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Knowledge graphs are a modern way to store information. However, the knowledge
they contain is not static. Instances of various classes may be added or deleted and
the semantic relationship between elements might evolve as well. When such changes
take place, a knowledge graph might become inconsistent and the knowledge it conveys
meaningless. In order to ensure the consistency and coherency of dynamic knowledge
graphs, we propose a method to model the transformations that a knowledge graph goes
through and to prove that the new transformations do not yield inconsistencies. To do so,
we express the knowledge graphs as logically decorated graphs, then we describe the
transformations as algorithmic graph transformations and we use a Hoare-like verification
process to prove correctness. To demonstrate the proposed method in action, we use
examples from Adverse Childhood Experiences (ACEs), which is a public health crisis.

Keywords: program verification, graph transformation, cloning, merging, knowledge graph, adverse childhood
experiences

1. INTRODUCTION

Knowledge graphs have become ubiquitous as a framework to represent entities and the relations
that connect them. Thanks to the layer of semantic information, it has become possible to add
meaning to the entities and relations contained in graphs and to reason about the knowledge they
contain. Because graphs contain knowledge, they are expected to change with new information
added or removed depending on outside events. In a similar way, the changes in the semantic
layers may cause the meaning associated with each entity to change. Through such modifications,
a knowledge graph can become inconsistent with the ontology that describes it (Zhang, 2002),
rendering the knowledge, and thus the graph, meaningless.

In this paper, we propose a method to tackle this issue. The proposed method aims to identify
what are the transformations entailed by adding or removing a piece of information or an axiom to
make sure that the knowledge graph remains consistent with the ontology. In our previous works,
we used graph transformation to represent and analyze changes in knowledge-based global health
surveillance systems (Brenas et al., 2017, 2018; Al-Manir et al., 2018). We represent the ontology
in C? (Gradel et al., 1997) for convenience. The initial modification of the knowledge graphs will
be assumed to be through a query language but we will represent the transformations as graph
transformations and use Hoare-like verification methods (Hoare, 1969) to produce the proofs. The
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modifications depend only on the structure of each axiom and
the action that is performed and not on the actual ontology or
graph. It is thus possible to prove that they behave correctly
in an abstract way that is independent of the actual knowledge
graph that is modified. In particular, this means that the
complexity of the verification task is independent of the size of
the actual knowledge graph and only depends on the size of the
specification that is proven to be correct.

To showcase how the proposed method works, we use
examples coming from Adverse Childhood Experiences (ACEs),
which is a major public health concern. ACEs are negative events,
e.g., abuse, witnessing violence, etc, that have been linked to
various negative health outcomes and risky behaviors (Felitti
etal., 1998). The ACEs Ontology and knowledge graph have been
described in Brenas et al. (2019a,c¢).

Here, we will use a clinical example. Patients or their parents
are interviewed and screened for ACEs. If they suffer from some
ACEs, e.g., if they are homeless or live in a place with mold,
they are assigned to a social worker. If they suffered from a
different set of ACEs, e.g., emotional abuse, they are assigned
to a psychologist. Additionally, if they agree to be part of a
study, they need to have provided a phone number or an email
address and they will be paired with a caseworker. In order to
avoid overworking the staff, social workers can only be assigned
10 patients and psychologists five. If the number of patients
is higher than the available number of professionals, they are
redirected toward a different clinic and it is agreed that a new
hire is required.

In Section 2, we will introduce the formal framework that
underpins our method. In Section 3, we show the applicability
of this framework through some examples. Finally, in Section 4,
we discuss the limitations of the method and further work.

2. LOGIC, GRAPH REWRITING, AND
VERIFICATION

Each knowledge graph is composed of a graph and an ontology
that assigns meaning to its nodes and edges. In the following,
we present a fairly informal and succinct introduction to our
framework. We hope to manage to give readers an idea of the
logical foundation of our method without spending too much
time and space on information that would not be relevant to
most end-users. Readers interested in a more formal and in-depth
description can find it in Brenas et al. (2016a, 2018b).

