AUTHOR=Shin Kijung , Hooi Bryan , Kim Jisu , Faloutsos Christos TITLE=Detecting Group Anomalies in Tera-Scale Multi-Aspect Data via Dense-Subtensor Mining JOURNAL=Frontiers in Big Data VOLUME=3 YEAR=2021 URL=https://www.frontiersin.org/journals/big-data/articles/10.3389/fdata.2020.594302 DOI=10.3389/fdata.2020.594302 ISSN=2624-909X ABSTRACT=
How can we detect fraudulent lockstep behavior in large-scale multi-aspect data (i.e., tensors)? Can we detect it when data are too large to fit in memory or even on a disk? Past studies have shown that dense subtensors in real-world tensors (e.g., social media, Wikipedia, TCP dumps, etc.) signal anomalous or fraudulent behavior such as retweet boosting, bot activities, and network attacks. Thus, various approaches, including tensor decomposition and search, have been proposed for detecting dense subtensors rapidly and accurately. However, existing methods suffer from low accuracy, or they assume that tensors are small enough to fit in main memory, which is unrealistic in many real-world applications such as social media and web. To overcome these limitations, we propose