
Structure of the Region-Technology
Network as a Driver for Technological
Innovation
Dion R. J. O’Neale1,2*†, Shaun C. Hendy1,2 and Demival Vasques Filho3*†

1Department of Physics, University of Auckland, Auckland, New Zealand, 2Te P�unahaMatatini—The Centre for Complex Systems
and Networks, Auckland, New Zealand, 3Leibniz Institute of European History, Mainz, Germany

Agglomeration and spillovers are key phenomena of technological innovation, driving
regional economic growth. Here, we investigate these phenomena through technological
outputs of over 4,000 regions spanning 42 countries, by analyzing more than 30 years of
patent data (approximately 2.7 million patents) from the European Patent Office. We
construct a bipartite network—based on revealed comparative advantage—linking
geographic regions with areas of technology and compare its properties to those of
artificial networks using a series of randomization strategies, to uncover the patterns of
regional diversity and technological ubiquity. Our results show that the technological
outputs of regions create nested patterns similar to those of ecological networks. These
patterns suggest that regions need to dominate various technologies first (those allegedly
less sophisticated), creating a diverse knowledge base, before subsequently developing
less ubiquitous (and perhaps more sophisticated) technologies as a consequence of
complementary knowledge that facilitates innovation. Finally, we create a map—the Patent
Space Network—showing the interactions between technologies according to their
regional presence. This network reveals how technology across industries co-appear
to form several explicit clusters, which may aid future works on predicting technological
innovation due to agglomeration and spillovers.

Keywords: innovation networks, patents, knowledge spillover, agglomeration advantage, bipartite netwoks, patent
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1 INTRODUCTION

Innovation is facilitated by the combination of diverse yet complementary knowledge inputs (Jacobs,
1969). Indeed, some of the most influential conceptualisations of the innovation process regard
technological change as originating from the combination of new and existing technological
capabilities (Weitzman, 1998). A recent study of more than 2 centuries of patents granted in the
United States suggests that more than half of all patented inventions in this period arose through
novel recombination of pre-existing technologies (Youn et al., 2015).

While the potential for new combinations of the world’s current portfolio of technologies is vast,
the economic geography of innovation may constrain the ability of inventors to explore all
technological combinations. Furthermore, the value of adding an additional technology to a set
of pre-existing capabilities will vary depending on both the new technology and the existing
combination. This would suggest that those regions with a diverse knowledge base are at an
advantage when it comes to regional technological progress (Feldman and Audretsch, 1999).

Edited by:
Michele Coscia,

IT University of Copenhagen, Denmark

Reviewed by:
Jake Carr,

Moody’s Analytics, United States
Justyna Majewska,
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The economic geography of innovation is known to be
dominated by agglomeration effects and spillovers, where
innovation and economic growth are facilitated by
geographical proximity (David and Rosenbloom, 1990;
Krugman, 1991; Saxenian, 1996) and localized learning
processes (Glaeser, 1999). According to Feldman (1999, 5),
“knowledge is not easily contained and geography provides
one means to define knowledge spillovers,” such that firms,
including competitors, can benefit from being locally
proximate (Baldwin and Okubo, 2006). In short,
agglomeration effects occur when firms or people accrue
benefit from being located near to one another, while
knowledge spillovers are one process by which firms and
individuals can derive such benefits, by taking advantage of
new knowledge that has been created by others.

While developments in communication technology make the
dissemination of codified knowledge ever faster and cheaper, the
transmission of tacit knowledge may still be difficult in the
absence of face-to-face interactions. Consistent with this, the
effects of knowledge spillovers on innovation have been found to
be most evident when people or firms are geographically
proximate (Jaffe et al., 1993; Glaeser and Ponzetto, 2010;
Baicker and Chandra, 2010; Buzard et al., 2017; Buzard et al.,
2020). As a result, inventors who have access to a more highly
connected and diverse local innovation system—and the firms
that employ them—face lower costs in exploring a larger set of
potential technologies.