In order to represent the knowledge graphs, we use logically
decorated graphs where both nodes and edges are labeled with
formulae that are part of the ontology language.

Definition 2.1. Let C (resp. R) be a set of node labels (resp. edge
labels), a logically decorated graph is a tuple (N, E, ®n, Pg, s, 1)
where N is a set of nodes, E is a set of edges, O :N — P(C)
is a node labeling function, ®g:E — P(R) is an edge labeling
function, s: E — N is a source function and t : E — N is a target
function. The source function s and the target function t define the
orientation of an edge. For instance, edge e connects node s(e) to
node t(e).

The set C (resp. R) naturally depends on the logic. It is
constructed such that C contains all “unary” (resp. “binary”)
predicates of the logic and the closure under their constructors,
i.e, class (resp. property) assertions.

To make our reasoning easier to understand, we describe
axioms from the ontology both as first-order formulae and in
a notation closer to Description Logics. In this paper, we focus
on the lower spectrum of the expressivity for the axioms but the
verification framework that underpins our method works with
the full expressiveness of C (Gradel et al., 1997), the two-variable
fragment of first-order logic with counting, that can express most
axioms in OWL.! Informally, C? contains all formulas of first
order logic that can be written using only two variables, as well as
the counting quantifier 3>" and its negation 3=". As an example,
3>2x.¢(x) can be translated in first order logic as Jxg, x1.¢(x0) A
¢(x1) A xo # xi, i.e., there exist at least two different x such
that ¢(x).

To explain how knowledge graphs are updated and modified,
we use graph transformations. The most usual way to deal with
graph transformations is by using an algebraic approach rooted
in category theory (Barendregt et al., 1987). In this paper, we
will use a more algorithmic approach that, we argue, is more
suited to verification. In order to build transformations, we
first define atomic actions that will be composed to form more
elaborate actions.

Definition 2.2. Let C (resp. R) be a set of node (resp. edge) labels.
An elementary action, say a, may be of the following forms:

e a node addition addy (i) (resp. node deletion dely(i)) where i is
a new node (resp. an existing node). It creates the node i. i has no
incoming nor outgoing edge and it is not labeled (resp. it deletes
i and all its incoming or outgoing edges).

e a node label addition addc(i,c) (resp. node label deletion
delc(i, c)) where i is a node and c is a label in C. It adds the
label c to (resp. removes the label c from) the labeling of node i.

e an edge addition addg(e, i, j,7) (resp. edge deletion
delg (e, i,j,r)) where e is an edge, i and j are nodes and r is an
edge label in R. It adds the edge e with label r between nodes i
and j (resp. removes all edges with source i and target j with label
1), i.e, s(e) = i, t(e) = j and Pg(e) = r (resp. Ve’ € Es(¢/) # i
ort(e') # jor ®p(e') # ).

An action « is a finite sequence of atomic actions.

Actions are not enough to describe all the transformations we
want to perform, as they require the knowledge of the exact nodes
and edges that are going to be modified. In order to enable the
selection of nodes that satisfy a condition, we use rewriting rules
and logically decorated graph rewriting systems.

Definition 2.3. A rule p is a pair (LHS,a) where LHS, called the
left-hand side, is a logically-decorated graph and o, called the right-
hand side, is an action. Rules are usually written LHS — «. A
logically decorated graph rewriting system is a set of rules.

I'Web Ontology Language (OWL) (accessed on January 2021).

Frontiers in Big Data | www.frontiersin.org

May 2021 | Volume 4 | Article 660101


https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org
https://www.frontiersin.org/journals/big-data#articles

Brenas and Shaban-Nejad

Correctness of Knowledge Graph Update

po:

addy(a);addg(a,b, lives-with)

FIGURE 1 | A rule that creates a new node and connects it to a previously
existing one.

