
Proximity-Based Compression for
Network Embedding
Muhammad Ifte Islam1*, Farhan Tanvir1, Ginger Johnson2, Esra Akbas1* and
Mehmet Emin Aktas3

1Department of Computer Science, Oklahoma State University, Stillwater, OK, United States, 2Department of Computer Science,
University of Tulsa, Tulsa, OK, United States, 3Department of Mathematics and Statistics, University of Central Oklahoma,
Edmond, OK, United States

Network embedding that encodes structural information of graphs into a low-dimensional
vector space has been proven to be essential for network analysis applications, including
node classification and community detection. Although recent methods show promising
performance for various applications, graph embedding still has some challenges; either
the huge size of graphs may hinder a direct application of the existing network embedding
method to them, or they suffer compromises in accuracy from locality and noise. In this
paper, we propose a novel Network Embedding method, NECL, to generate embedding
more efficiently or effectively. Our goal is to answer the following two questions: 1) Does the
network Compression significantly boost Learning? 2) Does network compression
improve the quality of the representation? For these goals, first, we propose a novel
graph compression method based on the neighborhood similarity that compresses the
input graph to a smaller graph with incorporating local proximity of its vertices into super-
nodes; second, we employ the compressed graph for network embedding instead of the
original large graph to bring down the embedding cost and also to capture the global
structure of the original graph; third, we refine the embeddings from the compressed graph
to the original graph. NECL is a general meta-strategy that improves the efficiency and
effectiveness of many state-of-the-art graph embedding algorithms based on node
proximity, including DeepWalk, Node2vec, and LINE. Extensive experiments validate
the efficiency and effectiveness of our method, which decreases embedding time and
improves classification accuracy as evaluated on single and multi-label classification tasks
with large real-world graphs.

Keywords: network embedding, graph representation learning, graph compression, graph classification, node
similarity

1 INTRODUCTION

Networks are effectively used to represent relationships and dependence among data. Node
classification, community detection, and link prediction are some of the applications of network
analysis in many different areas such as social networks and biological networks. On the other hand,
there are some challenges in network analysis, such as high computational complexity, low
parallelizability, and inapplicability of machine learning methods (Cui et al., 2018). Recently,
network embedding as representation learning from graph has become popular for many
problems in network analysis (Hamilton et al., 2017; Zhang et al., 2017; Cai et al., 2018; Cui
et al., 2018; Goyal and Ferrara, 2018). Network embedding is defined as encoding structural

Edited by:
B. Aditya Prakash,

Georgia Institute of Technology,
United States

Reviewed by:
Remy Cazabet,

Université de Lyon, France
Pei Yang,

South China University of Technology,
China

*Correspondence:
Muhammad Ifte Islam
ifte.islam@okstate.edu

Esra Akbas
eakbas@okstate.edu

Specialty section:
This article was submitted to

Data Mining and Management,
a section of the journal

Frontiers in Big Data

Received: 18 September 2020
Accepted: 07 December 2020
Published: 26 January 2021

Citation:
IslamMI, Tanvir F, Johnson G, Akbas E
and Aktas ME (2021) Proximity-Based
Compression for Network Embedding.

Front. Big Data 3:608043.
doi: 10.3389/fdata.2020.608043

Frontiers in Big Data | www.frontiersin.org January 2021 | Volume 3 | Article 6080431

ORIGINAL RESEARCH
published: 26 January 2021

doi: 10.3389/fdata.2020.608043

http://crossmark.crossref.org/dialog/?doi=10.3389/fdata.2020.608043&domain=pdf&date_stamp=2021-01-26
https://www.frontiersin.org/articles/10.3389/fdata.2020.608043/full
https://www.frontiersin.org/articles/10.3389/fdata.2020.608043/full
http://creativecommons.org/licenses/by/4.0/
mailto:ifte.islam@okstate.edu
mailto:eakbas@okstate.edu
https://doi.org/10.3389/fdata.2020.608043
https://www.frontiersin.org/journals/big-data
www.frontiersin.org
https://www.frontiersin.org/journals/big-data#articles
https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org/journals/big-data#editorial-board
https://www.frontiersin.org/journals/big-data#editorial-board
https://doi.org/10.3389/fdata.2020.608043

information of graphs into a low-dimensional vector space on
their connections (Perozzi et al., 2014). By preserving structure
information of the network, nodes with links will be close to each
other in vector space. While desirable network embedding
methods for real-world networks should preserve the local
proximity between vertices and the global structure of the
graph, it should also be scalable for large networks (Tang
et al., 2015).

While early methods, which consider the network embedding
as a dimensionality reduction (Belkin and Niyogi, 2001), are
effective on small graphs, the major concern of them is that time
complexity is at least quadratic in the number of graph vertices.
Therefore, it is not possible to apply them on large-scale networks
with billions of vertices (Zhang et al., 2017; Cai et al., 2018; Cui
et al., 2018). In recent years, more scalable methods that use
matrix factorization or neural networks have been proposed with
transforming the network embedding problem into an
optimization problem (Tang et al., 2015). DeepWalk (Perozzi
et al., 2014) is the pioneering work that uses the idea of word
representation learning (Mikolov et al., 2013a; Mikolov et al.,
2013b) for network embedding. They preserve network structures
or local neighborhood proximity with path sampling using short
random walks (Perozzi et al., 2014; Grover and Leskovec, 2016).
With path sampling, network embedding is converted to word
embedding with considers random walk as a sequence of words.
Therefore, it is expected that vertices in a similar neighborhood
get similar paths and hence similar representations.

Although recent methods show promising performance for
various applications, graph embedding still has some challenges.
First of all, many of these methods are still computationally
expensive and need a large amount of memory, so they are not
scalable to large graphs (scalability problem). Secondly, these
approaches attempt to address the non-convex optimization goal
using stochastic gradient descent, hence optimization on the co-
occurrence probability of the vertices can easily get stuck at a bad
local minima as the result of poor initialization (initialization
problem). This may cause generating dissimilar representations
for vertices within the same or similar neighborhood set. Also,
many of these methods use local information with short random
walks during the embedding by ignoring the global structure in
the graph.

These challenges have motivated researchers to use graph
compression (summarization) algorithm that reduces the
complexity and size of large graphs. The aim of graph
compression is to create a smaller supergraph from a massive
graph such that the crucial information of the original graph will
be maintained in the supergraph. Vertices with similar
characteristics are grouped and represented by super-nodes.
Approximations with compressing are used to solve original
problems more efficiently, such as all-pairs shortest paths,
search engine storage, and retrieval (Adler and Mitzenmacher,
2001; Suel and Yuan, 2001). Using an approximation of the
original graph not only makes a complex problem simpler but
also makes a good initialization to solve the problem. It has been
proved successful in various graph theory problems (Gilbert and
Levchenko, 2004). For the scalability problem, embedding on the
coarsest graph is more efficient and needs far less memory that

makes existing embedding methods applicable to large graphs.
For the initialization problem, grouping vertices with similar
characteristics in a compressed graph solves the problem of
getting different representations for them.

HARP (Chen et al., 2018b) addresses the initialization
problem by hierarchically compressing the graph by
combining nodes into super-nodes randomly. Thus, it
produces effective, low-level representation of nodes though
multi-level learning. However, random edge compressing may
put dissimilar nodes into the same super-node making their
representation similar. Also, multi-level compressing and
learning result in significant compression and embedding cost,
hence HARP fails to address the scalability problem.

