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The pervasiveness of mobile and sensing technologies today has facilitated the creation of
Big Crowdsourced Geotagged Data (BCGD) from individual users in real time and at
different locations in the city. Such ubiquitous user-generated data allow us to infer various
patterns of human behavior, which helps us understand the interactions between humans
and cities. In this article, we aim to analyze BCGD, including mobile consumption check-
ins, urban geography data, and human mobility data, to learn a model that can unveil the
impact of urban geography and humanmobility on the vibrancy of residential communities.
Vibrant communities are defined as places that show diverse and frequent consumer
activities. To effectively identify such vibrant communities, we propose a supervised data
mining system to learn and mimic the unique spatial configuration patterns and social
interaction patterns of vibrant communities using urban geography and human mobility
data. Specifically, to prepare the benchmark vibrancy scores of communities for training,
we first propose a fused scoring method by fusing the frequency and the diversity of
consumer activities using mobile check-in data. Besides, we define and extract the
features of spatial configuration and social interaction for each community by mining
urban geography and humanmobility data. In addition, we strategically combine a pairwise
ranking objective with a sparsity regularization to learn a predictor of community vibrancy.
Andwe develop an effective solution for the optimization problem. Finally, our experiment is
instantiated on BCGD including real estate, point of interests, taxi and bus GPS
trajectories, and mobile check-ins in Beijing. The experimental results demonstrate the
competitive performances of both the extracted features and the proposed model. Our
results suggest that a structurally diverse community usually shows higher social
interaction and better business performance, and incompatible land uses may
decrease the vibrancy of a community. Our studies demonstrate the potential of how
to best make use of BCGD to create local economicmatrices and sustain urban vibrancy in
a fast, cheap, and meaningful way.
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INTRODUCTION

Vibrant residential communities (vibrant communities for short)
are defined as places that show diverse and frequent consumer
activities. Vibrant communities usually have the following
features: permeability, vitality, variety, accessibility, identity,
and legibility. Developing vibrant communities is very
beneficial for both social good and business good. For
instance, vibrant communities can attract talented younger
workers, high-tech entrepreneurs, and cutting-edge firms, as
well as foster intensive social interactions, productivity, and
creative activities. Thereby, understanding urban vibrancy can
help 1) contribute to economic growth; 2) enhance public
security; and 3) improve environmental, fiscal, and social
outcomes. For example, when hunting for a business site,
entrepreneurs should consider the surrounding community,
whether it is welcoming and attractive for business activities
(Church and Murray, 2009). By studying the urban vibrancy
patterns of communities, we can make better decisions and
suggestion for business site selection, to ensure successful
business.

However, it is traditionally challenging to develop vibrant
communities because there is not a clear answer to the following
question: “what kind of communities tend to have higher
vibrancy?” In prior literature, researchers have conducted
conceptual and empirical studies about vibrant communities
in the fields of urban planning and social science. For
example, Glaeser et al. pointed out that vibrant communities
depend on the demand for urban density (Glaeser et al., 2001).
Couture et al. found people are willing to pay higher rents and
transportation costs for vibrant places (Couture, 2013). Farber
et al. found that vibrant communities are associated with spatial
concentration of residents and diversity of products and services
(Farber and Li, 2013). Malizia et al. found that vibrant
communities are usually compact, dense, and accessible with
diverse land uses (Malizia and Song, 2014). Neutens et al. found
that high-density and mixed land uses can benefit quality social
interactions and enhance community vibrancy (Neutens et al.,
2013). Dougal et al. argued urban vibrancy can be reflected by
dynamic human-dependent factors (e.g., highly talented workers)
that vary over time (Dougal et al., 2015). However, all these
studies only provide conceptual understanding on one or two
aspects of the community vibrancy.

In order to provide a comprehensive understanding of various
aspects that contribute to the community vibrancy, we propose a
big data–driven approach which is the first time to systematically
study the measurements and patterns of vibrant communities.
Specifically, we take advantage of the large-volume and
ubiquitous user-generated data collected from diverse sources,
for example, buildings, vehicles, human, sensors, and devices, in
real time and at different locations in the city. Such Big
Crowdsourced Geotagged Data (BCGD) allow us to infer
various patterns of human behavior and understand the
interactions between humans and cities. If properly analyzed,
these data can be a rich source of intelligence to discover and
mimic the unique spatial and mobility patterns of vibrant
communities.

However, due to the variety and veracity nature of big data, it is
very challenging to analyze BCGD. To make the analysis effective
and efficient, we propose to focus the community vibrancy
analysis on two perspectives: 1) spatial configuration and 2)
social interaction. First, the spatial configuration of a
community is empirically defined as the physical
characteristics that make up built-up areas, such as bus
systems, subway systems, road networks, and landmarks, as
well as corresponding locations, numbers, and mutual
distances. Prior literature has developed empirical evidence
that suggests the significant impact of spatial configuration on
community vibrancy (Song and Knaap, 2004; Koster and
Rouwendal, 2012; Loehr, 2013). However, it is not a trivial
task to quantify the spatial configuration of communities.
Particularly, we need to construct effective variables
(i.e., features) from static urban geography data (e.g.,
landmarks, public transportation data, and road network
data), in order to capture the compatible dimensions of spatial
structure, as well as the corresponding portfolios and geographic
allocations of these dimensions within a community. Second,
from the perspective of social interaction, there are some
preliminary studies (Farber et al., 2013, 2014; Farber and Li,
2013; Neutens et al., 2013) about measuring general social
interactions using human mobility data. Unfortunately, since
human mobility data are mostly in a form of trajectories or
footprints, typically represented by a sequence of GPS location
points, such data are lack of semantically rich information, which
makes the task of profiling social interactions within and across
communities very challenging. Therefore, we propose to augment
and enrich the semantic information of human mobility data in
order to analyze intercommunity and intra-community social
interaction. In summary, we propose to analyze and extract the
features of spatial configuration from urban geography data and
the features of social interaction from human mobility to spot
highly vibrant communities, which will be formulated as a
ranking-based data mining task next.

Although a lot of features may be extracted from a variety of
data sources, these extracted vibrancy-related features are often
correlated and redundant. The feature redundancy can result in
poor generalization performance. In reality, a small number of
good features are usually sufficient to represent the patterns of
vibrant communities and facilitate accurate prediction of spotting
vibrant communities. Conventional methods usually use a two-
step paradigm, which is basically to first select a feature subset and
then learn a ranking model based on the selected features.
However, the selected feature subset may not be optimal for
ranking because the two steps are modeled separately. As revealed
by many machine learning researchers, the presumption of the
sparsity-regularized classification models is that only a subset of
features are significant for prediction; that is, the coefficients of
nonsignificant features will be very small and close to zero in the
learned classification model. Therefore, we propose to combine
sparsity regularization and ranking objective in a unifiedmodel to
help us identify the optimal feature subset for spotting vibrant
communities.

