration consisting of two major
steps: an E-step that calculates the marginal class posterior
probabilities by message propagation based on old parameters,
and an M-step that finds the optimal parameters to maximize the
overall objective. We can use message propagation based on the
sum and product algorithm Kschischang et al. (2001); Ronen
et al. (1995). The main difference is that the calculation of
messages related to the factor P(xn

∣∣∣∣yn) is based on the
mixture of Gaussian distribution instead of a single-modal
Gaussian distribution, as specified in Eq. 3.

After calculating the marginal posterior, we update model
parameters by maximizing the posterior expectation of log-
likelihood. Since we extend the probabilistic formulation of
feature distribution to a mixture of Gaussian, we also need to
revise the parameter update formula. The extended parameter
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update formulas are shown by equations below. The symbol Θ0

represents the old parameter values in the previous iteration of
the EM algorithm, which is used in the calculation of messages
and estimated posterior class probabilities. These calculated
terms are then used to update the parameters in the formulas
below to get a newΘ (the maximization step or M-step in the EM
algorithm).

ρ �
∑

n|Pn ≠∅
∑
yn

∑
yPn
yPn(1 − yn)P(yn, yPn

∣∣∣∣∣X,Θ0)
∑

n|Pn ≠∅
∑
yn

∑
yPn
yPnP(yn, yPn

∣∣∣∣∣X,Θ0)
(4)

π �
∑

n|Pn�∅
∑
yn

ynP(yn
∣∣∣∣X,Θ0)

∑
n|Pn�∅

∑
yn

P(yn
∣∣∣∣X,Θ0) (5)

ϕi
c �

∑
n∈O

P(yn � c
∣∣∣∣X,Θ0)cic(xn,Θ0)

∑Kc

i�1
∑
n∈O

P(yn � c
∣∣∣∣X,Θ0)cic(xn,Θ0)

, c � 0, 1 (6)

μic �
∑
n∈O

xnP(yn � c
∣∣∣∣X,Θ0)cic(xn,Θ0)

∑
n∈O

P(yn � c
∣∣∣∣X,Θ0)cic(xn,Θ0) , c � 0, 1 (7)

Σi
c �

∑
n∈O

(xn − μc)(xn − μc)TP(yn � c
∣∣∣∣X,Θ0)cic(xn,Θ0)

∑
n∈O

P(yn � c
∣∣∣∣X,Θ0)cic(xn,Θ0) , c � 0, 1,

(8)

where cic(xn,Θ0) �
ϕi
0,cN (xn

∣∣∣∣μi0,c,Σi
0,c)

∑Kc

i�1
ϕi
0,cN (xn

∣∣∣∣μi
0,c,Σ

i
0,c)

, c � 0, 1, (9)

In the new parameter update formulas, the formulas for ρ and
π are similar to the single-modal version. The main difference
is related to parameters for feature distributions, such as ϕic, μ

i
c

and Σi
c in Eqs 6–8. The key difference is the additional

weighting terms cic(xn,Θ0) in Eq. 9. Intuitively, the
intermediate variable cic(xn,Θ0) reflects the weight of a
sample with feature xn belong to the i-th Gaussian
component of class c. For example, in the parameter update
formula for μic (Eq. 7), the updated mean for features in the i-th
component of class c is based on the feature vector of each
sample, averaged by the sample’s weight on the i-th
component of class c (cic(xn,Θ0)). Similar interpretation can
be given on the update formulas for ϕic and Σi

c.
Another issue is the parameter initialization before the EM

iteration, the initial parameters of ϕic, μ
i
c and Σi

c can be initialized
based on a small set of training samples (pixels) with known
labels. This can be done by an EM clustering for feature values in
each class. The cluster centroids can be initialized by randomly
select Kc samples from the training samples in class c.

After parameter learning, we can use the same class inference
algorithm based on message propagation (max-sum Rabiner
(1989)). The calculation of messages is similar to before,
except that the message related to P(xn

∣∣∣∣yn) are calculated
based on the mixture of Gaussian distribution.

4 EXPERIMENTAL EVALUATION

4.1 Experiment Setup
In this section, we compared our proposed approach with
baseline methods in related works on real-world datasets.
Evaluation candidate methods are listed below. Note that we
did not include data imputation methods (e.g., filling in mean
feature values) due to its low capability of handling very limited
observations. We used default parameters for open source tools.
Experiments were conducted on a Dell workstation with Intel(R)
Xeon(R) CPU E5-2687w v4 @ 3.00GHz, 64 GB main memory,
and Windows 10.

• Label propagation with structure (LP-Structure): In the
implementation of this baseline method, we used the
maximum likelihood classifier (MLC) and gradient
boosted model (GBM) respectively to pre-classify fully
observed samples and then ran label propagation Wang
and Zhang (2007) on the topography tree structure. We
named them as LP-Structure-MLC and LP-Structure-
GBM. The initial classifiers were from R packages.