In this paper, we use graph compression to address these two
problems and also the limitations of HARP. More precisely, we
study graph compression for the Network Embedding problem to
answer these two questions:

Does the Network Compression Significantly Boost Learning?
Does the Network Compression Improve the Quality of the

Representation?
Our main goal is to obtain more efficient and more effective

network embedding models as answers to these questions. For
this goal, we present an extension of our first method, NECL,
that is a general meta-strategy for network embedding. We
propose a proximity-based graph compression method that
compresses the input graph to a smaller graph with
incorporating the neighborhood similarity of its vertices into
super-nodes. NECL compresses the graph by merging vertices
with similar neighbors into super-nodes instead of random edge
merging, as HARP does. NECL employs the embedding of the
compressed graph to obtain the embedding of the original
graph. This brings down the embedding cost and captures
the global structure of the original graph without losing
locality kept in the super-nodes. In addition to reducing the
graph’s size for embedding, we get less pairwise relationships
from random walks on a smaller set of super-nodes, which
generates less diverse training data for the embedding part. All
these facts improve efficiency while maintaining similar or
better effectiveness comparing to the baseline methods. We
then project the embedding of super-nodes to the
original nodes.

In NECL, we primarily focus on improving the efficiency of
embedding methods, so we do not employ refinement. As a result,
we may lose some local information of the nodes because of
merging. To overcome this problem, in this paper, we go beyond
our original NECL by introducing an embedding refinement
method NECL-RF. Our second method, NECL-RF, uses the
compressed graph’s projected embedding to initialize the
representation for the original graph embedding. Refining
these initial representations aids in learning the original
graph’s embedding. This provides global information of the
graph into learning and also solves the different initialization
problem of similar vertices, hence increases the effectiveness.
Since the compressed graph is quite small compared to the
original graph, the learning time will not increase significantly.
Hence similar efficiency is maintained compared to the baseline
methods. Moreover, we provide a richer set of experiments to

Frontiers in Big Data | www.frontiersin.org January 2021 | Volume 3 | Article 6080432

Islam et al. Proximity-Based Compression for Network Embedding

https://www.frontiersin.org/journals/big-data
www.frontiersin.org
https://www.frontiersin.org/journals/big-data#articles

evaluate NECL and NECL-RF. While in the earlier version, we
only use DeepWalk and Node2vec as baseline methods for
representation learning and combine them with NECL as a general
meta-strategy. In this paper, we add onemore baselinemethod, LINE,
and present the results of all with NECL and NECL-RF.

EXAMPLE 1. In Figure 1, we present the effectiveness of our
compressing and embedding model,NECL, on the well-known
Les Miserables network. This undirected network contains co-
occurrences of characters in Victor Hugo’s novel ‘Les Miserables’.
A node represents a character and an edge between two nodes
shows that these two characters appeared in the same chapter of
the book. While the original network has 77 vertices and 254
edges, the compressed network has 33 vertices and 64 edges. As
we see in the figure, the compressed network preserves the local
structure of vertices in super-nodes without losing the global
structure of the graphs. It is expected that nodes close in a graph
should also be close in the embedding space. For example, in
Figure 1A neighborhood sets of the vertices {1, 4, 5, 6, 7, 8, 9} are
same and including just node 0. Hence, random walks from these
vertices have to pass from node 0 and get very similar walks and
so very similar embedding. Instead of walking separately from
each of these vertices, we just need to walk for the super-node
seven in the compressed graph in Figure 1B and learn one
embedding. As presented in Figures 1C,D, as the embedding
of nodes with the original graph (C) and compressed graph (D),
node proximity is preserved in the compressed graph. So, nodes

close in original graph embedding are also close in compressed
graph embedding.

We summarize our contributions as follows.

• New proximity-based graph compressing method: Based on
the observation that vertices with similar neighborhood sets
get similar random walks and eventually similar
representation, we merge these vertices into super-nodes
to get a smaller compressed graph that preserves the
proximity of nodes in the original large graph.

• Efficient embedding without losing effectiveness: We do
random walks and embedding on the compressed graph,
which is much smaller than the original graph, efficiently.
This method has similar effectiveness with baseline methods
by preserving the global and local structure of the graph in
the compressed graph.

• Effective embedding without decreasing efficiency: We use
the embedding obtained from the compressed graph as
initial vectors for the original graph embedding. This
combines the global and local structure of the graph and
improves the effectiveness. Embedding of a small
compressed graph does not take much time with respect
to original graph embedding, so it will not increase the
embedding time significantly.

• Generalizable: NECL is a general meta-strategy that can be
used to improve the efficiency and effectiveness of many

FIGURE 1 | Example of graph compressing on Les Miserables network (Original Network (A), Compressed Network (B), Embedding of Original Network (C) and
Embedding of Compressed Network (D)).

Frontiers in Big Data | www.frontiersin.org January 2021 | Volume 3 | Article 6080433

Islam et al. Proximity-Based Compression for Network Embedding

https://www.frontiersin.org/journals/big-data
www.frontiersin.org
https://www.frontiersin.org/journals/big-data#articles

state-of-the-art graph embedding methods. We report the
results for DeepWalk Node2vec and LINE.

The paper is structured as follows. In Section 2, we give the
necessary background for our method. and also provide related
work. In Section 3, we introduce our neighborhood similarity-
based graph compression model by explaining our similarity
measure and two different embedding methods that use the
compressed graph. In Section 4, we present our experimental
results and compare them with the baseline methods. Our final
remarks are reported in Section 5.

2 BACKGROUND

In this section, we discuss related works in the area of network
embedding. We give some details of pioneer works in network
embedding focusing on DeepWalk. We also explain random walk
based sampling methods and multi-level network embedding
approaches here.

2.1 Network Embedding
Network embedding plays a significant role in network data
analysis, and it has received huge research attention in recent
years. Previous researchers consider the graph embedding as a
dimensionality reduction (Chen et al., 2018a), such as PCA
(Wold et al., 1987) that captures linear structural information
and LE (locally linear embeddings) (Roweis and Saul, 2000) that
preserves the global structure of non-linear manifolds. While
these methods are effective on small graphs, scalability is the
major concern with them being applied to large-scale networks
with billions of vertices, since the time complexity of these
methods is at least quadratic in the number of graph vertices
(Zhang et al., 2017; Wang et al., 2018). On the other hand, recent
approaches in graph representation learning focus on the scalable
methods that use matrix factorization (Qiu et al., 2018; Sun et al.,
2019) or neural networks (Tang et al., 2015; Cao et al., 2016;
Tsitsulin et al., 2018; Ying et al., 2018). Many of these aim to
preserve the first and second-order proximity as a local
neighborhood with path sampling using short random walks
such as DeepWalk andNode2vec (Hamilton et al., 2017; Cai et al.,
2018; Cui et al., 2018; Goyal and Ferrara, 2018). Some recent
studies aim to preserve higher-order proximity (Ou et al., 2016;
Chen et al., 2018b). In addition to these, some recent works
integrate contents to learn better representations (Akbas and
Zhao, 2019).While some studies use network embedding on node
and graph classification (Perozzi et al., 2014; Niepert et al., 2016;
Chen et al., 2018b), some others use it on graph clustering (Cao
et al., 2015; Akbas and Zhao, 2019; Akbas and Zhao, 2017).

DeepWalk (Perozzi et al., 2014) is the pioneering work that
uses the idea of word representation learning in (Mikolov et al.,
2013a; Mikolov et al., 2013b) for network embedding. While
vertices in a graph are considered as words, neighbors are
considered as their context in natural language. A graph is
represented as a set of random walk paths sampled from it.
The learning process leverages the co-occurrence probability of
the vertices that appear within a window in a sampled path. The

Skip-gram model is trained on the random walks to learn the
node representation (Mikolov et al., 2013a; Mikolov et al., 2013b).
We give the formal definition of network embedding as follows.

DEFINITION 1 (Network embedding). Network embedding is a
mapping ϕ : V →Rd , d≪

∣∣∣∣V ∣∣∣∣ which represents each vertex v ∈ V
as a point in a low dimensional space Rd.