To summarize, in this article, we conduct a systematic study
on the measurements, patterns, and modeling of urban vibrancy.
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Specifically, the following are our main contributions: 1) We start
with defining a fused scoring method based on F-measure to
quantify the urban vibrancy of communities. 2) We mine the
features of spatial configuration from static urban geography data
and the features of social interactions from dynamic human
mobility data. 3) Given the obtained features, we develop a
novel model to learn the patterns of vibrant communities, by
combining pairwise ranking objective and sparsity regularization
in a unified probabilistic framework, which is greatly enhanced by
simultaneously conducting feature selection and maximizing
ranking accuracy. 4) Finally, we conduct comprehensive
performance evaluations for the feature sets and models with
large-scale real-world data, and the experimental results
demonstrate the competitive performance of our method with
respect to different validation metrics.

PROBLEM STATEMENTS AND
FRAMEWORK OVERVIEW

In this section, we first introduce the important definitions and
formulate the problem. After that, we provide an overview of the
proposed analytic framework.

Definitions and Problem Formulation
Residential community: A residential community consists of a
location (i.e., latitude and longitude) of a residential complex and
a neighborhood area (e.g., a circle with radius of 1 km). A
residential complex often includes one or multiple apartment
buildings in urban areas. There are a variety of point of interests

(POIs) in the neighborhood area, providing many services to
people. Figure 1 shows an example of a residential community.

Problem definition: Formally, given a set of I residential
communities X � {x1, x2, . . . , xI}, the goal of our problem is to
rank them in a descending order according to their vibrancy scores
Y � {y1, y2, . . . , yI}. BCGD such as point of interest data, human
mobility data, and mobile consumption check-in data have encoded
the unique spatial and social patterns of residential communities, and
thus can be used to identify vibrant communities by exploiting a data-
driven analytics-enabled strategy. Essentially, there are three major
tasks: 1) Developing empirical and measurable metric to quantify the
vibrancy scores of residential communities; 2) quantifying the patterns
of spatial configuration and social interaction within and across
residential communities; and 3) learning to spot highly vibrant
communities with the spatial and social patterns of communities.

Framework Overview
The focus of this article is to develop a data mining approach for
spotting vibrant residential communities. In the pursuit of this
general aim, we have three specific tasks: measurement, patterns,
and modeling.

• In researching measurements, we aim to develop an
empirical metric to measure community vibrancy using a
data-driven strategy. While urban vibrancy is difficult to be
observed, BCGD provide a potential to circumvent this
problem. To quantify vibrancy empirically, we make use
of novel mobile consumption check-in data and propose an
unsupervised fused scoring method to quantify the vibrancy
score of each community.

FIGURE 1 | Example of a residential community.
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• In researching patterns, we aim to discover the patterns of
community vibrancy. We extract various contextual
features from two perspectives: spatial configuration and
social interactions. The spatial configuration features are
extracted from the urban geography data including public
transportation, road networks, and POIs; the social
interaction features are extracted from the human
mobility data including bus GPS data, taxi GPS data, and
smartphone GPS data.

• In researching patterns, to make full use of all relevant
features, we develop a sparse learning-to-rank approach for
spotting vibrant communities.

Figure 2 shows the overview of the proposed analytic
framework.

AN EMPIRICAL METRIC FOR ESTIMATING
COMMUNITY VIBRANCY

In prior literature, researchers have found that the vibrancy score
of a residential community can be reflected by consumer activities
from two perspectives: density and diversity of consumer
activities (Talen, 1999; Glaeser et al., 2001; Couture, 2013;
Farber and Li, 2013; Malizia and Song, 2014). Here, “density”
can be explained by the fact that if a large number of consumers
are willing to pay higher transportation costs to visit a place, and
to spend more time to consume in that place, the place is likely to

be vibrant. A high “diversity” of consumer activities indicates that
this place can meet a variety of consumption needs and help
consumers carry out different outdoor activities in a single place
within a walking distance. In other words, consumers do not have
to visit other places and can complete a variety of activities in a
single place.

To capture vibrancy empirically, we make use of a novel
geotagged user consumption check-in data shared in location-
based social networks (LBSNs). A check-in event contains the
information of a mobile user’s destination POI and
consumption activity type, which connects user profiles, POI
locations, and outdoor activities with measurable density and
diversity. The presumption is that urban vibrancy increases the
density and diversity of consumer activities and POIs in a place.
In other words, urban vibrancy promotes the probability that
mobile users check into a place, enhances the diversity of urban
functions, and improves social interactions and centralization
across different categories of outdoor activities. With this
presumption, urban vibrancy, even though not observed
directly, can be identified by strategically fusing the
observable densities and diversities of mobile check-ins over
various activity categories, for example, home, work, date,
dinning, travel, transportation, shopping, and entertainment.
Specifically, urban vibrancy can be quantified by mathematically
giving a vibrancy score using a fused scoring framework. We
propose to proceed with three steps: 1) measuring the density of
consumer activities, 2) measuring the diversity of consumer
activities, and 3) fused scoring.

FIGURE 2 | Overview of our framework.
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1) Measuring the density of consumer activities.

We propose to extract the density of consumer activities in
communities. For each residential community, we count the total
number of mobile consumption check-in events (#) as an
estimation of the density of consumer activities, denoted
by fre � #.

2) Measuring the diversity of consumer activities.

To estimate the diversity of consumer activities in a
community, we count the numbers of mobile check-in events
with respect to different POI categories, denoted by {#c}Cc�1, where
c represents the c-th POI category and C denotes the number of
POI categories. We compute the diversity of consumer activities
by exploiting the definition of entropy

div � ∑C
c�1

#clog#c. (1)

3) Fused scoring.

After extracting and normalizing both density and diversity,
we use the F-1 score

vibrancy � 2 p fre p div
fre + div

(2)

to fuse both density and diversity into a single score. The score
extracted from consumer activities can empirically measure the
vibrancy of a community.

DISCOVERING PATTERNS OF VIBRANT
COMMUNITIES

We now proceed to introduce discriminative features to describe
and quantify the patterns of vibrant communities. Specifically, we
categorize the features into two categories:

• The features of spatial configurations, which can be extracted
from urban geography data, such as public transportation,
road networks, and POIs.

• The features of social interactions, which can be extracted
from human mobility data (taxi GPS data, bus GPS data,
etc.) within and across communities.