Example 2.1. Figure 1 contains an example of rule. It selects a
node, b, and creates a new node named a (addy(a)) and connects
a to b with an edge labeled with lives_with (addg(a, b, lives_with)).

A rule is applied when a match for the left-hand side is found
in the knowledge graph that we want to modify. We also define
strategies that describe the order in which the rules of a logically
decorated graph rewriting system are to be applied.

Definition 2.4. Given a logically decorated graph rewrite system
GRS, a strategy is a word of the following language defined by s,
where p is any rule in GRS:

si= € (Empty Strategy) P (Rule)
s@®s (Choice) s;s  (Composition)
s* (Closure)

Given two logically decorated graphs G and G' and a strategy s,
we denote by G = G’ that it is possible to obtain G’ by applying s
to G.

Intuitively, € means “do nothing,” p is an application of the
rule, s @ s is the application of either of the two strategies (but
not both), s; s is the application composition and s* applies the
strategy as many times as possible.

Example 2.2. For instance, strategy po; (o5 @ p1) means “apply
po followed by either as many applications of py as possible or one
application of p1.”

Previously, we have shown how to use logics to label edges
and nodes of graphs. We now go a little further and show how
we can use logics to define specifications for the transformations
we want to perform, i.e., how to define conditions that we want
to be satisfied by the graph after the transformation is performed,
given that it may have satisfied another (possibly identical) set of
conditions initially.

Definition 2.5 (Specification). A specification SP is a triple
{Pre}(R, s){Post} where Pre (the precondition) and Post (the post-
condition) are formulas (of a given logic), R is a graph rewriting
system and s is a strategy.

Example 2.3. Let us assume that we want a specification
describing part of Example . ¢9 = Vx.Psychologist(x) =
3=5y.(Patient(y) A assigned_to(y, x)) is a formula that states that
at most five patients are assigned to each psychologist. Then, SPy =
{do}{po}, pi) o) states that if g is true, it will still be true after
applying po as many times as possible.

Definition 2.6 (Correctness). A specification SP is said to be
correct iff for all graphs G, G’ such that G =; G’ and G is a model
of Pre (i.e., Pre is a logical consequence of the labeling of G), then
G’ is a model of Post.

In order to prove the correctness of a specification, we use a
Hoare-like approach (Hoare, 1969). The idea is that it is possible
to split the transformation into elementary changes that impact
the graph in a known and controlled way. In such a situation,
given the post-condition that needs to be achieved, it becomes
possible to generate the weakest precondition that ensures that
the post-condition will be satisfied. This can then be iterated to
generate the weakest precondition for the whole transformation.

This process is achieved by two functions: the weakest-
precondition wp(s, Q) and the verification condition vc(s, Q) for
a strategy s and a post-condition Q. More details can be found in
Brenas et al. (2016a). The definitions of these functions are given
in Figures 2, 3, respectively.

The weakest preconditions and verification conditions
introduce new logic constructors to deal with elementary actions
called substitutions and written Q[a] where Q is a logic formula
and a is an action. Intuitively, a graph G is a model of the formula
Q[a] if and only if G[a], the graph obtained by performing action
a on G, is a model of ¢.

Definition 2.7 (Substitutions). To each elementary action a is
associated a substitution, written [a], such that for all graphs G
and formula ¢, (G is a model of ¢p[a]) < (Gla] is a model of ¢).

It is worth noting that the weakest precondition of a closure,
s¥, is invs, an invariant for that closure. This invariant is not part
of the original specification but needs to be specified. We thus
modify the notion of specification.

Definition 2.8 (Annotated Specification). An annotated
specification SP is a triple {Pre}(R,s){Post} where Pre and Post
are formulas (of a given logic), R is a graph rewriting system, s is a
strategy and every closure in s is annotated with an invariant.

Example 2.4. As the strategy in Example 2.3 contains a

closure, we annotate it. {¢o}({po}, pg{Po){do} is a possible
annotated specification.