Here d is a parameter specifying the number of dimensions of
our node representation. For every source node u ∈ V , we define
NS(u) ⊂ V as a network neighborhood of node u generated
through a neighborhood sampling strategy S. We seek to
optimize the following objective function, which maximizes
the log-probability of observing a network neighborhood
NS(u) for a node u conditioned on its representation, given by ϕ

max
f

∑
u∈V

logPr(NS(u)
∣∣∣∣ϕ(u)). (1)

There is an assumption that the conditional independence of
vertices will ignore the vertex ordering in the neighborhood
sampling to make the optimization problem tractable.
Therefore, the likelihood is factorized by assuming that the
likelihood of observing a neighborhood node is independent of
observing any other neighborhood node given the representation
of the source

Pr(NS(u)
∣∣∣∣ϕ(u)) � ∏

ni ∈NS(u)
Pr(ni

∣∣∣∣ϕ(u)).

The conditional likelihood of every source-neighborhood
node pair is modeled as a softmax unit parametrized by a dot
product of their features.

Pr(ni

∣∣∣∣ϕ(u)) � exp(ϕ(ni) · ϕ(u))
∑v∈Vexp(ϕ(v) · ϕ(u)).

It is too expensive to compute the summation over all vertices
for large networks, so we approximate it using negative sampling
(Mikolov et al., 2013b). We optimize Equation 1 using stochastic
gradient ascent over the model parameters defining the
embedding ϕ.

2.1.1 Random Walk Based Sampling
The neighborhoods NS(u) are not restricted to just immediate
neighbors but can have vastly different structures depending
on the sampling strategy S. There are many possible
neighborhood sampling strategies for vertices as a form of
local search. Different neighborhoods coming from different
strategies result in different learned feature representations.
For scalability of learning, random walk based methods are
used to capture the structural relationships of vertices. They
maximize the co-occurrence probability of subsequent
vertices within a fixed-length window of random walks to
preserve higher-order proximity between vertices. With
random walks, networks are represented as a collection of
vertex sequence. In this section, we take a deeper look at the
network neighborhood sampling strategy based on random
walks and the proximity captured by random walks.

The co-occurrence probability of node pairs depends on the
transition probabilities of vertices. Considering a graph G, we

Frontiers in Big Data | www.frontiersin.org January 2021 | Volume 3 | Article 6080434

Islam et al. Proximity-Based Compression for Network Embedding

https://www.frontiersin.org/journals/big-data
www.frontiersin.org
https://www.frontiersin.org/journals/big-data#articles

define adjacency matrix A that is symmetric for undirected
graphs. For an unweighted graph, we have Aij � 1 if and only
if there exists an edge from vi to vj, and Aij � 0 otherwise. For a
graph with adjacency matrix A, we can define the diagonal
matrix, known as degree matrix, as Dij � ∑

k
Aik if i � j, and Dij �

0 otherwise. In a random walk, transition probability from one
node to another depends on the degree of the vertices. The
probability of leaving a node from one of its edges is split
uniformly among the edges. We define this one step transition
probability as T: T � D−1A where Tij is the probability of a
transition from vertex vi to vertex vj within one step.

2.1.2 Multi-Level Network Embedding
Optimization of a non-convex function in these methods could
easily get stuck at a bad local minima as the result of poor
initialization. Moreover, while preserving local proximities of
vertices in a network, they may not preserve the global
structure of the network. As a solution to these issues, a
multi-level graph representation learning paradigm has been
proposed (Chen et al., 2018b; Ayan Kumar Bhowmick and
Meneni, 2020; Liang et al., 2018; Chenhui Deng and Zhao,
2020). HARP, is proposed in (Chen et al., 2018b) as a graph
preprocessing step to get better initialization vectors. In this
approach, related vertices in the network are hierarchically
combined into super-nodes at varying levels of coarseness.
After learning the embedding of the coarsened network with a
state-of-the-art graph embedding method, the learned
embedding is used as an initial value for the next level. The
initialization with the embedding of the coarsened network
improves the performance of the state-of-the-art methods.
One of the limitations of this method is that multi-level
compressing and learning results in significant compression
and embedding cost. Random edge compressing may put
dissimilar nodes into the same super-node that makes their
representation similar.

As a more efficient solution, MILE (Liang et al., 2018)
performs multi-level network embedding on large graphs
using graph coarsening and refining techniques. It compresses
the graph repeatedly based on Structural Equivalence Matching
(SEM) and Normalized Heavy Edge Matching (NHEM). After
learning the embedding of the compressed graph, they refine it
efficiently through a novel graph convolution neural network to
get the embedding of the original graph. This way, it receives
embedding for large scale graphs in an efficient and effective way.
More recently, GraphZoom (Chenhui Deng and Zhao, 2020)
proposes a multi-level spectral approach to enhange both the
quality and scalability. It performs graph fusion to generate a new
graph that effectively encodes the topology of the original graph
and the node attribute information. Then they apply spectral
clustering methods to merge the nodes into super-nodes with the
aim of retaining the first few eigenvectors of the graph Laplacian
matrix. Finally, after getting the embedding of the compressed
graph, they refine it by applying projection on it to get the original
graph embedding. LouvainNE (Ayan Kumar Bhowmick and
Meneni, 2020) applies the Louvain clustering algorithm
recursively to partition the original graph into multiple
subgraphs and construct a Hierarchy partition of the graph,

which is represented as a tree. Then they generate different
meta-graph from the tree and apply the baseline method
i.e., DeepWalk Node2vec. After getting the embedding from
different meta-graph, they combine these embeddings to find
the final embedding. They use a parameter to regulate the weights
of different embedding for combining.

Our approach differs from these by applying similarity-based
compressing to preserve the local information. Also, all of these
approaches apply hierarchical compressing that may take more
time, but we apply single level compressing and use it to get the
original graph embedding. NECL uses the graph coarsening to
capture the local structure of the network without a hierarchical
manner to improve the efficiency of the random walk based state-
of-the-art methods.

3 METHODOLOGY

While a desirable network embedding method for real-world
networks should preserve the local proximity between vertices
and the global structure of the graph, it should also be scalable for
large networks. This section presents our novel network
embedding models, NECL and NECL-RF, which satisfy these
requirements. We extend the idea of the graph compressing
layout to network representation learning methods. After
giving some preliminary information, we explain our
proximity-based compression method and how we combine
compression with network embedding.

In this paper, we consider an undirected, connected, simple
graph G � (VG; EG) where VG is the set of vertices, and
EG4{VG × VG} is the set of edges. The set of neighbors for a
given vertex v ∈ VG is denoted as NG(v), where
NG(v) � {u|u ∈ VG : (u, v) ∈ EG}. We now define what a
compressed graph is.

DEFINITION 2 (Compressed graph). A compressed graph of a
given graph G � (VG; EG) is represented as CG � (S;M) where
S � (VS; ES) is the graph summary with super-nodes VS and super-
edges ES and M is a mapping from each node v in V_G to its
super-node in VS. A super-edge E � (Vi;Vj) in ES represents the set
of all edges between vertices in the super-nodes Vi and Vj.

3.1 Neighborhood Similarity-Based Graph
Compression
The critical problem for graph compressing with preserving local
structures of the graph is to identify vertices that have similar
neighborhoods accurately, so they are more likely to have similar
representation. In this section, we discuss how to select vertices to
merge into super-nodes.

3.1.1 Motivation
The motivation of our method is that if two vertices have many
common neighbors, many embedding algorithms that preserve
local neighborhood information will give similar representations
to them. This comes from our following observation that if two
vertices, vi and vj, of a graph have many common neighbors, they
also have similar transition probabilities to other vertices. This

Frontiers in Big Data | www.frontiersin.org January 2021 | Volume 3 | Article 6080435

Islam et al. Proximity-Based Compression for Network Embedding

https://www.frontiersin.org/journals/big-data
www.frontiersin.org
https://www.frontiersin.org/journals/big-data#articles

means that if Ai and Aj are similar, their transition probability
vectors, Ti � Ai*D1

ii and Tj � Aj*D1
jj, will be similar as well. Hence

they have similar neighborhoods and get similar neighborhood
sets from random walks, and as a result, they get similar
representations from the learning process.