Features of Spatial Configuration
The spatial configuration of a community is a three-element
tuple, including 1) the compatible dimensions of the spatial
configuration, such as shopping, living service, education, and
transportation buildings that serve important urban functions; 2)
the portfolio of these compatible dimensions, such as frequency,
density, and diversity of different POIs; and 3) the geographic
allocation of these compatible dimensions, such as distances to
different POIs. The recent study by Evans et al. (2007) implied

that urban environmental elements combine to determine the
quality of life in higher density and mixed-use locations.
Moreover, the study by Yue et al. (2017) showed that POI
diversity contributes significantly to improving neighborhood
vibrancy. Therefore, we extract 1) density of POIs, 2) diversity
of POIs, and 3) accessibility of transportation as features for each
community ci, in which there are a set of POIs, denoted by
P � {p : p ∈ ci&p ∈ P}, where p is a POI.

1) Density of POIs.

After studying large-scale residential community data, mobile
check-in data, and POI data, we found that the vibrancy level of a
place depends on the density of POIs in the same area. Intuitively, the
more POIs in a community, the more likely the community could
meet a visitor’s various needs, such as dating, shopping, and watching
movies. Therefore, we exploit the density of POIs as a feature.
Specifically, for each community ci, we can count the POI number
of each POI category ϕk. POI categories are defined based on their
functions, such as shopping, sports, and education. Formally, we have

numϕk
ci
� ∑ I{p ∈ ci&p ∈ P&p ∈ ϕk}, (3)

where I denotes the numbers of POIs. We note that given that the
radius of a community is the same, the density depends only on
the number of POIs they include.

2) Diversity of POIs.

To assess the influence of the spatial heterogeneity of
community functionalities on the vibrancy of a community,
we apply the entropy measure to describe the diversity of
POIs for a community. For each community ci, we calculate
the diversity ηi as follows:

ηi � −∑
k

numϕk
ci∑knum
ϕk
ci

log
numϕk

ci∑knum
ϕk
ci

. (4)

According to the definition, the larger the entropy is, the
higher diversity the community has. Be sure to notice that the
diversity of POIs has correlation with the diversity of user
consumption activities in the measurement section of
community vibrancy, but they are two different concepts. The
diversity of POIs represents the spatial configuration and
geographic allocation of a community; the diversity of user
consumption activities denotes a quantitative aspect of human
dynamic behavior.

3) Accessibility.

We refer accessibility to the degree of convenience that
consumers can visit a community. For example, street
connectivity, higher bus stop density, and greater
nonmotorized access promote the possibility of human
mobility and influence the transportation mode choice (Khan
et al., 2014); different effects of spatial accessibility vary among
different trip purposes (Zhang, 2005); and users in different
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gender and youth groups show different mobility patterns in rural
and suburban areas (Collins et al., 2012). Generally, public
transportation facilities and the quality of the road network
are two basic factors that influence the accessibility.

numb
ci
� ∑ I{b ∈ B&b ∈ ci}, (5)

where I denotes the numbers of bus stops, B denotes the bus stop
set, and b denotes a bus stop. Besides, we also calculate the
minimum distance from POIs to the bus stops as ζbci :

ζbci � min
p ∈ ci&b ∈ ci

dist(p, b), (6)

where dist(p, b) denotes the distance between a POI p and a bus
station b. Similarly, for subway stations, we calculate the number
of subway stations:

nums
ci
� ∑ I{s ∈ S&s ∈ ci}, (7)

where S denotes the subway station set and s denotes a subway
station. And the minimum distance from POIs to the subway
stations is denoted as ζ sci :

ζ sci � min
p ∈ ci&s ∈ ci

dist(p, s), (8)

where dist(p, s) denotes the distance between a POI p and a
subway station s.

1. Public transportation facilities. There are two major types of
public transportation—bus and subway, in most big cities.
Therefore, we define and extract some important properties of
bus stops and subway stations. For each community ci, we
calculate the number of bus stations:

2. The quality of the road network. Intuitively, in an urban area, if a
community has more intersections of road networks, consumers
can access taxis or enter road network systems by private cars
more easily. Also, if a community with the same radius has longer
roads and highways, the density of road networks is higher.
Therefore, we calculate the number of intersections of roads
(denoted as numτ

ci ) and the density of road networks (denoted
as vi) to measure the quality of road networks.

For each community ci, the number of intersections of roads
numτ

ci can be calculated as

numτ
ci
� ∑

τ

Iτ ∈ ci, (9)

where τ denotes an intersection in the road networks, and the
density of road networks vi can be calculated as

vi � ∑
τk ∈ ci&τl ∈ ci

dist(τk, τ l), (10)

where dist(τk, τ l) denotes the distance between two intersections
τk and τ l .

Features of Social Interactions
Social interactions within and across communities can be
observed and estimated from people’s movements. In general,
human mobility encodes two types of social interactions:

• The interactions between users and users: A mobile user
moves from one community to another community and
stays in the destination for a certain time. During this time
period, the mobile user is highly likely to meet and speak to
other mobile users, particularly for the trip purpose of
dating, entertainment, and dinning.

• The interactions between users and places: Mobile users
inevitably have to interact with a variety of POIs to
complete activities with respect to different trip purposes,
such as working, shopping, dining, and entertainment.

As a result, we extract social interaction features from the
human mobility data based on the following three perspectives:
(i) mobility flow, (ii) range, and (iii) average speed.

1) Mobility flow.

Taking a community as an example, we can observemovements
that leave a community, arrive at a community, and transit within a
community. Based on the above observations, all movements can
be segmented into three types: 1) inflow (corresponding to arriving
human mobility), 2) outflow (corresponding to leaving human
mobility), and 3) intra-flow (corresponding to human mobility
within communities). In BCGD, a movement trajectory trk can be
represented as a four-element tuple (Ok, tOk,Dk, tDk), where Ok

denotes the original point, tOk denotes the start time,Dk denotes the
destination point, and tDk denotes the end time.

inflowci � ∑
k

I{Ok ∉ ci,Dk ∈ ci}, (11)

where I denotes the number of trajectories and inflowci denotes
the inflow volume of the community ci.

outflowci � ∑
i

I{Ok ∈ ci,Dk ∉ ci}, (12)

where I denotes the numbers of trajectories and outflowci denotes
the outflow volume of the community ci.

intra − flowci � ∑
i

I{Ok ∈ ci,Dk ∈ ci}, (13)

where I denotes the number of trajectories and intra − flowci
denotes the intra-flow volume of the community ci.

2) Range.