• EM with i.i.d. assumption (EM-i.i.d.): In the
implementation of this baseline method Ghahramani Z.
and Jordan M. (1994), we treated missing features and
unknown classes as latent variables and used the EM
algorithm assuming that sample features follow i.i.d.
Gaussian distribution in each class. Moreover, we
assumed RGB (red, green, blue) features and elevation
features are uncorrelated.

• EM with structure: This is our proposed approach. We
treated unknown classes as latent variables and used the EM
algorithm assuming that samples follow the topography tree
dependency structure. The codes were implemented in C++.
There are two configurations: single-modal feature
distribution (EM-Structure-Single) and multi-modal
feature distribution (EM-Structure-Multi).

Data Description: Our real-world data were collected from
Kinston and Grimesland in North Carolina, 2016. The data
include aerial imagery from NOAA National Geodetic Survey
National Oceanic and Atmospheric Administration (2018a) with
red, green, blue bands in a 2-m resolution and a digital elevation
map from the University of North Carolina Libraries NCSU
Libraries (2018). The test region size was 1743 by 1,349 pixels in
Kinston and 2,757 by 3,853 pixels in Grimesland. The number of
observed pixels was 31,168 in Kinston and 237,312 in
Grimesland. The numbers of training and testing pixels are
provided in Table 2.

TABLE 2 | Dataset description.

Dataset Training Set Testing Set

Dry Flood Dry Flood

Matthew, Kinston 5,000 5,000 48,071 47,967
Matthew, Grimesland 5,000 5,000 75,670 59,405
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Evaluation Metrics: For classification performance evaluation,
we used precision, recall, and F-score. For computational
performance evaluation, we measured the running time costs
in seconds.

4.2 Classification Performance Evaluation
We first compared methods on precision, recall, and F-score on
the two real-world datasets. The results were summarized in
Tables 3, 4 respectively. On the Kinston dataset, EM algorithm
with the i.i.d. assumption performed the worst with an average
F-score of 0.66. The reason was that this method was not able to
utilize the spatial structural constraint between sample classes. Its
training process only updated the parameter of Gaussian feature
distribution in each class. When predicting the classes of samples
with only elevation feature, the method used only the learned
Gaussian distribution of elevation feature on each class without
considering spatial structure based on elevation values. On the
same dataset, label propagation after pre-classification with the
GBM model and the maximum likelihood classifier slightly
outperformed the EM algorithm with the i.i.d. assumption.
The main reason was that label propagation on the
topography tree (split tree) structure utilized the physical
constraint between sample classes when inferring the classes of
unobserved samples without RGB features. However, label
propagation still showed significant errors, particularly in the
low recall on the dry class. Through analyzing the predicted map,
we observed that the label propagation algorithm was very
sensitive to the pre-classified class labels on the observed
samples in the test region. Errors in the pre-classification
phase may propagation into unobserved samples (those
without RGB feature values). In label propagation methods,
once the errors were propagated to unobserved samples, they
were hard to be reverted. This was different from the EM
algorithm, which could update the probabilities in iterations.
We did not report the results of label propagation on a grid graph
structure (only considering spatial neighborhood structure
without physics-aware constraint) due to poor results. Our
model based on the EM algorithm assuming structural
dependency between class labels performed the best with an
average F-score of 0.96. The main reason was that our model
could leverage the physical constraint to infer unobserved
samples, and also could effectively update sample probabilities
during iterations with the EM algorithm. In our model, we used
training samples to initialize the parameters of the Gaussian
distribution of sample features in each class. Based on the

reasonable initial parameters, we can have a reasonable
estimation of the posterior class probabilities of all samples in
the test region. Based on the posterior class probabilities, the
distribution parameters could be further updated. The
representative training samples helped make sure that
parameter iterations would converge in the right path.

Similar results were observed on the Grimesland dataset. In
the label propagation method, pre-classification based on
GBM performed worse than pre-classification based on
MLC. The reason may be due to overfitting of GBM
compared with MLC when predicting initial labels on the
fully observed samples. The EM algorithm with the i.i.d.
assumption performed slightly better on this dataset. The
reason is likely that the final prediction of classes of the
unobserved samples (with only elevation feature but
without RGB features) was based on a slightly better fitted
normal distribution. Our model showed the best performance
with an F-score of 0.97.