For example, in the toy graph in Figure 2, the neighbor sets of
the nodes a and b are the same. Hence, their transition
probabilities to the other neighbor vertices are also the same,
i.e., p(ni|a) � p(ni|b) � 1/4 for all i ∈ {1, 2, 3, 4}. Starting on
either a or b yields the same or very similar walks, so they
have the same or similar representation. Therefore, instead of
walking and learning representations for both a and b, it is
enough to learn one for both of them. For this, we can merge
this node pair (a, b) into one super-node ab. Transition
probabilities of this super-node to neighbors of a and b are
still the same with a and b, i.e., p(ni|ab) � 1/4 for all
i ∈ {1, 2, 3, 4}. When we obtain the representation of the super-
node ab, we can project it as the representation of each node in
this pair. Merging these vertices keeps the preservation of the first
and second-order proximity. Thus, this does not affect the results
of walking and learning, but it increases efficiency.

Furthermore, compressing may change the transition
probability of neighbors of compressed vertices since the
number of their neighbor decrease. As a result, the transition
probability of each neighbor changes. For example, in the toy
graph in Figure 2A, while the transition probability from n1 to its
neighbors is 1

|N(n1)|, after compressing, it becomes 1
|N(n1)|−1 since

the number of neighbors decrease by one. In order to avoid this
problem, we assign weights to edges of super-nodes based on the
number of merged edges within the compression. For example,
the super-edge between super-node ab and n1 includes two edges
which are (a, n1) and (b, n1). Therefore, the weight of the super-
edge (ab, n1) should be 2.

In a real-world graph, it is not expected to have toomany vertices
sharing exactly same neighborhood. However, for many graph
mining problems, such as node classification and graph
clustering, if two vertices share many common neighbors, they
are expected to be in the same class or cluster, although their
neighbor sets are not completely the same. Hence, we expect to have

similar feature vectors for the vertices in the same class/cluster after
embedding. From these observations, we can also apply the same
merge operation on these vertices. Following the same idea in the
example above, if neighbors of two vertices are similar (but not
exactly the same), we can merge them into a super-node and learn
one representation for all. While we can project this super-node
embedding to original vertices and use the same representation for
both, we can also update them in the refinement phase to embed the
difference of them into their representation.

3.1.2 Proximity Based Graph Compressing
In this section, we define our graph compressing algorithm
formally.

For a given graphG, if a set of vertices n1, n2, . . . , nr inVG have
similar neighbors, we merge these vertices into one super-node
n12...r to get a smaller compressed graph G′(VG′

, EG′
). To decide

which vertices to merge, we define the neighborhood similarity
based on the transition probability. Before defining the
neighborhood similarity, we first show that cosine similarity
between transition probabilities of two vertices u and v, Tu

and Tv , are determined by the number of their common
neighbors.

THEOREM 1. Let T be the 1-step transition probability matrix of
vertices V in a graph G and let u, v ∈ V . LetN(u) andN(v) be the
neighborhood sets of u and v and Tu and Tv be the transition
probability vectors from u and v to other vertices. Then the
similarity between Tu and Tv is proportional to the number of
common neighbors, |N(u)∩N(v)|.

PROOF. The cosine similarity between Tu and Tv is defined by

sim(Tu,Tv) � ∑iTuiTvi

||Tu||||Tv|| (2)

By definition of T, we have Tu � Au
|N(u)| and Tv � Av

|N(v)|.
Furthermore, we have

∣∣∣∣∣∣∣∣Tu

∣∣∣∣∣∣∣∣ � 1/ 						|N(u)|√
,
∣∣∣∣∣∣∣∣Tv

∣∣∣∣∣∣∣∣ � 1/ 						|N(v)|√

and

∑
i

AuiAvi � |N(u)∩N(v)|.

Hence, if we plug in these into Equation 1, we get

sim(Tu,Tv) � ∑iTuiTvi

||Tu||||Tv|| �
∑i

Aui

|N(u)|
Avi

|N(v)|
1						|N(u)|√ 1						|N(v)|√

�
1

|N(u)||N(v)| |N(u)∩N(v)|
1											|N(u)||N(v)|√

� |N(u)∩N(v)|											|N(u)||N(v)|√ .

Therefore,

sim(Tu,Tv)∝ |N(u)∩N(v)|

FIGURE 2 | Example of graph compressing. (a,b) are merged into
super-node ab connected to the neighbors of both (a,b).

Frontiers in Big Data | www.frontiersin.org January 2021 | Volume 3 | Article 6080436

Islam et al. Proximity-Based Compression for Network Embedding

https://www.frontiersin.org/journals/big-data
www.frontiersin.org
https://www.frontiersin.org/journals/big-data#articles

This finalizes the proof.
From Theorem 1, we see that the similarity of transition

probabilities from two vertices to other vertices depends on
the similarity of their neighbors. Therefore, for the
compressing, we define the neighborhood similarity between
two vertices as follows.

DEFINITION 3 (Neighborhood similarity) Given a graph G, the
neighborhood similarity between two vertices u, v is given by

Nsim(u, v) � 2|N(u)∩N(v)|
|N(u)| + |N(v)| (3)

In order to normalize the effect of high degree vertices, we divide
the number of common neighbors by degree of vertices. The
neighborhood similarity is between 0 and 1, where it is 0 when
two vertices have no common neighbor and one when both have
the same neighbors. According to the neighbor similarity, we
merge vertices whose similarity value is higher than a given
threshold value.

The neighborhood similarity-based graph compressing
algorithm is given in Algorithm 1. It is clear that the vertices
with a nonzero neighborhood similarity are 2-step neighbors.
Therefore, we do not need to compute the similarity between all
pairs of vertices. Instead, we just need to compute the similarity
between vertices and their neighbors’ neighbors. For each node
v ∈ VG, we compute the similarity between v and each k as
neighbors of neighbors (line 3–10). Then, we check the
similarity value of all pairs (u, k) in the list and if it is higher
than the given threshold λ (line 12), we merge u and k into a
super-node su,k (line 13). Then we delete edges of u and k and add
edges between neighbors of u and k and the new super-node su,k
(line 17–24). We assign weights to the edges of super-nodes based
on the number of merged edges within the compression.
Threshold λ decides the trade-off between efficiency and
effectiveness. If we use a larger value, it will merge a less
number of vertices. On the other hand, if we use a smaller
value, we merge more vertices, and as a side effect, we may

merge some dissimilar vertices as well, which may result in an
increase in efficiency but cause a decrease in accuracy. Note that
since we use original neighborhood similarity, the order of
merging does not affect the result, so we randomly select a
node and check neighbors for compression. Furthermore, one
super-node may include more than two vertices of the original
graph. For example, if the similarity between the vertices x and y,
NSim(x, y), and the vertices y and z, NSim(y, z), are both bigger
than given threshold, we merge x and y in sx,y and then we merge
sx,y and z into sx,y,z . Therefore, during the merge operation, we
check whether the node y is merged with another node and if so,
we get the super-node of the original node x.

3.2 Network Embedding
Our NECL framework is adaptive with any embedding method
which preserves the neighborhood proximity of nodes,
i.e., DeepWalk, Node2vec, and LINE. We get the embedding
for the original graph in two ways.

3.2.1 Network Embedding on Compressed Graph
Our main goal in this section is to improve the efficiency of the
embedding problem while maintaining similar effectiveness
with the baseline methods. For this goal, instead of
embedding the original graph, we embed the compressed
graph and employ this embedding for the original graph
embedding.

We first start compressing the graph for a given similarity
threshold, as explained in the previous section. Then we learn the
embedding of super-nodes in the compressed graph. Next, we
assign the representation of each super-node in the compressed
graph as the representation of the corresponding vertices in each
super-node and obtain the embedding of the original graph. Since
the size of the compressed graph is much smaller than the original
graph, the embedding will be more efficient. The details of our
algorithm for network embedding on a compressed graph is given
in Algorithm 2.