1. Inflow interaction. Inflow is defined as movements that people
come to visit the community ci from other communities.
Therefore, the volume of inflow can be calculated as

2. Outflow interaction. Outflow is defined as movements that
people leave the community ci. Therefore, the volume of
outflow can be calculated as

3. Intra-flow interaction. Intra-flow is defined as movements that
are inside of the community ci. Therefore, the volume of intra-
flow can be calculated as

We check the maximum commute distance of taxis to the
community to represent the range of social interactions. For a
community ci, we calculate the range of interaction λi as
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λi � max(Ok ,tOk ,Dk ,tDk) ∈ Ttaxi
dist(Ok,Dk), (14)

where Ttaxi denotes taxi trajectories and dist(Ok,Dk) denotes the
distance between Ok and Dk.

3) Average speed.

The average speed of taxis on roads reflects the fluency of
interactions. For a given community ci, we calculate the average
speed ]i as

]i �
∑k

dist(Ok ,Dk)
tDk−tOk

I{(Ok, tOk
,Dk, tDk) ∈ Ttaxi}, (15)

where I denotes the number of trajectories and k is legal when
(Ok, tOk,Dk, tDk) ∈ Ttaxi.

Feature Summary
We extract features from BCGD according to the definitions in
4.1 and 4.2. The summary of the extracted features is in Table 1.
To further capture how the spatial and social features vary over
community radius, we set the radius of a community as different
distance values (e.g., 0.25, 0.5, 0.75, 1, 1.5, 2, 2.5, and 3 km) and
extract a large number of features.

LEARNING TO IDENTIFY THE PATTERNS
OF VIBRANT COMMUNITIES

In this section, we present how to select the proper set of
important features out of the large number of features
obtained from the previous step. We propose a model to spot
highly vibrant communities by combining pairwise learning to
ranking and sparsity regularization.

Model Description
Since many existing learning-to-rank algorithms use linear
rankers, we also learn a linear ranking predictor. Let xi denote
theM-size vector representation of residential community ei with
the above extracted features, fi denote the predicted vibrancy

score, and yi denote the ground truth of the vibrancy score, then
we have

fi(xi;w) � ∑M
m�1

wmxim + ϵi � wuxi + ϵi, (16)

where ϵi is a zero-mean Gaussian bias with variance σ2 and w is
the weights of the features. In other words,
P(yi

∣∣∣∣xi) � N (yi
∣∣∣∣fi, σ2) � N (yi

∣∣∣∣wuxi, σ2), where N represents
the normal distribution.

Objective Function
While these features indeed capture the spatial configurations and
social interactions of residential communities to be ranked, they
are often intercorrelated and redundant. These possible
confounders lead to poor generalization performance. To
address this issue, we adopt a strategy which simultaneously
conducts the feature selection while maximizing the ranking
accuracy. Since the pairwise ranking strategy is more effective
than the listwise ranking strategy, we combine a pairwise ranking
objective and a sparsity regularization term in a unified
probabilistic modeling framework.

Next, we introduce how to derive the objective for collectively
spotting highly vibrant communities and selecting features. Let us
denote all parameters byΨ � {w, β2}, which are the parameters of
the community ranker (we will introduce β2 in the following); the
hyperparamters by Ω � {a, b, σ2}, which are the parameters of
sparsity regularization; and the observed data by D � {Y ,Π},
where Y and Π are the community vibrancy scores and ranks of I
estates, respectively. For simplicity, we assume the residential
communities in D are sorted and indexed in a descending order
of their community vibrancy scores, which compiles a descending
ranks as well. In other words, i is both the index and the ranking
order of the given community xi. By Bayesian inference, we have
the posterior probability as

Pr(Ψ;D,Ω) � P(D|Ψ,Ω)P(Ψ|Ω) . (17)

In Eq. 17, the term P(D|Ψ,Ω) is the likelihood of the observed
data collectionD, which can be explained as a joint probability of
both community vibrancy scores, P(Y |Ψ,Ω), and community
ranking consistency, P(Π|Ψ,Ω). Here, we treat the ranked list of

TABLE 1 | Feature summary.

Feature type Category Subcategory Denotation

Spatial configuration Density numϕk
ci

Diversity ηi
Accessibility Public transportation facilities numb

ci
ζbci
nums

ci
ζsci

The quality of the road network numτ
ci

vi
Social interaction Flow Inflow inflowci

Outflow outflowci

Intra-flow intra − flowci

Range λi
Average speed ]i
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communities as a directed graph, G � <V , E > , with nodes as
communities and edges as pairwise ranking orders. For instance,
an edge i→ h representing community i is ranked higher than
community h. From a generative modeling angle, the edge i→ h is
generated by our model through a likelihood function P(i→ h).
The more vibrant the community i is than the community h, the
larger P(i→ h) should be. On the contrary, the case, in which
i→ h but fi < fh, will punish P(i→ h). Therefore,

P(D|Ψ,Ω) � P(Y |Ψ,Ω)P(Π|Ψ,Ω)
� ∏I

i�1
N (yi∣∣∣∣fi, σ2)∏I−1

i�1
∏I
h�i+1

P(i→ h|Ψ,Ω), (18)

where the generative likelihood of each edge i→ h is defined as
sigmoid (fi − fh):

P(i→ h) � 1
1 + exp( − (fi − fh)). (19)

Moreover, the term P(Ψ|Ω) is the prior of the parameters
Ψ. Here, we introduce a sparse weight prior distribution by
modifying the commonly used Gaussian prior, such that a
different and separate variance parameter β2m is assigned to
each weight. Thus, P(w|α) � ∏M

m�1N (wm|0, β2m), where β2m
represents the variance of the corresponding parameter
wm and β2 � (β21, . . . , β2M)u, each of which is treated as a
random variable. Later, an inverse gamma prior distribution
is further assigned to these hyperparameters,
P(β2|a, b) � ∏M

m�1inverse gamma(β2m; a, b), where a and b
are constants and are usually set close to zero. By
integrating over the hyperparameters, we obtain a
student-t prior for each weight, which is known to enforce
sparse representations during learning by setting some
feature weights to zero and avoiding overfitting:

P(Ψ|Ω) � P(w∣∣∣∣0, β2)P(β2
∣∣∣∣a, b)

� ∏M
m�1

N (wm

∣∣∣∣0, β2m)∏M
m�1

Inverse − Gamma(β2m∣∣∣∣a, b).
(20)

Parameter Estimation
With the formulated posterior probability, the learning objective
is to find the optimal estimation of the parameters Ψ that
maximizes the posterior. Hence, by inferring equation 17, we
can have the log of the posterior for the proposed model:

L(w, β2
∣∣∣∣Y ,Π, a, b, σ2) �

∑I
i�1
[ − 1

2
lnσ2 − (yi − fi)2

2σ2
] +∑I−1

i�1
∑I
h�i+1

ln
1

1 + exp( − (fi − fh))
+ ∑M

m�1
[ − 1

2
lnβ2m − w2

m

2β2m
] + ∑M

m�1
[ − (a + 1)lnβ2m − b

β2m
].