Now that the notions of the weakest precondition and the
verification condition are defined, we can look back at the
original problem we were trying to solve. We define a formula
that represents the correctness of a specification.

call  correctness
{Pre}(R, s){Post},

Definition 2.9 (Correctness formula). We
formula of an annotated specification SP =
the formula:

correct(SP) = (Pre = wp(s, Post)) A vc(s, Post).

Theorem 2.1 (Soundness). Let SP = {Pre}(R,s){Post} be an
annotated specification. If correct(SP) is valid, then for all graphs
G, G’ such that G = G, G is a model of Pre implies G' is a model
of Post.

Deciding whether a specification is correct can be translated
into deciding the validity of a given formula. This is one of the
main reasons why we focused on decidable logics in this section.
Another possible choice is to only consider tractable logic so that
verification becomes achievable in a reasonable timeframe.
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wp(a, Q) = Qld]

wp(e, Q) = Q

wp(so & s1, Q) wp(so, Q) ANwp(s1,Q)
wp(p?, Q) = (App(p) = wp(ap, Q

and Q is a formula.

wp(a; a, Q) = wp(a, wp(a, Q))
) = wp(s0, wp(s1, Q))

D
||<©

~.
S
(4

w

) A (= App(p) = Q)

FIGURE 2 | Weakest preconditions w.r.t. actions and strategies, where a (resp. «, «,) stands for an elementary action (resp. action, the right-hand side of a rule p)

ve(e, Q) = wvc(p,
vc(so, $1, ) = UC(SO, wp(s1,
UCESO @ 8)1, Q) = UCgSO» Q) Nvc(s1, Q)

FIGURE 3 | Verification conditions for strategies.

Q) = ve(p!, Q) = ve(p?,Q) =
Q)) Nvc(s1, Q)

T (true)

Q) A (invs A App(s) = wp(s,invs)) A (invs A = App(s) = Q)

The decidability of the validity problem for the logic used
to label the graph is not, however, the only condition for the
decidability of the correctness problem. The definitions of the
weakest preconditions introduced substitutions as a new formula
constructor. In order for the correctness problem to be decidable,
these new constructs must be expressible in the logic, i.e., the logic
must be closed under substitutions. In the following, we will be
using C2.
closed

Theorem 2.2. (Brenas et al, 2016a) C> is

under substitutions.

For all the logics that are closed under substitution, the proof
consists in a set of rewrite rules that conserve the interpretation.
For instance, given Cy an atomic concept, o a substitution, i and
j individuals and 7y a program:

o To~T

o Coladdc(Co, )] ~ Co Vv {i}

o (Iry.O)[delg(i,j,r0)] ~ (—{i} A 3ry.(Cldelg(i,j,10)]) V
(Fro.(={j} A Cldelg(i, j, 10)]))

Another possible problem is that the logic needs to be able to
express the existence (and absence) of a match. First-order logic
can express App(p) by using an existential variable for every node
of the left-hand side of the rule p. This is not possible in the other
types of logics we considered as they do not allow to define an
unlimited number of variables. There is thus a limitation on what
can appear on the left-hand side of the rules.

3. APPLICATION

When adding or removing knowledge from a knowledge graph,
there is a risk to harm its consistency with the ontology that
describes its underlying structure. As a result, additional actions
may be needed before making any change to a knowledge graph.
In this section, we present some of the transformations that
can be enacted to make an update. We will then prove that the
specifications resulting from the axioms and the transformations

under consideration are correct and, thus, the update can
take place.

To show some examples, we use the Adverse Childhood
Experiences Ontology (ACESO) (Brenas et al, 2019a) as the
source for the axioms. The systematic study of adverse childhood
experiences and their health outcomes is recent and new data
and knowledge are routinely added in this field. As a result, both
the knowledge graphs and the associated ontology are likely to
change frequently.

