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The novel coronavirus, SARS-CoV-2, commonly known as COVID19 has become a

global pandemic in early 2020. The world has mounted a global social distancing

intervention on a scale thought unimaginable prior to this outbreak; however, the

economic impact and sustainability limits of this policy create significant challenges for

government leaders around the world. Understanding the future spread and growth

of COVID19 is further complicated by data quality issues due to high numbers of

asymptomatic patients who may transmit the disease yet show no symptoms; lack

of testing resources; failure of recovered patients to be counted; delays in reporting

hospitalizations and deaths; and the co-morbidity of other life-threatening illnesses.

We propose a Monte Carlo method for inferring true case counts from observed

deaths using clinical estimates of Infection Fatality Ratios and Time to Death. Findings

indicate that current COVID19 confirmed positive counts represent a small fraction of

actual cases, and that even relatively effective surveillance regimes fail to identify all

infectious individuals. We further demonstrate that the miscount also distorts officials’

ability to discern the peak of an epidemic, confounding efforts to assess the efficacy of

various interventions.

Keywords: COVID19, Monte - carlo method, epidemiology, SARS - CoV-2, social distancing

INTRODUCTION

Over 26 million people have been confirmed to be infected by COVID19 with over 864,000 dead
as of 1 September, 2020, according to Johns Hopkins University’s Coronavirus Research Center
(Dong et al., 2020). National and local governments rely on forecasts and models to make decisions
about interventions to slow the spread of the disease and prevent deaths. There are two broad
classes of models used for this purpose, empirical, and mechanistic models. Empirical models fit a
response surface to a dependent variable or multiple-response objective function using multiple
input variables. The Institute for Health Metrics and Evaluation COVID19 model is probably
the most popular and most accurate empirical model for COVID19 (Institute for Health Metrics
Evaluation (IHME), 2020).While empirical models can provide accurate forecasts in the short term,
there are several drawbacks to this approach. Empirical models can be overfit, where input variables
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are highly correlated or spurious. These models are also
based on current observed conditions and may not be
accurate past observed data or if the underlying conditions
change. Mechanistic models are mathematical descriptions of a
phenomenon or process based on an understanding or theory
of how a system behaves, in which the structure of the model
restricts the shape of the potential response surface. They are
also easily parameterized in terms of behaviors that affect the
reproductive rate of the disease, therefore lending themselves
to the modeling of public health scenarios. However, they are
generally very sensitive to variations in initial conditions, making
the accurate estimation of those conditions a critical task in
building useful models.

One of the most nettlesome challenges for researchers seeking
to model the COVID19 epidemic is the poor quality of data
on the number of COVID19 infections. This is likely due to a
combination of factors, such as the novel nature of the disease,
the lack of adequate testing, and the prevalence of asymptomatic
cases. For example, we use publicly available data from the Johns
Hopkins University Coronavirus Resource Center (Dong et al.,
2020). As of 1 September, their raw data suggests a fatality rate of
over 3.3%, which is inconsistent with numerous clinical studies
on the disease. Several studies have shown that there is a large
number of people who are infected with COVID19 yet show
no symptoms and many not even be aware that they have been
infected (Day, 2020; Hu et al., 2020; Kimball, 2020; Lavezzo et al.,
2020; Mizumoto et al., 2020). In addition, many of those infected
may not seek medical treatment either because symptoms are
not severe or fear of exposing themselves to COVID19 infected
patients. These factorsmake it very difficult for epidemiologists to

FIGURE 1 | Impact of underestimated case count in an SIR epidemic model. Green indicates correct count for initial condition. Red indicates undercount. All other

factors held constant.

understand accurate initial conditions needed for many epidemic
models of disease propagation.

Of all the data available on COVID19 infections, we posit
that the number of deaths per day is a more accurate source
for estimating the number of infections. We assume that when
a person dies, their death is recorded, and that the cause is
attributed to COVID19 with reasonable accuracy. “Reasonable
accuracy” in this case may be within +/50%, as most states are
simultaneously recording increases in all-cause mortality that
exceed recorded COVID19 deaths by a wide margin. There
is speculation that some patients with pre-existing conditions,
exacerbated by COVID19 are included, or that some patients
with COVID19 have their cause of death attributed to non-
COVID issues, such as pneumonia or COPD (Li et al., 2020).
Nevertheless, we assert that the death counts are much more
accurate than confirmed case counts, which fail to reflect the
majority of COVID cases.