In the algorithm, after getting the weighted compressed graph S
(line 1), we obtain the representation of super-nodes VS as ϕs in the
compressed graph with the provided network embedding algorithm
(line 2). We apply any random walk based representation learning
algorithm on the compressed graph.We just need to apply weighted
random walks to consider the edge weights. As the size of the
compressed graph is smaller than the original graph, it is more
efficient to get embeddings of super-nodes than single vertices.
Finally, we assign the embedding of super-nodes to vertices
according to the mapping M obtained from the compression
(line 3–7). While we may lose some local information with
assigning the same representation to multiple vertices, we gain
efficiency. Also, we may not need to get small differences between
nodes for many applications, e.g., classification, as we see in
Section 4.

3.2.2 Network Embedding With Refinement
Our main goal in this section is to improve the effectiveness of the
embedding problem while still maintaining similar efficiency with
the baseline methods. For this goal, we employ the embedding of

Algorithm 1: Graph Compressing (G, λ).

Frontiers in Big Data | www.frontiersin.org January 2021 | Volume 3 | Article 6080437

Islam et al. Proximity-Based Compression for Network Embedding

https://www.frontiersin.org/journals/big-data
www.frontiersin.org
https://www.frontiersin.org/journals/big-data#articles

the compressed graph as initialization to the original graph
embedding and refine it.

When we compress a graph using the neighborhood similarity
score, we can easily capture the global structure of the original
graph. On a large original graph, the random walk may get stuck
in a local neighborhood. As a result, the embedding method may
not capture the global structure of the original graph. However,
when we do the random walk on the compressed graph, it visits
the globally similar neighbors nodes. Hence, we can capture the
global proximity of the nodes. That is why, in this method, we first
embed the compressed graph for a given similarity threshold to
encode the original graph’s global structure in the representation
as in Section 3.2.1. Then, for the embedding of the original graph,
instead of starting with randomly initialized representations,
which happens in the original embedding methods such as
DeepWalk and Node2vec, we start with the representations
obtained from the compressed graph. In the case of random
representations, for example, two similar nodes are likely to have
two very different and distanced representations, hence the
optimization process may not provide an accurate
representation and this may decrease the quality or it may
take a longer time to make them similar. However, initializing
the representation using the compressed graph embedding
provides global structure information as an initial knowledge
to the embedding. The original graph embedding updates this
initial embedding with local information that may be lost with
compressing. Therefore, final embeddings have better quality
with integrating local and global information in one
representation. In Algorithm 2, the original graph embedding
is obtained in line eight by refining the compressed graph
embedding given as the initial representation.

4 EXPERIMENTS

We do our experimental studies to compare our methods with
different models in terms of efficiency and effectiveness. We
evaluate the quality of embeddings through challenging multi-
class and multi-label classification tasks on four popular real-
world graph datasets. First, in Section 4.1, we present our model’s
performance based on different parameters. Then, we compare
the results of our models with the results of HARP.

Datasets: We consider four real-world graphs1, which have
been widely adopted in the network embedding studies. Two of
them are single-label, which are Wiki and Citeseer, and two of
them are multi-label datasets, which are DBLP and BlogCatalog
(BlogC). In single-label datasets, each node in the datasets has a

single-label from multi-class values. In multi-label datasets, a
node can belong to more than one class.

Baseline methods: To demonstrate that our methods can
work with different graph embedding methods, we use three
popular graph embedding methods, namely DeepWalk,
Node2vec and LINE, as the baseline methods in our model.
We combine each baseline method with our methods and
compare their performance. We give a brief explanation of
the baseline methods in Section 2. We named our first
method as NECL, which uses a compressed graph embedding
as the original graph embedding, and the second method as
NECL-RF, which uses the compressed graph embedding as the
initial vector for original graph embedding and refine it with the
original graph.

Parameter Settings: For DeepWalk, Node2vec, NECL(DW),
NECL(N2V), NECL-RF(DW) and NECL-RF(N2V), we set the
following parameters: the number of randomwalks γ, walk length
t, window size w for the Skip-gram model and representation size
d. The parameter setting for all models is c � 40, t � 10, w � 10,
d � 128. The initial learning rate and final learning rate are set to
0.025 and 0.001 respectively in all models. Representation size for
LINE is d � 64 for all model.

ClassificationWe present our results and compare them with
the baseline methods and also HARP in single-label and multi-
label classification tasks. For the single classification task, the
multi-class SVM is employed as the classifier, which uses the one-
vs-rest scheme. For the multi-label classification task, we train a
one-vs-rest logistic regression model with L2 regularization on
the graph embeddings for prediction. The logistic regression
model is implemented with LibLinear (Fan et al., 2008).

For the evaluation, after getting embeddings for nodes in the
graph, we use these embeddings as the features of the nodes.
Then, we train a classifier using these features. To train the
classifier, we randomly sample a certain portion of labeled
vertices from the graph and use the rest of the vertices as the
test data. To have a detailed comparison of methods, we vary our
training ratio from 1% to 50% on the Citeseer, Wiki, and DBLP
datasets and from 10% to 80% for BlogCatalog. We use larger
portion training data for the BlogCatalog dataset because the
number of class labels of BlogCatalog is about ten times other
graphs.

We repeat the classification tasks ten times to ensure the
reliability of our experiment and report the average macro F1 and
micro F1 scores and embedding times of our models with
different parameter. Since our focus is improving the efficiency
of embeddings, we report the time for embedding and do not
include compression time. However, as we explain in the
methodology section, we just need to compute the similarity
between vertices and their neighbors’ neighbors and combine
them into supernodes. Furthermore, the computation is not
multi-level, just one-time computation. Therefore, the
compression part does not have high complexity and it does
not have an impact on efficiency. All experiments are
performed on a server running Ubuntu 14:04 with four
Intel 2.6 GHz ten-core CPUs and 48 GB of memory. All
data and code are publicly available through this link:
https://github.com/esraabil/NECL.

Algorithm 2: NECL: Network Embedding on Compressed Graph.

Frontiers in Big Data | www.frontiersin.org January 2021 | Volume 3 | Article 6080438

Islam et al. Proximity-Based Compression for Network Embedding

https://github.com/esraabil/NECL
https://www.frontiersin.org/journals/big-data
www.frontiersin.org
https://www.frontiersin.org/journals/big-data#articles

4.1 Analysis of NECL
We present our results in Tables 1, 2. For the similarity
threshold λ< 0.5, the compressed graph becomes very small
and gives low macro F1 and micro F1 scores. Since it also
merges more nodes into super-nodes with a low similarity
value, this may result in information loss on the graph. Hence,

we set the cutting point of compression at λ � 0.5. Moreover, to
see the effect of the similarity threshold value λ on the
compression and accuracy, we vary it from 0.45 to 1. We
present the macro F1 and micro F1 scores with respect to the
fraction of labeled data in Figures 3–6 and embedding times in
Figure 7. We also report the number of edges and vertices in

TABLE 1 | Performance comparisons of NECL with baseline methods (BL).