(21)

We apply a gradient descent method tomaximize the posterior
by updating wm, β

2
m through

w(t+1)
m � w(t)

m − ϵ z(−L)
zwm

(22)

and

β2(t+1)m � β2(t)m − ϵ z(−L)
zβ2m

, (23)

where

z(L)
zwm

� ∑
i�1

I 1
σ2

⎛⎝yi − ∑
m�1

M

wm · xim⎞⎠xim

+∑
i�1

I−1 ∑
h�i+1

I exp( − (fi − fh))
1 + exp( − (fi − fh)) (xim − xhm) + −wm

β2m

(24)

z(L)
zβ2m

� −1
2β2m

+ w2
m

β4m
+ −(a + 1)

β2m
+ b

β4m
. (25)

EXPERIMENTAL RESULTS

We provide an empirical evaluation of the performances of the
proposed method on the real-world residential
community–related data.

Data Description
We use the residential community data and crowdsourced
geotagged data including bus/subway smart card data, taxi
GPS traces data, POIs, and mobile check-in data in Beijing for
this study.

Residential Community Data
Since the urban areas of big cities are usually compact due to large
population, residential complexes become the major type of
properties in the urban area of a city. A residential complex
usually includes one or more apartment buildings. We have
obtained the data of more than 3,000 Beijing residential
complexes by crawling Fang.com, which is the largest real
estate online system in China.

Crowdsourced Geotagged Data
• Taxi GPS Data. Taxi transits are faster and more expensive
and represent an important part of human mobility. Taxi
GPS sensors generate trajectory data in the form of
sequences of location and time pairs. In our experiments,
the taxi GPS traces are collected from a Beijing taxi
company from April to August 2012. From the taxi GPS
data, we extract the information of each trip, which includes
the pick-up location, pick-up time, drop-off location, drop-
off time, trip distance, trip speed, driving direction, trip cost,
and passenger number.

• Bus Traces Data. As two important types of public transit,
buses are cheaper with acceptable speeds than taxis that are
expensive with faster speed. In urban areas, massive
residents choose buses. We have collected Beijing bus
trip data through the records of the bus smart card
system. Each trip consists of the card id, time stamp,
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expense, balance, route name, and pick-up and drop-off
stop information (names, longitudes, and latitudes).

• Point of Interest Data. A point of interest, or POI, is a
specific point location that someone may find useful or
interesting. We have collected a comprehensive dataset of
POI information of Beijing from Dianping and Dajie,
including POI name, POI category, latitude, and
longitude. The POI categories include catering, shopping,
living, sports and leisure, health care, accommodation,
scenic spots, business residential, government agencies,
science and education, transport facilities, finance and
insurance, corporate, and public facilities.

• Mobile Check-in Data. Location-based social networks
(LBSNs), such as Foursquare, Yelp, and Facebook places,
have attracted millions of users to share their digital
footprints and opinions with their friends and have
enabled us to collect check-ins from mobile apps. Each
check-in event typically includes POI name, POI category,
address, longitude and latitude, textual comments, and
geographic tags. We have collected Beijing check-in data
from Weibo, a Chinese version of twitters. It contains
2, 762, 128 check-ins in 5, 874 venues.

Table 2 shows the statistics of five data sources.

Baseline Algorithms
To show the effectiveness of our method, we compare our method
against the following algorithms.

• RankNet (Burges et al., 2005): It is a combination of a simple
probabilistic cost function and using gradient descent
methods for learning ranking functions, using a neural
network to model the underlying ranking function.

• ListNet (Cao et al., 2007): It is a listwise ranking model with
permutation top-k ranking likelihood as objective function.
ListNet introduces two probability models, respectively,
referred to as permutation probability and top-k

probability, to define a listwise loss function for learning.
Neural network and gradient descent are then employed as
model and algorithm in the learning method.

• Coordinate Ascent (Dang and Croft, 2010): It uses a loss
function called the domination loss. Coordinate ascent
extends the loss by incorporating margin requirements
over pairs of instances and enables the usage of
multivalued feedback. Coordinate ascent devises a simple
yet effective coordinate descent algorithm that is guaranteed
to converge to the unique optimal solution.

• Random Forests (Jiang, 2011): It is a ranking strategy
through learning the predictions from an ensemble of
random trees.

In the experiments, we utilize RTree1 to index geographic
items (i.e., taxi and bus trajectories) and extract the defined
features. We use Jieba,2 which is a Chinese/English text
segmentation module to segment words and extract tags.

For traditional LTR algorithms, we use RankLib.3 We set the
number of training epochs to 100, the number of hidden layers to
1, the number of hidden nodes per layer to 10, and the learning
rate to 0.00005 for RankNet. We set the number of iterations to
300 and the number of threshold candidates to 10 for RankBoost.
We set number of random restarts to 5, the number of iterations
to search in each dimension to 25, and tolerance to 0.001 for
Coordinate Ascent.We set the number of bags to 300, the number
of leaves to 10, the number of threshold candidates to 256, the
number of leaves for each tree to 100, and the learning rate to 0.1
for Random Forest. We set a to 0.001, b to 0.001, and σ2 to 1,000
for our model.

All the codes are implemented in Python, including modeling,
feature extraction, and visualization. All codes can be

TABLE 2 | Statistics of the experimental data.

Data source Properties Statistics

Taxi GPS Number of taxis 13,597
Effective days 92
Time period April–August 2012
Number of trips 8,202,012
Number of GPS points 111,602
Total distance (km) 61,269,029

Bus/subway traces Number of bus/subway stops 9,810
Time period August 2012–May 2013
Number of car holders 300,250
Number of trips 1,730,000

Mobile check-ins Number of check-in POIs 5,874
Number of check-in events 2,762,128
Number of POI categories 9
Time period 01/2012-12/2012

POIs Number of business POIs 328,668
Positions (longitude and altitude) 328,668

Residential communities Number of real estates 2,990
Size of bounding box (km) 40*40

1https://pypi.python.org/pypi/Rtree/
2https://github.com/fxsjy/jieba
3http://sourceforge.net/p/lemur/wiki/RankLib/
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downloaded via the link.4 And all the evaluations are performed
on a x64 machine with i7 2.50 GHz Intel CPU (with four cores)
and 16 GB RAM. The operation system is OS X EI Capitan.

Evaluation Metrics
To evaluate the effectiveness of the proposed model, we use the
following metrics.

• Normalized Discounted Cumulative Gain (NDCG@N).