4.2.1 The Effect of Model Initial Parameters
We also analyzed the sensitivity of our proposed model on
different initial parameter settings. The parameters of μc and
Σc were estimated from training data, but parameters ρ and π
were from user input. Since ρ captured the transitional
probability of a sample being flood given its parents were
all flood, its value should be very high (close to 1) due to spatial
autocorrelation. π is the initial class prior probabilities for
samples without parent nodes (local lowest location). We
could set it close to 0.5. We tested the sensitivity of our
model to different initial values of ρ and π on the Kinston
dataset. We first fixed ρ as 0.999 and varied the value of π from
0.1 to 0.9. Then we fixed π as 0.3 and varied the value of ρ from
0.9. The results were shown in Figure 4. We can see that the
model was generally not very sensitive to the initial parameter
values. For parameter ρ, as long as 1 − ρ was smaller than 0.01
(ρ greater than 0.99), the converged F-score was good. For
parameter π, the results were consistently good for our model
with an initial π between 0.1 and 0.9. The main reason was that
π influenced only a small number of samples at the local lowest
locations on the elevation map.

The parameter iterations of our model were shown in
Figure 5. The model converged fast with only 20 iterations.
Due to the space limit, we only show the iterations of parameters
ρ and π.

TABLE 3 | Comparison on Mathew, Kinston flood data.

Classifiers Class Prec. Recall F Avg. F

LP-Structure-GBM Dry 0.91 0.56 0.69 0.74
Flood 0.68 0.94 0.79

LP-Structure-MLC Dry 0.86 0.55 0.67 0.72
Flood 0.67 0.91 0.77

EM-i.i.d. Dry 1.00 0.39 0.56 0.66
Flood 0.62 1.00 0.76

EM-Structure-Single Dry 0.94 0.99 0.96 0.96
Flood 0.99 0.94 0.96

TABLE 4 | Comparison on Mathew, Grimesland flood data.

Classifiers Class Prec. Recall F Avg. F

LP-Structure-GBM Dry 0.81 0.60 0.69 0.70
Flood 0.61 0.82 0.70

LP-Structure-MLC Dry 0.90 0.75 0.82 0.81
Flood 0.73 0.90 0.81

EM-i.i.d. Dry 0.83 0.74 0.78 0.77
Flood 0.71 0.80 0.75

EM-Structure-Single Dry 0.99 0.96 0.97 0.97
Flood 0.95 0.99 0.97
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4.3 Computational Performance Evaluation
We also evaluated the computational performance of our model
learning and inference on different input data sizes. We used the
Grimesland dataset to test the effect of different test region sizes.
We varied the region size from around 2 million pixels to over 10
million pixels. The computational time costs of our model were
shown in Figure 6. It can be seen that the time cost grows almost
linearly with the size of the test region. This was because our
learning and inference algorithms involve tree traversal
operations with a linear time complexity on the tree size (the
number of pixels on the test region). The model is
computationally efficient. It classified around 10 million pixels
in around 2 min.

We further analyzed the time costs of different components in our
model, including split tree construction, model parameter learning,
and class inference. The results are summarized in Table 5. We
analyzed the results on both datasets (same as the settings inTables 3,
4. Results showed that tree construction and class inference took less
time than parameter learning. This was because the learning involves
multiple iterations ofmessage propagation (tree traversal operations).

4.4 Additional Comparison of EMStructured
Between Single-modal and Multi-modal
This subsection provides additional evaluations on the
comparison of our EM structured algorithms between the

single-modal feature distribution (conference version) and
multi-modal feature distribution (journal extension). In
previous experiments, we found that our EM structured
(single-modal) outperformed several baseline methods when
feature distribution among training samples in each class is
single-modal. In this experiment, we used the same two test
regions and observed polygons as previous experiments
(Table 2), but collected training samples that exhibit multi-
modal feature distributions in each class. The new training
dataset still contains 5,000 samples for dry class and 5,000
samples for flood class.

For both single-modal and multi-modal, we fixed the
parameter π (prior class probability for leaf nodes) as 0.5, ρ as
0.999 (class transitional probability between a node and its
parents) and the maximum number of iterations in EM as 40.
We compared different candidate methods on their precision,
recall, and F-score on the two test regions.

The new results were summarized in Tables 6, 7. On Kinston
flood data, we can see that the performance of the three baseline
methods was poor (F-score below 0.72). Among these methods,
GBM with label propagation (LP) was worse (F-score around
0.34), likely due to serious overfitting issues from the varying
feature distributions between the training and test samples. The

FIGURE 4 | Sensitivity of our model to initial parameters π and ρ.