Macro F1 Micro F1 Time (s)

NECL BL Gain% NECL BL Gain% NECL BL Gain%

DW 0.434 0.408 6.4 0.469 0.440 6.6 9.26 16.21 42.9
N2V 0.439 0.437 0.5 0.475 0.472 0.6 8.95 15.46 42.1

Citeseer Line 0.317 0.320 -0.9 0.355 0.359 -1.1 0.67 1.43 53.1

DW 0.390 0.373 4.6 0.497 0.483 2.9 4.84 8.98 46.0
N2V 0.349 0.348 1.0 0.489 0.490 -0.2 9.41 19.10 50.7

Wiki Line 0.355 0.369 -3.8 0.517 0.518 0.2 1.28 3.81 66.4

DW 0.625 0.603 3.6 0.656 0.635 3.3 39.97 93.96 57.5
N2V 0.626 0.624 0.3 0.657 0.653 0.6 75.81 175.31 56.8

DBLP Line 0.595 0.593 0.3 0.649 0.645 0.6 9.94 28.58 65.2

DW 0.246 0.245 0.4 0.388 0.387 0.2 71.7 99.3 27.7
N2V 0.252 0.251 0.3 0.391 0.389 -0.5 1,247 1,628 23.4

BlogC Line 0.215 0.219 -1.8 0.369 0.373 -1.1 99.35 126.65 21.6

TABLE 2 | Compression ratio with the similarity threshold λ � 0.5.

|V | |E|
Compressed Original Ratio % Compressed Original Ratio %

Citeseer 1,427 2,708 47.3 5,236 10,858 51.8
Wiki 1,060 2,405 55.9 8,584 23,192 63
DBLP 8,824 27,199 69.9 32,984 133664 75.3
BlogC 8,507 10,312 17.5 543872 667966 18.6

FIGURE 3 | Detailed classification results on Citeseer.

Frontiers in Big Data | www.frontiersin.org January 2021 | Volume 3 | Article 6080439

Islam et al. Proximity-Based Compression for Network Embedding

https://www.frontiersin.org/journals/big-data
www.frontiersin.org
https://www.frontiersin.org/journals/big-data#articles

the compressed graph with respect to similarity threshold λ on
Figure 8 to see the effectiveness of the graph compression
algorithm.

Gain on baseline methods: For all datasets, we present macro
F1 and micro F1 scores for single and multi-label classification
tasks and embedding time in Table 1 and compression ratio for
edge and vertices in Table 2. We use 5% training ratio of labeled
vertices for Citeseer, Wiki, and DBLP and 40% training ratio for
BlogCatalog. As we see from Table 1, for DeepWalk, there is a
significant gain on macro and micro F1 in addition to gain on
efficiency on Citeseer, Wiki, and DBLP. For Node2vec and LINE,
while there is a significant gain on total embedding time as
efficiency, there is no (significant) difference between NECL
and baseline methods on macro F1 and micro F1 For LINE,
we have a higher gain on time for all datasets.

For DBLP, gains of embedding time are much higher than
other datasets. On the other hand, for BlogCatalog, gains of
embedding times are less with respect to other datasets. As we see
from the Tables 1, 2, the gain of embedding time depends on the
compression ratio of the number of edges and vertices. With
compression, the number of vertices and edges for DBLP decrease
from 27,199 to 8,824 (70%) and from 13,3664 to 32,984 (75%),
respectively. Therefore, embedding becomes more efficient with
better or same accuracy. For BlogCatalog, the compression ratio
is lower than the others, around 18%; therefore, the time gain is
also lower. The reason for this is that, in DBLP, vertices have
many common neighbors, so the neighborhood similarity is
higher and this results in more compression. On the other
hand, in BlogCatalog, vertices have less common neighbors
and so a lower similarity, and this results in less compression.

FIGURE 4 | Detailed classification results on Wiki.

FIGURE 5 | Detailed classification results on DBLP.

Frontiers in Big Data | www.frontiersin.org January 2021 | Volume 3 | Article 60804310

Islam et al. Proximity-Based Compression for Network Embedding

https://www.frontiersin.org/journals/big-data
www.frontiersin.org
https://www.frontiersin.org/journals/big-data#articles

We can conclude that while the gain in the effectiveness of our
method depends on the baseline method, the gain in efficiency of
our method depends on the characteristics of the dataset.

Detailed Analyses: We compare the performance of NECL
framework for different similarity threshold values λ that
results in different compression ratios with the performance
of the baseline methods. Macro F1 and micro F1 scores on
different datasets are given on Figures 3–6 for Citeseer, Wiki,
DBLP and BlogCatalog datasets, respectively. We observe that
for λ> 0.45, macro F1, and micro F1 scores for NECL are similar
with or higher than baseline methods across all datasets except
Citeseer. For λ< � 0.45, the quality of embedding decreases
dramatically and so does the accuracy of classification. The
results for Citeseer depend on the baseline methods. While λ �

0.45 gives better accuracy for DeepWalk and Node2vec, it gives
worse for LINE.

In addition to the macro F1 and micro F1 scores, we also report
the embedding time and compression ratio for different similarity
threshold values λ in Figures 7, 8. From the figures, we see that
NECL takes significantly less time compared to the baseline
method. As expected, for a lower threshold value λ, the
compression ratio increases, and we get a smaller compressed
graph and so the embedding time decreases. As BlogCatalog has a
lower compassion ratio, the embedding time is less for all three
baseline methods. We observe that there is a linear relation
between λ and the number of vertices and edges until λ � 0.5.
After this point, graph sizes change dramatically for smaller λ for
Citeseer, Wiki, and DBLP, but the decrease is slow for

FIGURE 6 | Detailed classification results on BlogCatalog.

FIGURE 7 | Run time analyses for different similarity threshold values λ (Citeseer (A), Wiki (B), DBLP (C) and BlogCatalog (D)).

Frontiers in Big Data | www.frontiersin.org January 2021 | Volume 3 | Article 60804311

Islam et al. Proximity-Based Compression for Network Embedding

https://www.frontiersin.org/journals/big-data
www.frontiersin.org
https://www.frontiersin.org/journals/big-data#articles

FIGURE 8 | The ratio of vertices/edges of the compressed graphs to that of the original graphs. (Citeseer (A), Wiki (B), DBLP (C) and BlogCatalog (D)).

TABLE 3 | Performance comparisons of all methods.

Citeseer Wiki DBLP BlogCatalog

Macro F1 Micro F1 Macro F1 Micro F1 Macro F1 Micro F1 Macro F1 Micro F1

Baseline (DW) 0.408 0.440 0.373 0.483 0.603 0.635 0.245 0.387
HARP (DW) 0.422 0.453 0.366 0.483 0.612 0.644 0.253 0.390
NECL (DW) 0.434 0.469 0.390 0.497 0.625 0.656 0.246 0.388
NECL-RF (DW) 0.422 0.457 0.408 0.549 0.617 0.649 0.285 0.405
Baseline (N2V) 0.437 0.472 0.348 0.490 0.624 0.653 0.251 0.389
HARP (N2V) 0.432 0.466 0.352 0.492 0.626 0.656 0.259 0.394
NECL (N2V) 0.439 0.475 0.349 0.489 0.626 0.657 0.252 0.391
NECL-RF (N2V) 0.430 0.464 0.372 0.513 0.628 0.661 0.260 0.398
Baseline (LINE) 0.320 0.359 0.369 0.518 0.593 0.645 0.219 0.373
HARP (LINE) 0.430 0.494 0.322 0.396 0.594 0.643 0.228 0.373
NECL (LINE) 0.317 0.355 0.355 0.517 0.595 0.649 0.215 0.369
NECL-RF (LINE) 0.444 0.513 0.353 0.493 0.619 0.661 0.252 0.377

FIGURE 9 | Detailed comparisons of classification results on Citeseer

Frontiers in Big Data | www.frontiersin.org January 2021 | Volume 3 | Article 60804312

Islam et al. Proximity-Based Compression for Network Embedding

https://www.frontiersin.org/journals/big-data
www.frontiersin.org
https://www.frontiersin.org/journals/big-data#articles

BlogCatalog until λ � 0.7. One of the reasons for this situation in
BlogCatalog is that the sizes of the neighbor sets for some vertices
are very large, and it is not easy to get higher similarity for a larger
set. For example, for two vertices with 15 edges, 10 common
neighbors can be considered to have a higher similarity. On the
other hand, two vertices with 150 edges should have 100 common
neighbors to get the same similarity value, which is not very
common.