Knowledge spillovers have been considered to act in two ways.
First, concerning firms or inventors within particular industries,
spillovers favor localization: because of the decay in spillover
benefits over distance, similar firms will co-locate so that they can
learn from each other (Porter, 1990; Jaffe et al., 1993; Ellison and
Glaeser, 1997; Duranton and Overman, 2005; Chatterji et al.,
2013). Second, concerning firms or inventors in different
industries, spillovers favor urbanization: firms from a variety
of industries will choose locations where they can benefit from a
diverse range of knowledge spillovers (Glaeser et al., 1992).

Regarding the latter, the effect of spillovers weakens across
different industrial or technological domains (Jaffe et al., 1993).
Due to this, regional innovative performance becomes path
dependent: regions are only able to explore new combinations
of technologies if the relevant technological and organizational
capabilities are already present (Hidalgo and Hausmann, 2009).
Thus, our first question is: do regions with a broader knowledge
base tend to create high-tech—more unique—innovations than
regions with a small set of capabilities? To address that, we have
constructed a bipartite revealed technological network by
observing how specialties appear across geographical regions.
Using over 3 decades of data from the European Patent Office we
have computed the revealed comparative advantage in specific
technological domains for more than 4,000 regions spanning 42
countries. We compare the observed bipartite network with
several null models to assess the technology co-
occurrence—and possibly knowledge spillover—effects on
regional diversity and technological ubiquity. We find that
regions with a low diversity of technological capabilities tend
to have a more ubiquitous set of technologies than regions with a

higher diversity. In other words, technologies that are less
ubiquitous (allegedly more sophisticated) tend to occur in
regions with high technological diversity. This is consistent
with the idea that regional innovation is constrained by access
to diverse technological inputs that are available locally.

However, not all co-occurrence and combinations of
technologies will have utility [e.g. the “espresso-making
toothbrush” (Youn et al., 2015)], while some technologies may
lend themselves to many more useful combinations than others
(e.g. general purpose technologies, such as the integrated circuits
within both smartphones and automobile engines). Then, we
pose a second question: how are baskets of technologies
organized, thanks to regional output, such that they might
favor spillovers and facilitate the prediction of new
technologies? From the bipartite network, we have constructed
a (projected) network map of technological proximity—based on
the co-occurrence of technologies. This approach is similar to that
of Hidalgo and Hausmann (2009), who used exported products
rather than patents to examine the links between the type of
goods exported and economic success at a national level.

The advantage of using patents rather than exported products
is that patents can be tied to a particular region, whereas export
data is typically aggregated at a national scale. The disadvantage
of using patents lies in the greater difficulty in assessing their
value: many, if not most patents will have little market value,
while a few may be of considerable worth (Hall et al., 2005).
Moreover, our approach is complementary to that of Youn et al.
(2015), who categorize individual patents by the combination of
technological classification codes assigned to them during the
application process. However, by using regional co-location of
patents as a measure of technological proximity, our method has
the potential to capture the incorporation of tacit knowledge in
new technologies that would not necessarily be evident in a
codified classification scheme. In what follows, we demonstrate
that our measure of proximity does differ from a codified
classification scheme.

We begin with a brief discussion about the scholarship that
underpins this study. Next, we explain the data set used and the
methodological approach taken to create the region-technology
(bipartite) network, including a description of a variety of null
models used to test hypotheses about the spillover effect, and the
Patent Space (projected) network of technological co-occurrence
in regions. Then, we discuss our results focused on the
relationship between diversity and ubiquity found in regional
patent portfolios. We conclude with comments on the
importance of this relationship.

2 DIVERSIFICATION, PATH-DEPENDENCE
AND PROXIMITY

Diversity has a long history in theoretical and empirical debates
about its effects on several fronts of regional economic
development as, for instance, growth, resilience against cycles
and unemployment, stability, per capita income, and firms
performance (Attaran, 1986; Sherwood-Call, 1990; Malizia and
Ke, 1993; Wagner and Deller, 1998; Qian et al., 2008). Under the

Frontiers in Big Data | www.frontiersin.org July 2021 | Volume 4 | Article 6893102

O’Neale et al. Region-Technology Network and Innovation

https://www.frontiersin.org/journals/big-data
www.frontiersin.org
https://www.frontiersin.org/journals/big-data#articles


lenses of evolutionary economics, diversity plays a leading role
also in technological progress: due to cumulative and path-
dependent processes, regions with a diverse knowledge base
are more likely to produce new technologies (Feldman, 1999).