The discounted cumulative gain (DCG@N) is given by

DCG[n] �
⎧⎪⎪⎨⎪⎪⎩

reln if n � 1

DCG[n − 1] + reln
log2n

, if n> � 2
, (26)

where reln denotes the vibrancy grade level of the n-th
community, defined in Eq. 2. Later, given the ideal discounted
cumulative gain DCG′, NDCG at the n-th position can be
computed as

NDCG[n] � DCG[n]
DCG′[n]. (27)

The larger NDCG@N is, the higher the top-N ranking
accuracy the classifier has.

• Kendall’s Tau coefficient.

Kendall’s Tau coefficient (or Tau for short) measures the
overall ranking accuracy. Let us assume that each community
i is associated with a benchmark vibrancy yi and a predicted
vibrancy score fi. Then, for a community pair < i, j> , < i, j> is
said to be concordant, if both yi > yj and fi > fj or if both yi < yj and
fi < fj. Also, < i, j> is said to be discordant, if both yi < yj and fi > fj
or if both yi < yj and fi > fj. Tau is given by

Tau � #conc − #disc
#conc + #disc

, (28)

where #conc denotes the concordant pairs and #disc denotes the
discordant pairs.

• Recall.

Since we use a six-level rating system ( 5> 4> 3> 2> 1> 0)
instead of the binary rating, we treat the rating ≥ 5 as “highly
vibrant” and the rating < 5 as “fairly vibrant.” Given a top-N
estate list EN sorted in a descending order of the prediction values,
the recall is defined as

Recall@N � |EN∩E≥ 5|
|E≥ 5| , (29)

where E≥ 5 are the estates whose ratings are greater or equal to 5.

Analysis of Scoring Community Vibrancy
We calculate the vibrancy scores of residential communities in
the dataset based on the proposed metric Eq. 2. After that, all the
communities are sorted in a descending order in terms of
vibrancy scores, as shown in Figure 3A. We can observe that
there are some fault ages on the curve, where the vibrancy scores
of some communities significantly increase, whereas the vibrancy
scores of many communities remain stable. To prepare the grade
levels of community vibrancy for our ranking framework, we
utilize these inflection points. First, we identify five inflection
points in the curve, which, respectively, denote the vibrancy
scores of 0.7713, 0.4685, 0.3375, 0.1506, 0.0523, and 0.7713.
The five inflection points split the curve into six segments.
After that, we assign six-level ratings to each segment as its
ranking relevance label, for instance, 5, 4, 3, 2, 1, and 0,
respectively, in a descending order based on the vibrancy
scores. As a result, we obtain six rating levels for the ranking
process, as shown in Figures 3B,C.

The curve in Figure 3A shows that the distribution of the
community vibrancy scores complies with a power law
distribution, indicating only a small number of residential
communities are highly vibrant, and most communities are
around the mean value of the vibrancy scores. This
observation is consistent with our common sense about our
world: Most people are middle class and only a small number
are rich. The six rating levels are shown in Figures 3B,C, which
visualizes the distribution of the six vibrancy levels of all the
communities.

Correlation Analysis of Features
We provide a visualization analysis to validate the correlation
between the extracted features and the vibrancy scores of
communities. We use the scatter plot matrix for correlation
analysis. Each non-diagonal chart in a scatter plot matrix
shows the correlation between a pair of features whose feature
names are listed in the corresponding diagonal charts. Given a set
of N features, there are N-choose-two pairs of features, and thus
the same numbers of scatter plots. The dots represent the
communities and their colors represent the levels of vibrancy
values. For readability, we use R6>R5>R4>R3>R2>R1
(symbol) to represent 5> 4> 3> 2> 1> 0 (number) in
Figure 4. For detailed quantitative results, refer to Table 3.

In Figure 4A, we present the correlation between bus trace
features (inflow interaction, outflow interaction, intra-flow
interaction, distance to bus stops, and the density of) and
vibrancy values of communities. As can be seen, the R5
communities tend to appear at the top right corner of all the
non-diagonal charts. However, the R6 communities appear at the
middle of the figure. This implies that the bus is the major
transportation for common communities, while people tend to
visit top vibrant and high-end communities by other kinds of
vehicles.

In Figure 4B, we show the positive correlation between the
taxi inflow, outflow, and intra-flow volumes of communities and
vibrancy values. This shows that the taxi is an important
transportation to visit vibrant communities, which is
consistent with the observation of buses in Figure 4A.4https://www.dropbox.com/s/tyamms9625aivtk/code.py?dl�0
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However, the commute distances of taxis have a negative
correlation with the vibrancy scores. In other words, the
shorter the commute distances of taxis are, the higher the
vibrancy scores of residential communities are. A potential
interpretation of this observation is that since taxis are valued
by white-collar and business people, the destinations of taxi
trajectories usually are important places (i.e., conference
centers, business hotels, companies, and government

organizations). If the commute distance of taxis is shorter, the
targeted neighborhood is closer to these important places.

In Figure 4C, we show the power law correlation between the
community vibrancy scores and the subway-related features,
including the distance to the subway stations and the density
of the subway stations. We can obtain the observation similar to
Figure 4A that subways are not the most important
transportation for visiting top vibrant communities. Based on
the observations in Figures 4A,B, we can find that the public
transportation (i.e., bus and subway) has huge effects on the
communities of R4 and R5. However, the influence of the public
transportation on top vibrant communities is small. The taxi-
related features show nearly a positive linear relation with the
community vibrancy scores, especially for top vibrant
communities (R6). There may be an explanation that if a
community is very vibrant, the cost spent on transportation is
likely to be high. As known to all, public transportations are
relatively slow but cheap. Taxis are expensive but fast. Therefore,
the high-consumption group (like white-collar and business
people) who can afford taxis are more in favor of taxis.

In summary, the visualization results show the correctness of
our intuitions about defining and extracting discriminative
features.

FIGURE 3 | Analysis of urban vibrancy based on the proposed metric.

FIGURE 4 | Feature correlation analysis of bus traces, taxi traces, and subways.

TABLE 3 | Feature correlation analysis of bus traces, taxi traces, and subways.

R6 R5 R4 R3 R2 R1

Inflow of bus 0.63 0.85 0.36 0.11 0.56 0.17
Outflow of bus 0.59 0.88 0.34 0.57 0.49 0.24
Intra-flow of bus 0.67 0.92 0.31 0.37 0.28 0.05
Distance to bus stop 0.21 0.57 0.86 0.74 0.42 0.45
Bus stop density 0.14 0.09 0.88 0.18 0.50 0.65
Inflow of taxi 0.89 0.73 0.79 0.59 0.14 0.51
Outflow of taxi 0.94 0.16 0.41 0.12 0.61 0.05
Intra-flow of taxi 0.85 0.62 0.84 0.49 0.42 0.27
Speed of taxi 0.92 0.13 0.26 0.01 0.65 0.88
Traveling distance of taxi 0.89 0.36 0.51 0.33 0.80 0.25
Distance to subway station 0.89 0.63 0.47 0.10 0.07 0.01
Subway station density 0.93 0.82 0.45 0.19 0.08 0.02
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Examining the Importance of Urban
Geography and Human Mobility Features
Wemeasure the information gain of each feature described in the
section Discovering Patterns of Vibrant Communities to
understand the importance of the spatial and mobility patterns
in community vibrancy. Specifically, we calculate the information
gain of each feature for each vibrancy levels
(i.e., 5> 4> 3> 2> 1> 0) across our data. Figure 5 shows the
results of the information gain analysis for a decision tree
classifier.