Example 3.1. Let us assume that the change that we want to
perform is the addition of a new node, pa, which is labeled
with PhysicalAbuse. This modification would be equivalent to
performing the action ag = addy(pa); addc(pa,

PhysicalAbuse). ACESO contains the axiom PhysicalAbuse C
Abuse that can be translated in C* as Vx.PhysicalAbuse(x) =

Abuse(x). Performing ayg would make the knowledge
graph inconsistent with the ontology as, if x = pa,
PhysicalAbuse(x) A —Abuse(x) is true. Instead, the
transformation  that is actually performed is a; =

addy (pa); addc(pa, PhysicalAbuse); addc(pa, Abuse). In  that
case, the correctness formula is (Vx.PhysicalAbuse(x) =
Abuse(x)) = (Vx.(PhysicalAbuse(x)Vx = pa) = (Abuse(x)Vvx =
pa)) which is obviously valid. The knowledge graph is thus still
consistent with the ontology.

As it is possible to modify the knowledge graph by adding
information contained in new nodes, it is also possible to add
new edges. In the previous example, only the new node, pa, was
really affected by the modification of the knowledge graph and
thus a simple action was enough to update the knowledge graph
to preserve consistency. The next example, on the other hand,
requires a rule to be applied.

Example 3.2. Let us assume that the change that we want to
perform is the creation of a new node, a, and a new edge, e, linking a
to the already existing node b with an edge labeled lives_with. This
modification would be equivalent to applying Rule py shown in
Figure 4. ACESO contains the axiom Symmetric(lives_with) that
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po : (rul(ly (a); addg(a, b, lives_with )]

Pt (addw (a); addg(a, b, lives_with); add (b, a, liws_u'il,h))

FIGURE 4 | Rules creating a new node a and connecting it via property
lives_with to the node b.

can be translated in C* as Vx, y.lives_with(x, y) = lives_with(y, x).
Applying po would make the knowledge graph inconsistent with the
ontology as, if x = a and y = b, lives_with(x, y) A
—lives_with(y,x) is true. Instead, the transformation that is
actually performed is the application of rule p, shown in Figure 4.
In that case, the correctness formula is (Vx, y.lives_with(x,y) =
lives_with(y,x)) = (Yx,y.(lives_with(x,y) V (x = a Ay =
b)v(x =bAy = a) = (lives_with(y,x) V(x = bAy =
a) vV (x = a Ay = b)) which is obviously valid.

From the previous two examples, one can observe how
the transformations and the axioms interact. As a result, it is
possible to define a system of transformation rewriting rules
that, given the intended action and the form of an axiom,
generates a new transformation of the knowledge graph that
can be proved correct independently of the actual knowledge
graph and ontology. For instance, the previous examples show
that when in presence of an axiom of the form C € D where
C and D are unary predicates (i.e., classes in OWL Lite), an
elementary action addc(i, C) should be replaced with the action
addy (i, C); addy (i, D) while, in presence of an axiom of the form
Symmetric(R) where R is a binary predicate (i.e., a property
in OWL Lite), an elementary action addy(i) should be left
unchanged. Figure 5 shows these two rules plus additional ones.

Example 3.3. Let us now combine the previous two examples.
We assume that we want to add a new person Alice, represented
by the new node a, to the knowledge graph. We additionally
want to insert the knowledge that Alice is a girl and that she
lives with Bob, represented by the already existing node b. The
initial rule that would be applied is rule p, from Figure 6.
Provided that the ontology contains the axioms Girl < Child and
Symmetric(lives_with), all six rules in Figure 5 can be applied. The
order in which they are applied does not change the final result,
i.e., the rewriting system is convergent, and the final result is Rule
p3 in Figure 6. As it is possible to prove that each one of the
transformation rewrite rules is correct, their combination is correct
as well.