How regions evolve following particular paths is a key
question in the recent body of studies dubbed Evolutionary
Economic Geography (Boschma and Martin, 2010). On the
one hand, the latter draws from evolutionary thinking where
the “current state of affairs cannot be derived from current
conditions only” (Boschma and Frenken, 2017, 280),
characteristic of a path-dependent process: regional capabilities
determine which industries—or technologies—are most likely to
develop in the future (Hidalgo et al., 2007; Hausmann and
Klinger, 2007). On the other hand, evolutionary economic
geography builds upon New Economic Geography models
concerning agglomeration mechanisms and the formation of
dense clusters of industries (Krugman, 1991).

These clusters happen thanks to the advantages of reducing
transportation costs, generating economies of scale and easing
factor mobility that result in manufacturing belts with a high
concentration of people (Krugman, 1991). Ultimately,
agglomeration leads to concentrate diversity—through
knowledge spillover mechanisms of localization and
urbanization (Porter, 1990; Glaeser et al., 1992; Jaffe et al.,
1993; Chatterji et al., 2013)—which, in turn, leads to more
agglomeration, in an iterative process. Cumulative knowledge
(i.e technological output) follows a path of evolution, such that
regions that acquire a vast technological base are more likely to
produce ubiquitous technologies.

Regional technological innovation, therefore, depends on
diversity and spillovers effects. Even though technology has
facilitated learning exchange at distance, spillover effects on
innovation are most evident with spatial proximity, especially
thanks to tacit knowledge (Howells, 2002). However, Boschma
(2005) argues that learning and innovation are facilitated by,
besides spatial proximity, other four dimensions of
proximity—cognitive, organisational, social and institutional
proximity. In fact, he says that “geographical proximity per se
is neither a necessary nor a sufficient condition for learning to
take place: at most, it facilitates interactive learning, most likely by
strengthening the other dimensions of proximity” Boschma
(2005, 62). Among these other four dimensions, cognitive
proximity is more relevant to this study, as it relates to the co-
occurrence of technological codes in regions.

Cognitive proximity accounts for how different the knowledge
base and the capabilities between two actors is. “The ability to
evaluate and utilize outside knowledge is largely a function of the
level of prior related knowledge” (Cohen and Levinthal, 1990,
128). Thus, again, we have a path-dependent process of
innovation via combinations of technologies, the so-called
recombinant innovation (Weitzman, 1998; Neffke et al., 2011;
Castaldi et al., 2015). Although recombinant innovation is more
commonwithin sectors (related to the localizationmechanism), it
also happens in extra-sector (urbanization) contexts. In the latter
case, innovations are more likely to fail but also to be disruptive
(Frenken et al., 2007; Castaldi et al., 2015). The Patent Space

network we propose attempts to provide insights on these
combinations based on regional technological co-occurrence.

3 DATA AND METHODS

3.1 Data
We use patent records from the February 2016 edition of the
Organization for Economic Co-operation and Development
(OECD) REGPAT database (PATSTAT), which is itself
derived from two complementary sources: the European
Patent Office (EPO) Worldwide Statistical Patent Database
(PATSTAT, 2018) and the EPO Bibliographic Database and
Abstracts (November 2015). The data covers 2,892,607 patent
applications filed to the EPO from 1977 to 2012, with partial data
from 2012 to 2015.

Patent records in REGPAT are “regionalized” by matching
applicant addresses with one of 4,106 micro-statistical regions
(TL3) covering the 46 countries in the data set (Maraut et al.,
2008). During the filing process, patents are assigned one or more
International Patent Classification (IPC) code which attempts to
categorize the type of technology that relates to the essential novel
component of the invention described in the patent.

The classification system is hierarchical: technologies
described by lower levels of the code are subdivisions of the
technologies at higher levels. A complete IPC code consists of
four levels with additional classification at an additional fifth sub-
level in some cases. This divides the technologies described by the
patents into roughly 70,000 subdivisions. In the analysis
presented in this paper, we use the third level of the IPC
codes, consisting of 635 categories.