We have some interesting observations from Figure 5:

• Taxi-related features including inflow, outflow, commute
distance, and speed are top ranked as 0.084, 0.081, 0.058,
and 0.049, respectively. Surprisingly, the intra-flow of taxi is
ranked as 0.034 in the middle of the list. This conforms with
our common sense that the human mobility across
communities encodes both specific trip purposes and the
destinations that can meet people’s demands. That is exactly
why the vibrant communities can attract people. However, the
mobility within communities cannot show the sign explicitly.

• The information gain of POI-related features distributes in
the range of the list. The highest is 0.041, while the lowest is
0.018. The reason for such big differences can be that
different POI categories always have different
functionalities. Some POIs, like shopping and restaurants,
are popular to people and can provide the recreation and
entertainment functionality, while some POIs, like vehicle
services, would not appear too many in our daily life.
Therefore, specific POI categories may contribute a lot to
the community vibrancy but some may not.

• The public transportation–related features including the
distance to bus stops, the number of bus stops, the intra-
flow of buses, the outflow of buses, the distance to subway
stations, and the number of subway stations are ranked at
0.005, 0.020, 0.023, 0.025, 0.034, 0.041, and 0.080,
respectively. Moreover, the subway-related features are
more important than the bus-related features. There is a
possible explanation that the subway is much more rapid
than the bus and we also do not need to worry about the
traffic jam on the subway. In this case, the more rapid and
convenient subway outweighs.

• For road network–related features, that is, the length of road
networks and the number of intersections, the information
gain value is 0.004 and 0.036. We need to notice that the
information gain of the number of intersections nearly catch
up with taxi-related features. This is because more
intersections mean that it is more likely to take a taxi.
Convenient transportation facilities in the vibrant
communities always attract many people to visit.

Model Performance Comparison
We compare the performance of our method with four baseline
algorithms in terms of Tau and NDCG.

In Table 4, we list details of performance of different models.
Our method achieves 0.6081 NDCG@3, 0.5283 NDCG@5, 0.3736
NDCG@10, and 0.3314 NDCG@15, which obviously
outperforms the baseline algorithms with a significant margin.
Our method fuses sparsity regularization and pairwise ranking
objective and offers an increase in comparison to RankNet which
has the best performance in baseline algorithms, as shown in
Figure 6.

FIGURE 5 | Feature importances based on information gain.
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This observation validates the superiority of our method when
considering many intercorrelative features with confounders.
Moreover, the effectiveness of considering both sparsity
regularization and ranking accuracy is proved.

With respect to the overall ranking, our method achieves the
highest Tau (0.6137). Surprisingly, all the baselines perform badly
on Tau where values of Tau are all negative. The observation
indicates that the number of concordant pairs is slightly less than
the number of discordant pairs, which demonstrates the lower
accuracies of the baseline algorithms on the whole ranking list.
However, our method achieves a balanced performance in both
top-k and overall ranking.

Another fact we draw from Figure 6 is that the NDCG of our
model increases with N getting small, which indicates that the
ranking performance of our model does well in the top-k ranking
task, especially for the very top part.

Feature Performance Comparison
We evaluate the performances of different features segmented
from two angles. The feature performance is evaluated in terms of
NDCG@N, Recall@N, and Tau, respectively.

• Evaluation on features of different categories.

At the beginning of the article, we emphasize that the vibrancy
of community is valued in terms of spatial configurations and

social interactions. The difference between spatial configurations
and social interactions is that spatial configuration represents the
static state of a community, implying the geographical
representations and distributions of static geographic items,
like POIs and bus stops, whereas social interactions represent
the dynamics of a community, showing the mobility patterns of
mobile objects, like taxis and buses. Therefore, we split features
into these two categories. As shown in Figure 7A, compared to
spatial configuration features, social interaction features perform
better. This observation shows that dynamic features contribute
more to the ranking accuracy of our model. It is very necessary to
study the social interaction features to further explore more useful
dynamic patterns for improving ranking performances. Besides,
Figures 7B,C also provide other evidences to validate the better
performance of the social interaction features compared with the
spatial configuration features in terms of Recall@N and Tau.

• Evaluation on features of different data sources.

Aside from studying the categories of features, we also study
the performances of different data sources as we have collected
data from taxi GPS trajectories, bus GPS trajectories, road
networks, and POIs. Here, we segment the extracted features
in terms of different data sources and investigate which source is
more effective for ranking urban vibrancy. Figure 8A shows the
taxi and POI–related features contribute most to the accuracy of

TABLE 4 | Performance comparison of our approach and baselines.

Random Forests ListNet Coordinate Ascent RankNet Our model

NDCG@3 0.0867 0.1002 0.0788 0.2 0.7103
NDCG@5 0.0879 0.0997 0.0841 0.2 0.5897
NDCG@10 0.0919 0.1003 0.0861 0.2 0.4544
NDCG@15 0.0907 0.1004 0.0852 0.2 0.3908
Tau −1.0 −0.0401 −0.0616 −0.4699 −0.4594

FIGURE 6 | Performance comparison between models.
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the proposed model, while the road network–related features
contribute the least to the model accuracy. Moreover, taxi data
and POI data are the two major sources to represent the social
interactions and spatial configurations, respectively. This
observation is consistent with the result in Figures 7, 8B
which show taxis data performance is the best among all the
data sources. The following are bus, subway, POIs, and road
networks, respectively. As for Tau, the performances of different
data sources are ranked in a descending order as taxi > POIs >
road networks > subway > bus. Overall, taxi-related data are the
most useful source to construct effective features. Besides, when
we examine the performances of all kinds of transportation-
related data, taxi > subway > bus. Here is a possible explanation.
Bus is the most common type for commuting. Also, bus and
subway are for massive people traveling in a certain planed
trajectories based on schedule. However, taxis are for personal
usage, making the range of traditional zone unlimited. Therefore,
we can dig more information from taxi-related features.

• Evaluation on features of different radius distances.