From these detailed analyses, we observe that smaller λ results
in smaller compressed graph. As a result, embedding becomes
more efficient. However, for λ< � 0.45, we start to lose critical
information about the graph, hence, while efficiency increases,
effectiveness decreases dramatically. As a solution to this
problem, we refine our results with our second method,
NECL-RF.

4.2 Comparisons of all Methods
In this section, we evaluate the effectiveness of our NECL-RF
method and compare the results with NECL, HARP, and baseline
methods. From the analysis of NECL, we can see that λ � 0.5
similarity threshold value gives the best result in terms of
efficiency and effectiveness. For this reason, we decide to use
the compressed graph for λ � 0.5 threshold value and get the
embedding for the compressed graph. We present the macro F1
and micro F1 scores achieved on all datasets in Tables 1, 2. We
use 5% of the labeled vertices for Citeseer, Wiki, and DBLP, 40%
for BlogCatalog as training data. To have a detailed comparison
between our models, NECL and NECL-RF, HARP and the
baseline methods, we vary the fraction of labeled data for
classification, and present macro F1 and micro F1 scores in
Figures 9–12.

FIGURE 10 | Detailed comparisons of classification results on Wiki.

FIGURE 11 | Detailed comparisons of classification results on DBLP.

Frontiers in Big Data | www.frontiersin.org January 2021 | Volume 3 | Article 60804313

Islam et al. Proximity-Based Compression for Network Embedding

https://www.frontiersin.org/journals/big-data
www.frontiersin.org
https://www.frontiersin.org/journals/big-data#articles

In Table 3, we see that NECL or NECL-RF gives the highest
macro F1 and micro F1 scores for datasets with all baseline
methods except for LINE on Wiki. For DBLP, NECL or
NECL-RF gives the highest accuracy for all the three baseline
models. NECL-RF significantly improves the quality of the
embedding for all datasets except Citeseer with Node2vec and
Wiki with LINE.

While HARP has higher accuracy than baseline methods, it
does multiple levels of iteration of graph coarsening
and representation learning, so it increases the time
complexity. On the other hand, we do iteration only one level
in NECL-RF. Embedding time for NECL-RF is the total of
embedding time for the original graph and compressed graph.
As we see in the previous section, the compressed graph is much
smaller than an original graph, so the learning time for the
compressed graph is significantly less compare to the baseline
method. Hence, complexity does not increase significantly as in
HARP. As a result, we get similar or better effectiveness than
HARP with less time complexity.

Detailed comparisons between all methods using different
portions of labeled vertices as training data are presented in
Figures 9–12. In most cases, we see that in most of the cases,
NECL and NECL-RF give the highest accuracy compared to other
models or give better results than the baseline models. We observe
that, for some datasets, refinement decreases the accuracy of NECL.
The reason for this decrease might be that, for some classification
tasks, learning a global structure with compressed data, which also
includes a local structure in the super-nodes, would be enough. So
when we relearn and update the embedding of the compressed
graph, it might add noise to the features. As a result, it deteriorates
the accuracy of the classification task. Also, as we see from the
figures, our method has a better improvement on DeepWalk. The
reason is that while Node2vec and LINE may learn higher-order
proximity, regular random walk in DeepWalk may not capture
higher-order proximity, so it loses the global information. It also
depends on the datasets.

5 CONCLUSION

We present a novel method for network embedding that
preserves the local and global structure of the network. To
capture the global structure and accelerate the efficiency of
state-of-the-art methods, we introduce a neighborhood
similarity-based graph compression method. We combine the
vertices with common neighbors into super-node. Then we apply
network representation learning on the compressed graph so
that we can reduce the run time and also capture the global
structure. As a first method, we project the embedding of
super-nodes to original nodes without refinement. In the
second part, we relearn the representation of the network
with assigning the super-nodes embedding to its’ original
vertices as initial features and update this using the baseline
method. In this way, we combine the local structure with the
global structure of the network. While the first method
provides efficiency with learning on the small compressed
graph, the second method provides effectiveness with
incorporating global information into embedding with the
compressed graph. NECL and NECL-RF are a general meta-
strategies that can be used to improve the efficiency and
effectiveness of many state-of-the-art graph embedding
method. We use three popular state-of-the-art network
embedding methods DeepWalk, Node2vec, and LINE as a
baseline. Experimental results on various real-world graph
show the effectiveness and efficiency of our methods on
challenging multi-label and multi-class classification tasks
for all these three baseline methods.

The future work of our NECL and NECL-RF could be using
different refinement methods of graph embedding. We can
apply different neural network models without relearning the
whole network to refine the embedding which we get from the
compressed graph. Another extension could be done by using
different clustering methods or similarity measurements to
compressed the graph and use other baseline methods.

FIGURE 12 | Detailed comparisons of classification results on BlogCatalog.

Frontiers in Big Data | www.frontiersin.org January 2021 | Volume 3 | Article 60804314

Islam et al. Proximity-Based Compression for Network Embedding

https://www.frontiersin.org/journals/big-data
www.frontiersin.org
https://www.frontiersin.org/journals/big-data#articles

DATA AVAILABILITY STATEMENT

The original contributions presented in the study are included in
the article/Supplementary Material, further inquiries can be
directed to the corresponding authors.

AUTHOR CONTRIBUTIONS

Conceived and designed the experiments: MI and EA
Performed the experiments: MI , GJ, and EA. Analyzed the
data: MI, GJ, EA, FT, and MA. Wrote the paper: MI, FT, GJ,
EA, and MA.

FUNDING

This work was partially done by the author Ginger Johnson while
she attended the Big Data Analytics REU program at Oklahoma
State University supported by the National Science Foundation
under Grant No. 1659645.

ACKNOWLEDGMENTS

The content of this manuscript has been presented in part at the
Big Data conference (Akbas and Aktas, 2019a). Earlier version of
this manuscript has been released as a pre-print at Arxiv (Akbas
and Aktas, 2019b).

REFERENCES

Adler, M., and Mitzenmacher, M. (2001). “Towards compressing web graphs,” in
Proceedings of data compression conference Snowbird, UT, USA, March 27-29,
2001 (DCC: IEEE), 203–212.

Akbas, E., and Zhao, P. (2017). “Attributed graph clustering: an attribute-aware graph
embedding approach,” in Proceedings of the 2017 IEEE/ACM international
conference on advances in social networks analysis and mining, Sydney,
Australia, July, 2017, 305–308.

Akbas, E., and Aktas, M. E. (2019a). “Network embedding: on compression and
learning,” in IEEE international conference on Big data (Big data), Los Angeles,
CA, USA, December 9-12, 2019, 4763–4772.

Akbas, E., and Aktas, M. E. (2019b). Network embedding: on compression and
learning. arXiv preprint arXiv:1907.02811

Akbas, E., and Zhao, P. (2019). “Graph clustering based on attribute-aware graph
embedding,” in From security to community detection in social networking
platforms (Springer International Publishing), 109–131.

Ayan Kumar Bhowmick, M. D., and Meneni, K. (2020). “Louvainne: hierarchical
louvain method for high quality and scalable network embedding,” in WSDM,
Houston, Texas, USA, February 4-6, 2020.

Belkin, M., and Niyogi, P. (2001). “Laplacian eigenmaps and spectral techniques for
embedding and clustering,” in Proceedings of the 14th international conference on
neural information processing systems: natural and synthetic, NIPS’01, Vancouver,
British Columbia, Canada, Dec 3-8, 2001, 585–591.

Cai, H., Zheng, V. W., and Chang, K. C.-C. (2018). A comprehensive survey of
graph embedding: problems, techniques, and applications. IEEE Trans. Knowl.
Data Eng. 30, 1616–1637. doi:10.1109/tkde.2018.2807452

Cao, S., Lu, W., and Xu, Q. (2015). “Grarep: learning graph representations with
global structural information,” in Proceedings of the CIKM’15, Melbourne
Australia, October, 2015, 891–900.