FIGURE 5 | Parameter iterations and convergence in our model.
FIGURE 6 | Computational performance of out model on varying test
region sizes.
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performance of the proposed EM-structure model with single-
modal feature distribution (conference version) significantly
degraded (F-score dropped to 0.34). The reason was probably
that the feature values of training samples follow a multi-modal
distribution, violating the original assumption that features are
single-modal Gaussian in each class. Thus, the parameter
iterations were not ineffective during the learning iterations on
observed samples in the test region. In contrast, the EM-
structured with multi-modal distribution was more robust
with the best performance (F-score around 0.97). Similar
results were seen in the Grimesland dataset. The three baseline
methods generally performed poorly, except for the label
propagation with the maximum likelihood method achieving
an F-score of 0.91. The reason was likely that the maximum
likelihood classifier was simple and less prone to overfitting in
initial label prediction. The EM-structured model with a single
modal performed poorly (F-score around 0.28) due to the wrong
assumption on feature distribution. In contrast, the EM-
structured model with a multi-modal assumption performed
the best with an F-score around 0.95.

We also visualize the predicted class maps on the Kinston
dataset in Figure 7 for interpretation. The input limited feature
observations on spectral pixels in the test region are shown in
Figure 7A. The observed pixels cover parts of the boundary of the
flood region in the test region. The digital elevation image that
was used to construct a tree structure based on physical constraint
is shown in Figure 7B. From the topography of the area, we can
see that the test region has a floodplain alongside a river channel
that is spreading through the lower half of the image. The top area
of the image have higher elevation. The predictions of label
propagation on top of GBM (LP-Structure-GBM) and MLC
(LP-Structure-MLC) are in Figures 7C,D. We can see a
significant amount of misclassification (e.g., the flood area in

the middle of Figure 7C is mistakenly predicted as dry, the dry
area at the bottom of Figure 7B is mistakenly classified as flood).
The reason is probably that initial class predictions by these
models are noisy and these noisy labels further spread out during
label propagation. The EM i.i.d. algorithm also shows significant
errors in the bottom part of the image, where the elevation is
lower. The reason is probably that the learned decision boundary
on the elevation feature in the EM i.i.d. algorithm is inaccurate

TABLE 5 | Time costs of different components of our model on two datasets
(seconds)

Kinston Grimesland

Tree construction part 3.2 8.39
Parameter learning part 25.74 86.79
Class inference part 3.8 15.62
Total time costs 32.74 110.80

TABLE 6 | Comparison on Mathew, Kinston flood data.

Classifiers Class Prec. Recall F Avg. F

LP-Structure-GBM Dry 0.44 0.73 0.55 0.34
Flood 0.26 0.09 0.14

LP-Structure-MLC Dry 0.85 0.56 0.67 0.72
Flood 0.67 0.90 0.77

EM-i.i.d. Dry 1.00 0.40 0.57 0.67
Flood 0.62 1.00 0.77

EM-Structure-Single Dry 0.50 1.00 0.66 0.34
Flood 1.00 0.01 0.01

EM-Structure-Multi (Our extension) Dry 0.94 0.99 0.97 0.97
Flood 0.99 0.94 0.97

TABLE 7 | Comparison on Mathew, Grimesland flood data.

Classifiers Class Prec. Recall F Avg. F

LP-Structure-GBM Dry 0.74 0.53 0.62 0.71
Flood 0.75 0.88 0.81

LP-Structure-MLC Dry 0.84 0.96 0.90 0.91
Flood 0.97 0.89 0.93

EM-i.i.d. Dry 0.57 0.87 0.69 0.70
Flood 0.88 0.590 0.70

EM-Structure-Single Dry 0.38 1.00 0.55 0.28
Flood 1.00 0.00 0.00

EM-Structure-Multi (Our extension) Dry 0.91 0.96 0.94 0.95
Flood 0.97 0.94 0.96

FIGURE 7 | Results on Matthew flood, Kinston, NC (A) Limited
observation aerial imagery in Kinston NC (B) Digital elevation model (C) LP-
Structure-GBM result (D) LP-Strucrure-MLC result (E) EM-i.i.d. result (F) EM-
Structure-Single result (G) EM-Structure-Multi result.
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due to limited sample observations. The EM structured model
with single-modal feature distribution performs poorly,
classifying almost the entire area as dry. The reason is likely
that the feature distribution in the model during parameter
learning iterations is wrong, making the inferred classes largely
wrong. In contrast, the EM structured model with multi-modal
feature distribution identified the complete flood boundary.

5 CONCLUSIONS AND FUTURE WORK

In this paper, we investigate the flood extent mapping application
of spatial classification in a case whereby samples have limited
feature observations. We extend our recent approach that
incorporates physics-aware structural constraints (e.g., water
flow directions on geographic terrains) into model structural
representation. We propose efficient algorithms for model
parameter learning and class inference. The extended model
allows for multi-modal feature distribution with the mixture
Gaussian model. Evaluations on flood mapping datasets show
that the proposed approach outperformed existing methods in
classification accuracy.

In future work, we plan to extend our proposed model to
address other problems such as integrating noisy and incomplete
observations such as volunteered geographic information (VGI).

We also plan to explore incorporating deep learning into our
framework to learn more complex feature distributions.
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