We provide results with aggregated micro-regions (TL2—639
regions) and the fourth level (IPC4—7,823 codes) of the IPC
codes in the Supplementary Material.

3.2 Methods
We constructed a matrix of regions and IPC codes where each
entry in the matrix is the number of times that a particular IPC
code was used on patents from that region. To determine when
the count for a particular region-code pair is significant, we used
the method of revealed comparative advantage (RCA) (Balassa,
1965):

RCA(r, c) � x(r, c)
∑c x(r, c)

/∑r x(r, c)∑r,c x(r, c)
(1)

where x(r, c) is the number of times code c appears on patents
filed by an applicant from region r.

The RCA method takes account of both the total amount of
patenting activity within a region, and the global prevalence of
each IPC code as a fraction of all those used in the data. For a
given region-technology pair, a RCA value greater than one
indicates that the region produces more patents using that
technology than would be expected, given the total number of
patents produced by that region and the fraction of the world’s
patents that also use that technology.
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A bipartite network is defined by connecting regions and
technology codes when RCA(r, c)≥ 1. The network can be
represented by an unweighted adjacency matrix

Mr,c � { 1, if RCA(r, c)≥ 1
0, otherwise.

(2)

The diversity of a region (the number of technology codes for
which it has a revealed comparative advantage) is given by
dr � ∑cMr,c, while the ubiquity of a technology code (the
number of regions which have a revealed comparative
advantage with respect to that code) is given by uc � ∑rMr,c.
These correspond to the degrees of the region and technology
nodes, respectively, in the bipartite network (Figure 1A). For
each region, we also calculate the average ubiquity of the
technologies for which that region has RCA≥ 1: 〈u〉r �
1
dr
∑cMr,cuc.

3.2.1 Bipartite Network Null Models
In order to determine whether the structure we observe in the
region-technology network diverges from that where regional
and/or technological attributes are ignored, we compared its
properties with those from random networks produced by five
different null models. We associate each null model with a
particular hypothesis about what effects may be causing the
observed structure. Four null models rewire the empirical
region-technology network in different ways, based on Hidalgo
and Hausmann (2009). The, fifth null model generates alternative
region-technology networks by randomly reallocating to regions
the patents, as recorded in the PATSTAT database. this accounts
for the co-occurrence of multiple technology codes on the same
patent. For each of the null models we run 100 realisations. Below
we describe these five models and the hypothesis we test with
them.

• Model 1: Randomly reassigns the edges in the network
conserving only the number of nodes and number of edges.

This is a bipartite variant of the Erd}os and Rényi model
(Erd}os and Rényi, 1959; Vasques Filho and O’Neale, 2020a).
The model preserves the mean degree for the two node
types, but not the degree of individual nodes neither the
shape of the degree distribution (Figure 1B). It has the
highest level of randomization, meaning that regions and
technologies have similar levels of diversity and ubiquity,
respectively. Here, we test the effects of localization and
urbanization in regions and sophistication of technologies
due to recombination at the same time, by ignoring the
attributes of both region (e.g. population, number of
research institutions) and IPC codes (e.g. different
amounts of capability or resources required for their
development) related to these effects.

• Model 2: Randomly reassigns edges while preserving the
degree sequence of regions (i.e. preserving dr for each region
node and the diversity distribution of Figure 1A), in
addition to preserving the total numbers of nodes and
edges. This model can be interpreted as treating all
technologies as being identical, while each region
possesses some property (and the localization and
urbanization effects) that affects its ability to develop a
RCA in any technology.

• Model 3: Randomly reassign edges while preserving the
degree sequence of technology codes (i.e. preserving uc for
each code and the ubiquity distribution of Figure 1A). Such
a model represents the situation where all regions are
identical, but technologies each posses some attribute
that affects the likelihood of them being employed in any
invention. This would be consistent with the hypothesis that
some technologies are easier to acquire and hence are more
prolific than others.