One of the key advantages of using abstract rules to represent
the modification of the transformations is that it becomes
possible to use the same rule for multiple transformations. In
actual cases, the ontology is likely to contain many more axioms
and, in particular, to contain a much more developed hierarchy
of classes and properties. However, assuming that the ontology
contains additional axioms, e.g., Girl C Female and Child C

cCcD
X0 : —_— addn (i)
addy (i)
c'c D
p a8 —— addc(i,C); addc (i, D)

(ldd(,‘ (l s (/‘)

cCCcD
X2 : ———— addr(i,j, R)

addr(i,j, R)

Symmetric(R)
X3 : — addn(i)

addn (i)

Symmetric(R)
X4 : — addc(i,C)

addc (i, C)

Symmetric(R)
X5 : = addp(i,j, R);addgr(j,i, R)
addr(i,j, R)

FIGURE 5 | Rules rewriting transformations depending on the form of the
axioms in the ontology.

p2: —

addy (a); addc(a, Girl); addg(a, b, lives_with)

addy (a);
addc(a, Girl); addc(a, Child);
addg (b, a,lives_with); addg(a, b, lives_with)

ps

FIGURE 6 | Rules inserting the knowledge that Alice, who did not exist in the
knowledge base, is a girl who lives with Bob.

Person, the same transformation rewrite rule x; can be applied
several times introducing in the action not only addc(a, Child), as
shown in Figure 6, but also, add¢(a, Female) and addc(a, Person)
triggered by the first application of the rule. The fact that the rules
are iteratively applied does not create a risk of infinite looping
provided we assume that there is a mechanism to check that the
rule does not already contain the added elementary actions, given
that doing the same elementary action twice yields the same result
as doing it only once. Similarly, in an actual execution, the rules
that do not modify the transformation, e.g., xo would not be part
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cCcD
X6 : — delc(i,O)
delc(i,C)
cCcD
X7 : C(1) —— delc (i, D); delc(i,C)
delc (i, D)
ccDh
X8 : not C(i) =————— delc(i,D)

delc (i, D)

FIGURE 7 | Examples of rules rewriting transformations when deleting the
label of node.

has_father
pa: @ / @ addpg (i, j, has_parent)

FIGURE 8 | A rule that adds the fact that has_father C has_parent.

of the system. We only show them to make our reasoning clearer
and easier to understand.

Hitherto, we have only added knowledge to the graph and
not removed any. Removing knowledge is not practically much
more difficult, at least as long as we keep working with less
expressive axioms.

Example 3.4. Figure7 contains some transformation rules
dealing with node label deletion. x¢ is similar to the rules in
Figure 5 and doesn’t actually modify the transformation. On the
other hand, rules x7 and xg are dependent on the current content
of the knowledge graph. Indeed, if C(i) is true, the axiom C C D
is no longer true after the application of delc(i, D). Hence the rule
need not only to look at the ontological part of the knowledge
graph but also at the graph itself.

Up to now, we have modified the graph by adding and
changing the labeling of the knowledge graph but we have
not modified the ontology itself. It is worth pointing that the
choices that we made when the transformation presented a risk
of inconsistency always lead us to modify the graph and not the
ontology. There is, however, no reason to think that when there
is a conflict between the ontology and the content of the graph,
the ontology is always to be considered correct.

Example 3.5. In the first example we presented, we chose when
adding the fact that pa was a PhysicalAbuse knowing that

PhysicalAbuse C Abuse to also add the fact that pa is an Abuse. We
could also have decided to remove the axiom and the knowledge
graph would have been consistent with the modified ontology.

As the last example, we will add a new axiom to the ontology.
Until now, we have only used the left-hand side of the rules to
look at specific instances, either of axioms, elementary actions or
individual nodes and we only, perhaps, added a new elementary
action to a given rule. When modifying the ontology, a new rule
is added that will modify the graph.

Example 3.6. Let us assume that we want to add the axiom
has_father C has_parent to the ontology. Rule py presented in
Figure 8 is applied to the graph with Strategy pj. The correctness
formula, in that case, is, after some simplification, (Vx, y.
has_father(x, y) = has_parent(x, y)) = (Vx, y.

has_father(x, y) = has_parent(x, y)), an obvious tautology.