We segment the features in terms of different radius of
communities and investigate the proper radius of
neighborhoods for ranking community vibrancy. Figure 9

shows the performance comparisons of the feature sets of
different radius distances (i.e., 0.25, 0.5, 0.75, 1, 1.5, 2, and
3 km). We observe that the radius distance of neighborhood
can affect the ranking performance. Figure 9A shows that the
NDCGs for 0.5, 0.75, 1, 1.5, 2.0, and 3 km are almost same,
while the radius of 0.25 km shows a slightly higher NDCG.
However, the high NDCGs of 0.5–3 km are used to consistently
validate the superiority of our model. For the recall
performances in Figure 9B, we can obtain an interesting
observation that there is a descending trend when the
radius is getting larger. This may be due to the fact that
more data are available when the community radius is
larger. Abundant data result in poor generalization of a
model and lead to the descending trend of the ranking
accuracy. Figure 9C implies that the Tau values vary
slightly in the interval of [−0.3,−0.6] when the radius of
communities drops
(0.25km, 0.5km, 0.75km, 1km, 1.5km, 2.0km, 3km). This reflects
the robustness of our method from another perspective.

Based on the above analysis, we should not set the radius of
communities too small (i.e., 0.25km) because of the information
limitation. On the other hand, too large value of radius is useless
due to the stability of the ranking performance. Therefore, we set
the radius as 1 km in this study.

FIGURE 7 | Comparison of feature performance based on different states.

FIGURE 8 | Comparison of feature performance based on data sources.
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RELATED WORK

Urban Planning
Researchers have developed conceptual and empirical measurements
on urban vibrancy from different aspects. The first aspect is density.
The work in Glaeser et al. (2001) pointed out modern cities will be
consumer-centric rather than production-centric; the future of cities
depends on the demand for urban density. Couture et al. found that
high-density areas benefit residents in terms of more social interaction
and diverse consumption opportunities, and people are willing to pay
higher rents and transportation costs for high-density places (Couture,
2013). The second aspect is diversity. Farber et al. found that proper
urban structure leads to spatial concentration of residents and diversity
of products and services (Farber and Li, 2013). Talen et al. found that
mixed land uses can encourage workability and foster social
interaction (Talen, 1999). Malizia et al. found that vibrant
communities are usually compact, dense, and accessible with
diverse land uses (Malizia and Song, 2014). Neutens et al. found
that high-density and mixed land uses can benefit quality social
interaction and enhance vibrancy (Neutens et al., 2013). The third
aspect is human-related dynamic factors. Dougal et al. argued urban
vibrancy should be measured by dynamic human-dependent factors
that vary over time (Dougal et al., 2015). For example, Farber and Li
(2013) proposed social interaction potential as a measurement;
Audretsch et al. (2003) proposed the knowledge diffusion among
workers as a metric; Jaffe et al. (1993) measured vibrancy with
technology spillovers between neighboring firms; Glaeser et al.
(2001) used consumption externalities between its residents as a
metric; and the work by Dougal et al. (2015) devised firm
investment opportunities as a metric. In summary, prior studies
found that 1) urban vibrancy is nearly always related to density
and diversity in terms of both static geographical and dynamic
human-related factors; and 2) urban vibrancy is complex and
should include density, diversity, and human activities.

Urban Computing With Geography and
Mobility
Urban computing (Zheng et al., 2014) is a process of acquisition,
integration, and analysis of urban data (e.g., sensors, devices,

vehicles, buildings, and human) to tackle the major issues that
cities face. Our work also has a connection with mining mobile,
geography, and mobility data to tackle issues in urban space.
Tseng et al. mine the behavior patterns from mobile sensor data
to enhance system performance (Tseng and Lin, 2006). The work
by Ceci et al. (2007) identifies emerging patterns with
multirelational approach from spatial data. Liu et al. detect
spatiotemporal causality of outliers in traffic data (Liu et al.,
2011). Yuan et al. discover regional functions of a city using POIs
and taxi traces (Yuan et al., 2012). Heierman et al. mine the device
usage patterns of homeowners for smart houses (Heierman and
Cook, 2003). The study by Karamshuk et al. (2013) selects the
optimal sites for retail stores by mining Foursquare data. Zheng
et al. (2014) mine the driving route for end users by considering
the physical feature of a route, traffic flow, and driving behavior.

Learning-to-Rank
Our work can be categorized into learning-to-rank (LTR), which
includes pointwise, pairwise, and listwise approaches (Li, 2011).
The pointwise methods (Li, 2011) reduce the LTR task to a
regression problem: given a single query–document pair, it
predicts its score. The pairwise methods reduce the LTR task
to a classification problem. The goal of the pairwise ranking is to
learn a binary classifier to identify the better document in a given
document pair by minimizing the average number of inversions
in ranking, for example, RankNet (Burges et al., 2005), RankBoost
(Freund et al., 2003), RankSVM (Herbrich et al., 2000), and
LambdaRank (Burges et al., 2007). The listwise methods optimize
a ranking loss metric over lists instead of document pairs (Xia
et al., 2008). For instance, H. Li et al. propose AdaRank (Xu and
Li, 2007) and ListNet (Cao et al., 2007) and Burges et al. propose
LambdaMART (Burges, 2010). The recent work by Agarwal et al.
(2012) and Agrawal et al. (2006) further studied multifaceted
ranking and context-sensitive ranking. The work by Rendle et al.
(2009), Weng and Lin (2011), and Gantner et al. (2012) provide
full Bayesian explanations and optimize the posterior of
pointwise, pairwise, and listwise ranking models, respectively.
The study by Shi et al. (2013) unifies both rating error and
ranking error as objective function to enhance top-k
recommendation. More recent work (Lai et al., 2013) further

FIGURE 9 | Comparison of feature performance based on different radius distance.
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learns the ranking model which is constrained to be with only a
few nonzero coefficients using L1 constraint and proposes a
learning algorithm from the primal dual perspective.

CONCLUSION REMARKS

In this article, we aimed to measure urban vibrancy by
examining spatial configuration and social interaction of
communities with Big Crowdsourced Geotagged Data. We
proposed a fused scoring framework, combining diversity and
density of consumer activities with F-1 score. We extracted
features to represent spatial configuration and social interaction,
respectively. To learn vibrancy values based on the proposed
scoring framework, we designed a sparse ranking model which is
mutually enhanced by simultaneously conducting feature
selection and maximizing communities’ vibrancy ranking
accuracy. Finally, the experimental results with BCGD
demonstrate the competitive effectiveness of both extracted
features and learning models. With the high accuracy
ranking prediction, we explore the potential to use BCGD for
providing useful strategies for governments on urban planning.
On the other hand, higher vibrancy leads to more consumers

and the high quantity of consumers enhance vibrant
communities, which invents a virtuous cycle for the
development of cities.
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