• Model 4: Randomly swap pairs of existing edges such that
for a pair of edges (a, b) and (u, v) they are replaced by
(a, v) and (u, b) if neither of the two new edges were already
part of the network. This is the most stringent of the
rewiring models, preserving the degree sequences of both

FIGURE 1 |Degree distributions of regions (diversity) and technologies (ubiquity) for the (A) empirical and (B) random (null model 1) networks. The latter is a bipartite
variant of the Erd}os and Rényi model (Erd}os and Rényi, 1959; Vasques Filho and O’Neale, 2020a). The randomization of connections between regions and IPC codes
makes the diversity distribution less right-skewed and changes completely the shape of the ubiquity distribution from a uniform-like to a normal-like distribution. The
randomization tests the effects of localization and urbanization (for regions), and sophistication (for technologies), by assuming that there are no underlying
attributes of regions and technologies that might be responsible for the observed degree distributions.
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the region and technology nodes (as in Figure 1A), but
removing correlations that might exist between specific
technologies and their associations with specific regions.

• Model 5: Randomly reassign individual patents to regions,
such that each region retains the same total number of
patents, before calculating a new bipartite network.
Individual patents can, and often do, list more than one
technology code. This model preserves the co-occurrence of
these codes on patents, but not co-occurrence of technology
codes due to regional clustering.

3.2.2 The Patent Space (Projected) Network
The five null models each test the relationship between the
diversity of technologies used by a region for its inventions
and the ubiquity of those technologies. However, while they
do test the observed structure of the region-technology
network as a result of agglomeration or spillover effects, they
do not explain how these effects occur.

To investigate that, we look at the co-occurrence of different
technologies within regions by projecting the region-technology
network to get a technology-technology co-occurrence network.
For this projection, we follow the example of Hidalgo et al. (2007)
who constructed a similar network for products exported by
different countries. The proximity (weight of the edge) between
any pair of IPC technology codes is given by the pairwise
conditional probability that a region with RCA≥ 1 for code ci
also has RCA≥ 1 for code cj. that is

ϕ(ci, cj) � min{P(RCA(ci)≥ 1∣∣∣∣∣RCA(cj)≥ 1),
P(RCA(cj)≥ 1∣∣∣∣∣RCA(ci)≥ 1)} (3)

4 RESULTS AND DISCUSSION

4.1 Empirical Data
We can begin to understand the distribution of technical
capabilities among regions by looking at the structure of the
adjacency matrix Mr,c. Ordering the rows and columns of the
matrix according to the values of dr and uc shows that the matrix
is approximately triangular (Figure 2).

The triangular structure implies that more technically advanced
regions—those with high diversity—file patents involving both low
and high ubiquity technologies, while low diversity regions are only
able to make use of the most ubiquitous—and presumably less
sophisticated—technologies. Thus, the triangular structure
indicates that the technologies associated with inventions from
low diversity regions tend to be subsets of those used by high
diversity regions. Also, this structure indicates that the Ricardian
model of producing goods for trade does not apply here, if we were
to extrapolate the model for the production of technology. Such a
model for technological production would lead to an adjacency
matrix with a block-diagonal structure as regions would specialize
in only those technologies that they have a comparative advantage
for and which will have the lowest ubiquity, at the expense of
having high diversity through also producing some more
ubiquitous technologies.

A consequence of the triangular structure for the adjacency
matrix is that those regions with higher diversity dr tend to have a
lower mean ubiquity 〈u〉r . In the case of a perfectly triangular
m × n adjacency matrix

Mr,c � { 1, if r/c≤m/n
0, otherwise,

it can be shown analytically that mean ubiquity 〈u〉r is a linear
function of diversity dr , given by

〈u〉r ≃ − m
2n

dr +m.

The empirical correlation between diversity dr and regional
mean ubiquity 〈u〉r , with a linear least squares fit, gives a slope of
−0.61 and an intercept of 537.0. The Pearson correlation
coefficient is r � −0.52 (R2 � 0.27) (Figure 3). While the R2

value is relatively low, this is to be expected since, particularly
for regions with only a small number of patents, there will be a
range of factors that influence the likelihood of a technology being
recorded in a region. (To avoid more of this noise, we make this
analysis considering only the regions with more than ten patents
in the whole period. This is a rather weak constraint that filters
out only those regions which have close to zero patenting activity
over the 30 year period of the study data.) The nature of this
correlation makes it possible to approximately partition the
regions into those with high diversity and relatively unique
technologies, and those with low diversity and common
technologies (Figure 3).