Example 3.7. Let us now consider the more
elaborate example of Example Let us define ¢9 =
Vx.Psychologist(x) = 3=> y.(Patient(y) A assigned_to(y, x)), ¢1 =
Vx.SocialWorker(x) = 3='0y.(Patient(y) A assigned_to(y, x))
and ¢ = Vx.(DefSocialWorker(x) V DefPsychologist(x) Vv
CaseWorker(x)) =

—(SocialWorker(x) Vv Psychologist)). The precondition and the
post-condition will then be ¢ = ¢og N P1 N pa. ¢o states that
psychologists are assigned less than five patients, ¢, states that
social workers are assigned <10 patients, ¢,states that default
psychologists and social workers and case workers do not count as
psychologists or social workers (otherwise, they might not satisfy
¢o or ¢1).

The set of rules R contains the rules shown in Figure9. ps
looks for a patient suffering from a given type of ACEs, denoted by
ACEzsy, that are not assigned to anyone and for a social worker with
nine or fewer patients assigned to them. It then assigns the patient
to the social worker. pg does the same for psychologists. p7 and pg
assign the (possibly) remaining patients to the default options. pg
and pyg look for patients with a phone number or an email address,
respectively, and assign them to a case worker. p11 and p1, request
the hiring of a social worker or a psychologist, respectively, if it had
not been requested before and at least one patient is assigned to the
default option.

We chose to apply the strategy s = (ps® pe)*; (p7® ps)*; (09 D
P10)"; P11 pYy. In order to be able to perform verification, all
closures need to be annotated. We annotate all of them with ¢,
that is all invariants are the same as the pre- and post-conditions.
(p9 @ p10)" denotes n-iterations of the strategy pg @ pio. It is
a proper strategy for any given n and the actual choice of n has
no impact on the correctness of the specification so we use this
construct to let an unspecified number of patients register for
the study. py1 and p12 can only be applied at most once each.
More elaborate strategy constructors can be defined to require
that strategies are applied at most once, for instance, but we did
not introduce them in this paper to keep things simpler. The
annotated specification is thus s’ = {¢p}(R, (ps ® pe)*{¢}; (07 &
Ps)*{d}: (po @ p10)™; p11{9}: P12 {dD{).

Giving the full proof that the specification is correct would be
long and tedious. Instead, let us give an informal description of the
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[k : SocialWorker A 3=%y.( Patient(y) A assigned_to(y, k)))

addg(i, k,assigned_to)

- - - - suffers_from
(z : Patient A Yy. pAssigned_to(i,y)

[k : Psychologist A 3=%y.(Patient(y) A assigned_to(y, k))]

Pe: et (L (A (7, k, assigned_to)

suffers_from
[i : Patient A Vy.~assigned_to(i,y) /17 /

(k : Df:fS'ocialH'orkr:r)

pr: ———————— addg(i, k, assigned_to)

suffers_from
[i : Patient A Vy.~assigned_to(i, y) I / j:ACEso

(k . D(:fl’sy(.‘hologist)

ps: et (L R (1, K, assigned_to)

suffers_from
[i : Patient A Vy.~assigned_to(i,y) j: ACEsy

k : CaseWorker

po: = addr(i, k, assigned_to)

has_phone
[i : Patient A Vy.—assigned_to(i,y) j : PhoneNumber

k : CaseWorker

p1o: et (AR (1, K, assigned_to)

has_email

[i : Patient A Vy.~assigned_to(i, y) j : Email Address

(i : Patient A Vy.—wHireSociullr-l"orker(y))

P11t assigned_to addy (h); adde(h, HireSocial W orker)

(j H DejSociaIH-'orker]

(i : Patient A Vy.ﬂHir(:Psychologi.s‘t(y)J

P12 : assigned_to addx (h); adde(h, HirePsychologist)

[j i DefPsychologist)