An accurate estimate of those infected is important for
policy decisions. Perhaps the most important reason is that
the assumption that the fraction of the population infected
directly impacts the estimates of disease duration. Figure 1

displays a notional susceptible-infected-recovered (SIR) model
assuming a transmission rate of 0.5 and recovery period of
5 days. The two lines differ only in the initial condition of
the fraction of the population infected, where the green line
estimates 10 times as many people are infected as the red line.
The infection cycle peaks and expires 46 days sooner when we
assume 10 times more people are initially infected. Therefore,
it is very important for policy makers and epidemiologists to
have a more accurate understanding of true infection counts in
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order to effectively model the epidemic cycle and derive more
realistic expectations of when the disease has reached its peak
and subsided.

This paper is organized as follows. The method section
proposes a novel method to estimate the true number of infected
cases using reported death data, parameters derived from clinical
literature, and the application of Monte Carlo simulation.
The results section provides results for New York State for
expository purposes. Similar findings exist for all U.S. states.
The discussion section provides insights and considerations for
policy makers. This method provides an approach to correct
significant under-reporting in confirmed COVID19 cases, which
has major implications for policy decisions affecting the lifting
of social distancing measures and reopening major local and
global economies.

METHOD

The proposed approach is conceptually simple: estimate
the number of cases each death represents using infection
fatality ratios (IFR) derived from clinical literature, then

estimate the delay between infection and death using time-
to-death (TTD) distributions derived from the same sources.
Uncertainty is estimated by performing Monte Carlo (MC)
draws from the two distributions and identifying the median
and 95% confidence interval. Note that the uncertainty
estimates derived from this process reflect the uncertainty
in the distribution parameters, not the likely undercount of
COVID19 deaths.

We obtain estimates of IFR, which analyzed the Wuhan and
Diamond Princess outbreaks, respectively (Russell et al., 2020;
Verity et al., 2020). Verity et al. (2020) estimates an IFR of
0.66% with a 95% confidence interval [0.389, 1.33]. The same
paper estimated the mean TTD as 17.8 days. Russell et al.
(2020) estimated an IFR of 1.3% on the 95% confidence interval
[0.38, 3.6].

COVID-19’s documented tendency to produce highly
infectious but nonetheless asymptomatic individuals poses a
unique challenge for public health officials attempting to perform
disease surveillance. A recent community testing program in the
Italian municipality of Vo, Italy revealed that 42.5% of infected
individuals exhibited no symptoms (Lavezzo et al., 2020). We
use the 42.5% asymptomatic figure to estimate the number of

FIGURE 2 | Daily Count of New Infections, New York state. Blue line is the maximum-likelihood estimate of new symptomatic infections. Black circles are observed

cases counts.
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individuals who are likely to be detected via testing of people
exhibiting symptoms. Comparison between the uncertainty
range of symptomatic cases and observed case counts provides
a measure of how well public health officials are able to detect
the progression of a COVID outbreak. The symptomatic fraction
is presumably the most suitable data series to compare with
case count data, as people are far more likely to interact with
the medical system when they feel sick. The same study also
found that the viral load of SARS-Cov-2 was not significantly
different for the asymptomatic and symptomatic populations
(Lavezzo et al., 2020). Researchers have attempted to model the
asymptomatic population as a separate compartment (Arenas
et al., 2020). However, new evidence suggests that the viral
load of the asymptomatic population isn’t significantly different
from the symptomatic population (Lavezzo et al., 2020; Zou
et al., 2020). This validates the utility of our method in that a
researcher seeking to model the future evolution of the disease
with a traditional mechanistic model can do so with a single
infectious compartment and use the prevalence data stemming
from this technique for initial conditions.

Our analysis accounts for the uncertainty in the literature-
estimated parameters by treating them as distributions to sample

from. For each MC draw, we assign a value of IFR by sampling
from the log-normal distribution

IFR = lnN (1,µ, σ )

where µ and σ are the log of the mean and standard deviation of
the distribution.

We use the IFR to assign a number of imputed infections to
each death. We estimated the number of daily infections Id as,

Id = 1/IFR∗Dd

where IFR is a percentage and Dd are the daily number of
deaths, respectively.

