AUTHOR=McCulloh Ian , Kiernan Kevin , Kent Trevor TITLE=Inferring True COVID19 Infection Rates From Deaths JOURNAL=Frontiers in Big Data VOLUME=3 YEAR=2020 URL=https://www.frontiersin.org/journals/big-data/articles/10.3389/fdata.2020.565589 DOI=10.3389/fdata.2020.565589 ISSN=2624-909X ABSTRACT=

The novel coronavirus, SARS-CoV-2, commonly known as COVID19 has become a global pandemic in early 2020. The world has mounted a global social distancing intervention on a scale thought unimaginable prior to this outbreak; however, the economic impact and sustainability limits of this policy create significant challenges for government leaders around the world. Understanding the future spread and growth of COVID19 is further complicated by data quality issues due to high numbers of asymptomatic patients who may transmit the disease yet show no symptoms; lack of testing resources; failure of recovered patients to be counted; delays in reporting hospitalizations and deaths; and the co-morbidity of other life-threatening illnesses. We propose a Monte Carlo method for inferring true case counts from observed deaths using clinical estimates of Infection Fatality Ratios and Time to Death. Findings indicate that current COVID19 confirmed positive counts represent a small fraction of actual cases, and that even relatively effective surveillance regimes fail to identify all infectious individuals. We further demonstrate that the miscount also distorts officials' ability to discern the peak of an epidemic, confounding efforts to assess the efficacy of various interventions.