FIGURE 2 | Adjacency matrix of the region-technology network ordered
by degree value, from highest to lowest diversity (top–bottom) and ubiquity
(left–right). The triangular-like structure tells that high diversity regions file
patents with both low and high ubiquity IPC codes, while low diversity
regions are only able to make use of the most ubiquitous—and presumably
less sophisticated—technologies.
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While we do not carry out a detailed analysis of the spatial
distributions of technologies and the correlation between them,
we would like to highlight some high-level trends using some
examples, especially in the United States. From the about 3,200
United States counties, almost 2,100 have a RCA in at least one
IPC code, and 90% of those are in either one of the two low-
diversity quadrants of Figure 3. Some (as Beaufort County, South
Carolina and Fayette County, Tennessee) have high mean
ubiquity, implying these regions produce a small set of low-
tech innovations; others have lowmean ubiquity (as San Diego, in
California, and Livington, Monroe and Westchester counties in
New York), suggesting they present more sophisticated
innovations as part of their technological output. The former
are usually far from high diversity regions in contrast to the latter,
which are closer (Figure 4). This pattern also indicates a

clustering of regions with similar profiles. That is, high-
diversity regions tend to be geographically proximate to one
another, and next to them regions with both low diversity and
mean ubiquity tend to appear. This idea is supported in a global
scale as the tendency of high-diversity regions having a RCA in
less ubiquitous technology holds when regions at the TL3 level are
aggregated at the TL2 level (Supplementary Material).

On the quadrants with high diversity in Figure 3, there is a
small fraction of regions with high mean ubiquity (e.g., Sunshine
Coast, in Australia), and several with low mean ubiquity (e.g.,
Tokyo and Zurich).

4.2 Null Models
As expected, the correlations of the null models behave differently
from that of the empirical data, with the differences increasing

FIGURE 3 | Correlation between regional mean ubiquity and diversity of regions with Pearson correlation coefficient r � −0.52 (R2 � 0.27). We partition the regions
into those with high diversity and relatively unique technologies, and those with low diversity and common technologies and give some examples of regions in these
quadrants.

FIGURE 4 | Spatial autocorrelation of counties in the United States. (A) High-diversity regions tend to be closer together, as seen in California, Florida and the
Northeastern corridor. (B) Mean ubiquity is higher for those less diverse regions, which are usually more distant from high-diversity ones.
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with the level of randomization (Figure 5). In null model 1
(orange rings in Figure 5), where regions and technologies are
connected completely at random, just keeping the total number of
connections, all regions have similar diversity (as shown in
Figure 1B) and virtually the same regional mean ubiquity.
The latter is significantly lower than the average regional
mean ubiquity in the empirical data thanks to all technologies
having similar ubiquity after rewiring (Figure 1B). The
combination of low-diversity regions with high-ubiquity IPC
codes that brings mean ubiquity up do not exist when all
codes have similar ubiquity. These observations are indications
that knowledge spillover might be affecting regional and
technological attributes through localization and urbanization
of regions, and recombination of technological codes,
respectively.

With null models 2 and 3, we decrease the level of
randomization and test separately IPC codes co-occurrence
effects on technological and regional characteristics,
respectively. On one hand, null model 2 (brown rings in
Figure 5) preserves only the diversity of regions. Again,
we see that regions have similar regional mean ubiquity
thanks to all technologies being treated as equals, in terms
of their acquisition by regions. That is, regional attributes
alone (represented by regional diversification) cannot explain
technological ubiquity and regional mean ubiquity as seen
in the empirical data. On the other hand, null model 3
(purple rings in Figure 5) preserves the ubiquity of
technologies and ignores regional attributes. The model
results in what resembles a two-dimensional normal
distribution for regional diversity and mean ubiquity.

Thus, technological ubiquity cannot explain these two
variables by itself.