Cao, S., Lu, W., and Xu, Q. (2016). “Deep neural networks for learning graph
representations,” in Thirtieth AAAI conference on artificial intelligence,
Phoenix, Arizona, USA, February 12-17, 2016.

Chen, H., Perozzi, B., Al-Rfou, R., and Skiena, S. (2018a). A tutorial on network
embeddings. arXiv preprint arXiv:1808.02590

Chen, H., Perozzi, B., Hu, Y., and Skiena, S. (2018b). “Harp: hierarchical
representation learning for networks,” in Thirty-second AAAI Conference
on artificial intelligence New Orleans, Louisiana, USA, February 2 -7,
2018.

Chenhui Deng, Y. W. Z. Z. Z. F., and Zhao, Z. (2020). “Graphzoom: a multi-level
spectral approach for accurate and scalable graph embedding,” in ICLR 2020,
Addis Ababa ETHIOPIA, Apr 26- 1st May.

Cui, P.,Wang, X., Pei, J., and Zhu,W. (2018). “A survey on network embedding,” in
IEEE transactions on knowledge and data engineering.

Fan, R.-E., Chang, K.-W., Hsieh, C.-J., Wang, X.-R., and Lin, C.-J. (2008). Liblinear:
a library for large linear classification. J. Mach. Learn. Res. 9, 1871–1874. doi:10.
1145/1390681.1442794

Gilbert, A. C., and Levchenko, K. (2004). “Compressing network graphs,” in
Proceedings of the LinkKDD workshop at the KDD’10, 124, Washington DC,
USA, July, 2010.

Goyal, P., and Ferrara, E. (2018). Graph embedding techniques, applications, and
performance: a survey. Knowl. Base Syst. 151, 78–94. doi:10.1016/j.knosys.2018.
03.022

Grover, A., and Leskovec, J. (2016). “node2vec: scalable feature learning for
networks,” in KDD proceedings of the 22nd ACM SIGKDD (San Francisco,
CA, USA:ACM), 855–864.

Hamilton, W. L., Ying, R., and Leskovec, J. (2017). Representation learning on
graphs: methods and applications. arXiv preprint arXiv:1709.05584

Liang, J., Gurukar, S., and Parthasarathy, S. (2018). Mile: a multi-level framework
for scalable graph embedding. arXiv preprint arXiv:1802.09612

Mikolov, T., Chen, K., Corrado, G., and Dean, J. (2013a). “Efficient estimation of
word representations in vector space,” in Proceedings of workshop at ICLR,
Scottsdale, Arizona, May 2-4.

Mikolov, T., Sutskever, I., Chen, K., Corrado, G. S., and Dean, J. (2013b). “Distributed
representations of words and phrases and their compositionality,” in Advances in
neural information processing systems, CA, USA, December 5-10, 2013,
3111–3119.

Niepert, M., Ahmed, M., and Kutzkov, K. (2016). “Learning convolutional neural
networks for graphs,” in Proceedings of the ICML’16, New York, USA, June 19-
24, 2016, 2014–2023.

Ou, M., Cui, P., Pei, J., Zhang, Z., and Zhu, W. (2016). “Asymmetric transitivity
preserving graph embedding,” in Proceedings of the KDD’16 (New York, NY,
USA: ACM), 1105–1114.

Perozzi, B., Al-Rfou, R., and Skiena, S. (2014). “Deepwalk: online learning of social
representations,” in Proceedings of the SIGKDD’14 (New York city, New york,
USA: ACM), 701–710.

Qiu, J., Dong, Y., Ma, H., Li, J., Wang, K., and Tang, J. (2018). “Network embedding
as matrix factorization: unifying deepwalk, line, pte, and node2vec,” in
Proceedings of the WSDM’18, Los Angeles, California, USA, Feb 5-9, 2018,
459–467.

Roweis, S. T., and Saul, L. K. (2000). Nonlinear dimensionality reduction by locally
linear embedding. Science 290, 2323–2326. doi:10.1126/science.290.5500.2323

Suel, T., and Yuan, J. (2001). “Compressing the graph structure of the web,” in
Proceedings of the data compression conference, Snowbird, UT, USA, March
27-29, 2001, 213–222.

Sun, J., Bandyopadhyay, B., Bashizade, A., Liang, J., Sadayappan, P., and
Parthasarathy, S. (2019). “Atp: directed graph embedding with asymmetric
transitivity preservation. Proc. AAAI Conf. Artif. Intell. 33, 265–272. doi:10.
1609/aaai.v33i01.3301265

Tang, J., Qu, M.,Wang, M., Zhang, M., Yan, J., andMei, Q. (2015). “Line: large-scale
information network embedding,” in Proceedings of the WWW’15, Florence,
Italy, May 18-22, 2015, 1067–1077.

Tsitsulin, A., Mottin, D., Karras, P., and Müller, E. (2018). “Verse: versatile graph
embeddings from similarity measures,” in Proceedings of the WWW’18, Lyon,
France, April 23, 2018, 539–548.

Frontiers in Big Data | www.frontiersin.org January 2021 | Volume 3 | Article 60804315

Islam et al. Proximity-Based Compression for Network Embedding

https://doi.org/10.1109/tkde.2018.2807452
https://doi.org/10.1145/1390681.1442794
https://doi.org/10.1145/1390681.1442794
https://doi.org/10.1016/j.knosys.2018.03.022
https://doi.org/10.1016/j.knosys.2018.03.022
https://doi.org/10.1126/science.290.5500.2323
https://doi.org/10.1609/aaai.v33i01.3301265
https://doi.org/10.1609/aaai.v33i01.3301265
https://www.frontiersin.org/journals/big-data
www.frontiersin.org
https://www.frontiersin.org/journals/big-data#articles

Wang, H., Wang, J., Wang, J., Zhao, M., Zhang, W., Zhang, F., et al. (2018).
“Graphgan: graph representation learning with generative adversarial nets,” in
Thirty-Second AAAI Conference on Artificial Intelligence, New Orleans,
Louisiana, February 2-7, 2018.

Wold, S., Esbensen, K., and Geladi, P. (1987). Principal component analysis.
Chemometr. Intell. Lab. Syst. 2, 37–52

Ying, R., You, J., Morris, C., Ren, X., Hamilton, W. L., and Leskovec, J. (2018).
“Hierarchical graph representation learning with differentiable pooling,” in
Proceedings of the NIPS’18, Montrèal, CANADA, Jan 2-8, 2018, 4805–4815.

Zhang, D., Yin, J., Zhu, X., and Zhang, C. (2017). “Network representation
learning: a survey,” in IEEE Transactions on Big Data, 1.

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Copyright © 2021 Islam, Tanvir, Johnson, Akbas and Aktas. This is an open-access
article distributed under the terms of the Creative Commons Attribution License (CC
BY). The use, distribution or reproduction in other forums is permitted, provided the
original author(s) and the copyright owner(s) are credited and that the original
publication in this journal is cited, in accordance with accepted academic practice.
No use, distribution or reproduction is permitted which does not comply with
these terms.

Frontiers in Big Data | www.frontiersin.org January 2021 | Volume 3 | Article 60804316

Islam et al. Proximity-Based Compression for Network Embedding

https://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/big-data
www.frontiersin.org
https://www.frontiersin.org/journals/big-data#articles

	Proximity-Based Compression for Network Embedding
	1 Introduction
	2 Background
	2.1 Network Embedding
	2.1.1 Random Walk Based Sampling
	2.1.2 Multi-Level Network Embedding

	3 Methodology
	3.1 Neighborhood Similarity-Based Graph Compression
	3.1.1 Motivation
	3.1.2 Proximity Based Graph Compressing

	3.2 Network Embedding
	3.2.1 Network Embedding on Compressed Graph
	3.2.2 Network Embedding With Refinement

	4 Experiments
	4.1 Analysis of NECL
	4.2 Comparisons of all Methods

	5 Conclusion
	Data Availability Statement
	Author Contributions
	Funding
	Acknowledgments
	References