FIGURE 9 | The rules used in Example 3.7.
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FIGURE 10 | A schema of the recommender system (Brenas et al., 2019b).

proof. Neither p11 nor p12 affect any of the predicates in ¢ thus one
can ignore them. py and pio only modify assigned_to(x,y) for y
a case worker. From ¢y, one gets that being a case worker excludes
the possibility of being either a social worker or a psychologist which
means that if ¢ is true after (ps @ pe)™; (p7 © ps)*, it will be
true at the end of the execution. Similarly, p; and pg only modify
the assignment to the default social worker and psychologist that,
according to ¢, are not social workers or psychologists. Thus, one
needs to prove that {¢p}(R, (ps @ pe)* {@p){p} is correct. ps only
assigns a patient to a social worker that has nine or less and thus,
after the assignment, they will only have ten or less. The same
argument works for psychologists albeit with a different number
of edges. The specification s’ is thus correct.

4. CONCLUSION

In this paper, we demonstrated the feasibility of using graph
transformations for managing changes and modifications in
knowledge graphs while maintaining their consistency. We
used logically decorated graphs to represent the knowledge
graph, graph transformations for the modifications and a
Hoare-like approach to verification to prove the correctness of
the transformations.

Verification of graph transformations is an active field of
computer science. Our approach is based on the method of
Brenas et al. (2016b). Several other approaches exists including
methods akin to model checking (Rensink et al., 2004) or the
use of graph programming languages, such as GP2 (Wulandari
and Plump, 2020). These methods have not been applied to
knowledge graphs as far as we know.

This is only the first step toward a comprehensive solution.
An important limitation to the application of our method is the
fact that not all currently existing knowledge graphs are equipped
with ontologies. In the absence of an ontology, the whole problem
is moot as there is nothing to be consistent with. That said, it is
possible to start with an empty ontology and to use our method to
provably make sure that a knowledge graph becomes consistent
with it by defining rules that modify it.

We have presented a few transformation rewriting rules and
we are working to formulate a formal framework for their

definitions. Similarly, we have only looked at the easiest of the
interactions between transformations and axioms.

In particular, the rules that we have presented allow
automating the process in the situation that we have presented
but it is not hard to find examples where such automation is
not feasible. When increasing the expressivity of the axioms,
there are many situations where a non-trivial choice has to
be made to decide which part of the knowledge is responsible
for the inconsistency, and thus should be removed. Algorithms
exist to do repairs (Bienvenu et al., 2016) that go much further
than we did and integrating these algorithms into our method
seems promising. That said, the verification process generates
a counter model, which is a knowledge graph that invalidates
the specification. This counter model can be used to decide the
source of the error.

Moreover, we have only presented logics with very little
expressivity in this work to make it easier to follow and
to avoid problems that arise at higher expressivity. However,
it has been proved that the verification that underpins this
method works for the whole expressivity of C? (Brenas et al,
2018a). Moreover, OWL allows defining more complex axioms
on properties, e.g., transitivity, that cannot be expressed in
C? but can be expressed in other decidable logics, such as
the Guarded Fragment of first-order logic (Andréka et al,
1998) for which the same results apply (Brenas et al., 2018b).
Extending the expressivity to full first order logic and beyond
is much more difficult as satisfiability in first-order logic is
undecidable and, as a result, so is our verification process. On
the other hand, it is possible to restrict the specifications to
less expressive logics. Finding the conditions on the logic and
the change that can be performed to reduce the complexity of
the verification process is under active study. The importance
of the complexity problem is somewhat reduced by the fact
that the complexity of the verification task is dependent on
the size of the specification and not on the size of the
data it represents.

Among the possible applications of the research presented
in this paper is the conception of a recommender system
to assist in the detection, prevention and treatment of
ACEs (Brenas et al, 2019b). Figure 10 shows a schema of
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the recommender system’s components. The recommender
needs to be able to update its knowledge about the
circumstances and the health of the patients in a verifiably
correct manner.
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