Then, in null model 4, we preserve both regional diversity and
technological ubiquity but rewire the links between regions and
technologies. In this case, the correlation between regional
diversity and mean ubiquity is much closer to the empirical
data than the previous null model (green rings in Figure 5). It
becomes meaningful again look at the statistics of the correlation.
In this case, the linear least squares fit gives a mean slope (95% CI)
of −0.35 (−0.33<m< − 0.37) and an intercept of
505.2 (502.5< c< 507.8) over 100 realisations. The Pearson
correlation coefficient is r � −0.51 (R2 � 0.26). The intercept
and the correlation coefficient are very similar to those of the
empirical data, however the slope is significantly lower than the
−0.61 for the empirical data. We credit this difference in the slope
to the possible correlations between specific technologies and
their associations with specific regions not captured when
rewiring the links. That is, even when we preserve regional
diversity and technological ubiquity in the network, the model
still does not capture the path-dependence of specific regions
specializing in certain technologies and the clustering of
technologies that can result from localized knowledge transfer
and agglomeration.

Finally, each patent can be associated with more than one IPC
technology code. It is therefore necessary to also test whether the
structure we observe can be explained by the co-occurrence of
technologies on patents, rather than co-occurrences within
regions. Null model 5 (red rings in Figure 5) differs from the
four rewiring null models in that it randomly reassigns the
existing stock of patents to regions. It is the most stringent of

FIGURE 5 | Null models 1, 2, and 3 (random rewiring and preserving the degree sequences of the technology or the region nodes) completely destroy the negative
relationship between diversity and mean ubiquity that is observed in the empirical data. Null models 4 (preserving both degree sequences) and 5 (reallocating patents)
manage to qualitatively reproduce the relationship in the empirical data, but are a poor quantitative fit, suggesting that there are addition effects such as co-occurrence of
particular combinations of technologies, alongside agglomeration and spillover effects resulting in regional specialization that are driving part of the observed
pattern.
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the null models we apply; it preserves the co-occurrence of IPC
codes on patents and allocates each region the same number of
patents that it originally held. As with null model 4, the results of
this model are qualitatively similar to the empirical data. The
linear least squares fit gives a mean slope (95% CI) of −1.12
(−1.10<m< 1.14) and an intercept of 816.4 (811.7< c< 821.0).
The Pearson correlation coefficient is r � −0.96 (R2 � 0.92). We
attribute these and the increase in the regional mean ubiquity to
the model not preserving any regional specialization in technologies.
Hence, all technologies are more ubiquitous than they would be if
certain regions were more likely to be allocated patents with
particular IPC codes, according to regional specialization.

4.3 Co-occurrence of International Patent
Classification Codes
In order to better explain the features of the regional structure of
technical innovation that are unaccounted for by null models four
and five, we now look at the co-occurrence of technologies within
regions and the associated network of technological dependency
that this implies.

The co-occurrences of technologies that result from regional
specialization were used to define a network of the IPC
technology codes, with connections between pairs of codes
when they tended to co-occur within regions more than would
be expected by chance. This network of technologies can be
thought of as a projection of the region-technology network,
where the weight of the edges in the projection is defined by Eq. 3.
In analogy with the network in (Hidalgo et al., 2007), we refer to
the resulting network of technology codes as the Patent Space.

The Patent Space network is highly connected—around 98%
of all possible proximity links are present. This is an expected
structure thanks to the high diversity of several regions that create
large clique of codes (Vasques Filho and O’Neale, 2018; Vasques
Filho and O’Neale, 2020b). Most links, however, are rather weak
due to the projection method: the mean proximity (mean edge
weight) between technologies is only 0.125 (the distribution of
these values is shown in Figure 6A). The block diagonal structure

of the proximity matrix reveals clusters of technologies that tend
to co-occur within the same sets of regions. These are indicated in
Figure 6B where the rows and columns of the proximity matrix
have been reordered so as to maximize the clustering.

The large number of weak connections in the proximity matrix
means it is practical to visualize the Patent Space network. We do
so by first extracting the maximal spanning tree of the full
network and then adding in all those proximity links above a
certain threshold. In Figure 7 we use a threshold of ϕ≥ 0.4, which
gives a network with an average degree of around four. This
threshold was chosen primarily for visual clarity; smaller or larger
values will result in a similar network with more or less detail.