Having estimated the number of infections represented by
each death, we now model the time it took for each person to die,
and thereby simulate the likely date of infection for each case:

lagsd = lnN (Id, δµ, δσ )

lagsd is a vector containing the number of days in the past each
infection represented by Id began, and δµ and δσ are the log of
the mean and standard deviation of time to death, respectively.

FIGURE 3 | Daily Cumulative Infection count, New York state. Blue line is the maximum-likelihood estimate of daily new infections. Black circles are observed cases

counts.
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For each MC run, we convert the lags into a list of dates,
then count the number of cases per date. We then perform 500
MC runs, and summarize the results by identifying the median,
2.5th percentile, and 97.5th percentile values of new infections
each day.

This method is validated by a recent serology survey from
New York state. The survey developed a baseline infection rate
by testing 15,000 people at grocery stores and community centers
across the state over the last 2 weeks of April 2020 (New York
Press Office, 2020). Of those tested, 11.5% of women tested
positive, compared to 13.1% for men, or a 12.3% total population
infection rate.

This paper does not consider age or socioeconomic strata
as inputs to our analysis, though it would be conceptually
straightforward to do so, provided sufficiently granular data.
A researcher possessing IFR estimates, case counts, and death
counts for each proposed stratum could repeat our analysis and
aggregate the results for any given region of interest. Similarly, it
may be possible to refine our results by examining discrepancies
in the administration of death records and attempting to correct
them. While these are potentially worthwhile avenues for further
research, they are beyond the scope of this paper.

RESULTS

We estimated infections for all 50 states and Washington,
D.C. For expository purpose, we present the results for
New York state using IFR estimates from the Diamond
Princess of 1.3%. In Figure 2, we present our estimate of
daily new symptomatic cases overlaid with observed case
counts. Based on this comparison, we assert that COVID
cases in New York are systematically undercounted, as
shown below.

Figure 2, shows that New York state failed to detect the
majority of symptomatic COVID cases until mid-April 2020—
after the peak of the epidemic had passed. We further calculate
that the true incidence of COVID in New York is cumulative
infected population as of early May is over 2 million people,
which is ∼11% of New York residents, as shown below in
Figure 3.

This finding can be validated with recent serology reports
from New York. Serology reports from surveillance testing in
New York City found that 12.3% of residents tested positive for
COVID-19 antibodies as of early May, suggesting they had been
infected with the virus (New York Press Office, 2020). The mean

FIGURE 4 | Relationship between estimated active infections (blue line), and active infections derived from the Johns Hopkins COVID19 site (black circles).
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FIGURE 5 | Observed Percentage of Estimates Reflected in Official Case Counts, New York state.

estimate of COVID19 cases is much closer to the extrapolated
serology estimate than the reported confirmed positive case count
of 1.8% of the population.

Undercounting those infected with the COVID19 virus affects
the projection of when the disease will run its course and expire.
Figure 4 displays the estimated mean daily infections using the
proposed method with the daily infections derived from the
Johns Hopkins University COVID19 site (Dong et al., 2020).
It can be seen that the disease likely peaked much earlier than
previously thought. Noting that while newly infected people peak
in late March, most people report actively infected individuals,
which peaks in early April. Regardless, the proposed method
makes observation of the peak easier and the behavior of the
epidemic clearer.

JHU case counts are reported as a cumulative data series.
Thus, to observe the epidemic peak wemustmake assumptions to
arrive at a prevalence curve. To calculate active cases ca(t) on day
t we must make an approximation from the cumulative reported
cases cr(t). We let γ represent the probability per day that an
individual will recover from the virus. By inverting this metric
we assert that it takes 1

γ
days for an individual to recover from

the virus and no longer be counted as an active case. To calculate
ca(t) we sum over the new daily cases starting from 1

γ
days into

the past from the date for which we seek an active case count.

ca(t) =

t∑

i=t−( 1
γ
)

cr(i+ 1)− cr(i)

Below we illustrate the mismatch between active cases as
generated from our approach vs. what is being reported.

The proposed method of back estimating COVID19 cases
from reported deaths provides additional insight into the
accuracy of reporting. Figure 5 displays the percentage of
estimated true cases that were reported in the Johns Hopkins
COVID19 tracking site. It can be seen that the reporting
improves significantly over time, which is expected given the
media attention and public awareness the virus has received.