We applied a modularity maximizing community detection
method (Rosvall and Bergstrom, 2008) to the network in
Figure 7. This partitions the 632 technology codes into
around 80 distinct communities. The largest of these contains
around 75 (12%) of the technology codes and is located at the
center of the network. It presents all sort of technologies,
including agriculture, animal husbandry, dentistry, furniture,
ceramics, treatment of water, and so on. The remaining
communities are roughly an order of magnitude smaller and
typically are associated with a particular industry, application or
area of technology, even when the IPC codes within that
community come from different branches of the IPC hierarchy.
Furthermore, the clusters of technologies that relate to a common
industry tend to be proximatly located on the network; for example
the large branch on the upper left of the network contains a
number of technology clusters that are all associated with fiber and
textile processing, or derivative products. However, some
communities, especially of chemicals, can present a surprising
mix due to their wide range of applications as, for instance, a
community with technologies related to preservation of bodies
(human, animals or plants) and adhesive materials.

Although we cannot infer causation, the heterogeneous
network structure implies that there is a non-trivial clustering
of specific technologies within geographic regions, consistent
with the expected effects of both technological spillovers and
agglomeration.

FIGURE 6 | (A) Distribution of proximity values between technologies showing most of the edges in the network have low weight. (B) Clustering of technologies
within regions, as measured by the proximity between technologies. Each row/column represents one of the 632 technology codes. “Hotter” colors indicate a higher
value for the proximity between technology codes. The rows and columns of the proximity matrix have been reordered to reveal the clustering of technologies.
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5 CONCLUSION

In this paper we used meta-data on the geographic location of
patent applicants, and the technologies specific to the patents
they filed, to investigate the regional structure of
technological innovation. Using revealed comparative
advantage as a metric to identify when regions produced a
greater than expected number of patents related to a
particular technology, we constructed a network linking
regions to technologies.

The adjacency matrix associated with this network can be re-
arranged to give a roughly triangular structure. This indicates that
regions continue to produce patents relating to ubiquitous
technologies even when they are producing patents that use
technologies accessed by few other regions; a behavior that is
inconsistent with a Ricardian model of technological
specialization. We found that those regions which have a high
diversity of technologies present in their patent portfolio tended
to have a lower mean ubiquity of those technologies, relative to
less technologically diverse regions. That is likely related to
cumulative and path-dependent processes, characteristic of the
evolutionary economic geography framework.

Examples of regions with high diversity are Zurich; Nord-Pas
de Calais, a port/industrial area in north France, bordering the
English Channel and Belgium; Gauteng, the province where
Johannesburg is situated; Bern; Cologne; and Torino. On one
hand, ubiquitous technologies include containers for storage
(bags, barrels, bottles, etc.); treatment of water, waste water,
and sewage; general building construction, such as walls, roofs,

insulation and others; shaping of plastic materials; and
transporting or storage devices. On the other, some low
ubiquity technologies are related to energy production, as fusion
and nuclear reactors; computing (e.g neural networks for image
processing, cryptography, sensors); and aerospace activity.

The negative correlation between the diversity and mean
ubiquity of the technologies in a region’s patent portfolio is
not simply a consequence of properties of the individual
regions (e.g. population) of technologies (e.g. difficulty to
access). Re-wiring null models that take account of such
effects are insufficient to explain the observed structure. Nor is
the structure simply due to the co-occurrence of multiple
technology codes on individual patents. Randomizing which
patents are assigned to which regions causes a significant
increase in the mean ubiquity of the patent portfolia of all regions.

The null models suggest that the observed structure is due to
co-occurrence of different technologies within geographic
regions. The structure of the co-occurrences defines a network
of technologies that tend to be located within the same sets of
regions, related to the cognitive proximity of actors present in
these regions. This network has a heterogeneous structure with a
core of ubiquitous technologies surrounded by branches with
communities of related technologies, associated with specific
industries and product types. This non-trivial structure suggests
that spillover and agglomeration effects are involved in the
distribution of technological innovation. The Patent Space
network gives a powerful tool for understanding the role that
combinations of knowledge play in determining the success of
innovation activities, and hence the economic prosperity, of regions.

FIGURE 7 | Patent-space: nodes indicate the 632 IPC technology codes, linked by their likelihood of co-occurring within a geographic region. Node sizes are
proportional to the number of times each code appears while colors indicate communities as determined by a modularity maximizing community detection method.
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