INTERNATIONAL EXAMPLES

The above exercise was repeated for four notable
international cases:

1. Mainland China, where the COVID outbreak originated and
which observed a rapid dropoff in cases soon after the
outbreak began;
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Mainland China

Italy
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Germany

Egypt
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1. Italy, which suffered the worst initial outbreak in the Western
world (albeit soon superseded by the United States);

2. Germany, which seemingly suffered far fewer deaths than
would be expected from its case totals; and,

3. Egypt, where the official infection rate appears
disproportionately low for the population.

DISCUSSION

New York
Three features stand out in the estimated data series. First, our
analysis suggests over 2 million residents of New York state
had been infected by the novel coronavirus as of 1 May, a far
higher figure than estimates derived from confirmed case counts.
Second, the observed peak of estimated infected people occurs in
early April, several weeks earlier than case counts suggest. Third,
the percentage of cases identified by confirmed case counts is a
small and highly variable fraction of the total number of Infected.

New York state has a population of ∼19.5 million people;
therefore, our analysis suggests that between 4 and 29 percent
of New York residents were infected by early May, with a
most likely estimate of 11 percent. This estimate is validated
by recent serology reporting from New York. Using the
estimated COVID19 cases from the proposed method in
epidemiology models, the behavior of the disease propagation
is better explained, further suggesting estimation is preferred to
confirmed case counts.

The observed poor agreement between confirmed case counts
and our results was expected and is not especially troubling, in
our view. Because COVID19 is a novel disease which has only
recently been observed in humans, and because of widespread
testing shortages, it is highly likely that the beginning of the
outbreak in New York escaped detection altogether. It therefore
makes intuitive sense that the observed percentage of cases
would start at 0 and rise rapidly. Furthermore, unobserved early
infections plausibly explain why our efforts to estimate for the
reproduction rate Rt , yielded non-sensically high estimates in the
early phase of the outbreak.

International Examples
The international examples considered in this paper reflect many
of the same findings seen in New York state. Similar to New York,
our estimates of COVID incidence in Mainland China, Italy,
Germany, and Egypt indicate that the outbreaks in each country
peaked before daily case counts would indicate. Additionally, the
attack rate of the virus appears to be far higher in each example
than could be derived from naïve case counts.

Additionally, our analysis of the international cases offers
hints as to the resolutions to some of the seeming paradoxes
found in their data. The Chinese data, for example, suggests that
the epidemic had already peaked by the time case counts began
to be formally recorded, which if true would neatly explain why
Chinese cases dropped so precipitously.

Germany’s COVID surveillance appears to have been the most
rigorous of the countries we studied, as observed cases approach
our maximum-likelihood estimate of symptomatic individuals.
This conclusion is reinforced by the timing of the epidemic

peak, which matches our estimates closely. The close agreement
of observed and inferred case counts from Germany suggest
that Germany is not actually uniquely successful at treating
COVID patients, but rather that it detected the largest fraction
of symptomatic cases.

Finally, Egypt and Italy appear to be more successful than the
New York or China at detecting a representative fraction of true
symptomatic COVID cases, but less successful than Germany.

CONCLUSIONS

The implications of our findings are striking:

• First, it appears that lockdowns and/or individual decisions to
socially distance produced a marked decline in new infections,
as was the intended effect. New York does not appear to
have achieved herd immunity to COVID19, although the large
infected percentagemay act as a headwind to further outbreaks
there. Other states will likely benefit less from reduced
population susceptibility, as New York had the United States’
most severe outbreak to date.

• Second, the relationship between observed case counts and the
true number of infections is so tenuous as to be useless for
predicting or observing the trends in the true infection rate.

• Third, infections appear to have peaked earlier in all cases
than case count data would imply. Furthermore, the level
of agreement between the observed and inferred peaks in
cases is an important clue as to the success of a state’s
disease surveillance regime—the closer the agreement, the
more complete the surveillance of symptomatic cases.

Lastly, our approach has application beyond COVID19
and epidemic modeling. There are many big data problems
that have issues with data quality and are similar to the
COVID19 data problem. The data is drawn from and owned
by many different, independent groups, with different data
standards, platforms, motives, and restrictions. There are
privacy and security considerations. Data ownership is not
clear, and governance cannot be enforced. The proposed
approach uses the most reliable data source available, findings
from controlled or clinical studies, and well-understood
mechanistic models to estimate the data from sources with
poor quality. Identified differences can be used to direct
cost-effective studies to validate modeled findings. In this
manner, some data quality issues may be overcome and allow
more effective modeling to inform situational awareness and
decision support.
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