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Understanding collective behavior in both biological and social contexts,

such as human interactions on dance floors, is a growing field of interest.

Spatiotemporal dynamics of collective behavior have previously been modeled,

for instance, with swarmalators, which are dynamical units that exhibit both

swarming behavior and synchronization, combining spatial movement and

entrainment. In our current study, we have expanded the swarmalator concept

to encompass gaze direction as a representation of visual attention. We

employ the newly developed directional swarmalator model for simulating

the complex spatiotemporal dynamics observed on dance floors. Our model

aims to reflect the complex dynamics of collective movement, as well as

rhythmic synchronization and gaze alignment. It establishes a quantitative

framework to dissect how individuals on dance floors self-organize and

generate emergent patterns in response to both musical stimuli and visual

perception of other dancers. The inclusion of gaze direction allows for the

simulation of realistic scenarios on dance floors, mirroring the dynamic interplay

of human movement in rhythm-driven environments. The model is initially

tested against motion capture recordings of two groups dancing in a silent

disco, however, it is theoretically adaptable to a variety of scenarios, including

varying group sizes, adjustable degrees of auditory and visual coupling, as

well as modifiable interaction ranges, making it a generic tool for exploring

collective behavior in musical settings. The development of the directional

swarmalator model contributes to understanding social dynamics in shared

music and dance experiences.

KEYWORDS
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1 Introduction

Humans display a wide array of coordination behaviors of varying complexity.
Collaborative work, sports, music, and dance all require interpersonal coordination
to perform successfully, whether coordinating through behavior matching (imitation)
or through behavioral synchrony and rhythmic entrainment (Bernieri and Rosenthal,
1991). A lot of joint action research has focused on simple, dyadic interactions.
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These are relatively easy to study in the lab, with two participants
coordinating on a task, such as rowing, drumming, tapping, or
dancing (Cuijpers et al., 2015; Dotov et al., 2022). In these instances,
relatively simple measures of synchrony (e.g., cross-correlation)
may be used to assess the extent of coordination. However, real
social interactions are often more complex than two people moving
in synchrony, and may involve large groups of people, which
requires more complex means of modeling social dynamics.

According to McMahon and Isik (2023), there are three social
primitives to any social interaction: contingent motion, distance,
and facingness. These are the basic visual features that one may
observe to determine the extent to which any two or more agents
are interacting, and all three have been used to measure social
interactions in dance.

Previous dance research has examined each of these
social primitives. For example, contingent motion, often
operationalized as a form of synchrony (Hartmann
et al., 2023), has been found to predict perceived
similarity between the dancers (Hartmann et al., 2019).
Interpersonal distance has been measured as a proxy
for social affiliation on the dance floor (Bamford et al.,
2023). Finally, facingness, whether measured through
head or torso orientation relative to other dancers, has
been used to predict perceived interaction (Hartmann
et al., 2019), or as a measure of social attention
(Bamford et al., 2023; Woolhouse and Lai, 2014).

Dance provides a useful platform for studying large-scale,
coordination dynamics. Although there are many examples of
partner dances (Kaminsky, 2020), dance is often performed
in groups in many cultures (Brown, 2022). However, most
of these previous studies have focused on dyadic interactions
or, in some cases, very small groups with limited spatial
movement. Agent based modeling is a useful way of understanding
complex behavior in humans and other animals, and some
existing models may be applied to studying dance as a dynamic
system.

Existing models have been used to study swarming behavior
in birds, bees and other organisms. Collective behavior between
individuals in a swarm can produce an emergent superorganism.
For instance, Okubo (1986) model can be used to simulate a flock of
birds (Reynolds et al., 2022). Models such as this may simulate the
translational movement dynamics of individuals within a collective,
however, they do not include the oscillatory dynamics featured in
dance movements.

Other models have been used to study the behavior of
two or more oscillators. The Kuramoto model describes the
behavior of coupled oscillators, such that when there is sufficient
coupling strength synchrony spontaneously emerges (Acebrón
et al., 2005). This has since been applied to a wide range of
biological phenomena, such as frogs chorusing (Aihara et al.,
2008) and humans clapping at a concert (Néda et al., 2000).
Another is the Haken-Kelso-Bunz (HKB) model, which was
developed for modeling intraindividual synchrony between limbs,
but has since been extended to interpersonal synchrony, and is
notable for accommodating asymmetry, i.e., antiphase synchrony
is treated as a stable state in the HKB model (Kelso, 2021).
One other example, the ADaptation and Anticipation Model
(ADAM), aims to simulate synchrony between individuals, while
also modeling the internal adaptation and anticipation processes

required for sensorimotor synchronization (SMS) in humans
(Van Der Steen and Keller, 2013). This makes ADAM more specific
to modeling the interactions between agents with human-like SMS
abilities, while the Kuromoto and HKB models are suitable for
any interactions between coupled oscillators. However, all of these
models are limited to oscillatory dynamics.

Social interactions on the dancefloor involve both oscillation
within and between individuals, as well as movement or
spatial translation across the dancefloor, and directed attention.
Swarmalators provide a potential solution to incorporate the
oscillatory and translational dynamics into a single model (O’Keeffe
et al., 2017). Each agent within the model is both an oscillator
and a member of a swarm, which enables the study of contingent
motion and interagent distance, as two social primitives. However,
swarmalators still neglect the “facingness” component of any social
interaction between humans.

Humans do not have an infinite attentional capacity, nor do
they have eyes on the back of their head. Wirth et al. (2023)
highlight the importance of visual heading in collective dynamics,
emphasizing that the neighbourhood of interaction in human
crowds is best explained by a visual model, where interactions are
governed by optical motions and the visibility of neighbors. Keller
(2023) in his theoretical model of ensemble coordination proposes
three abilities that are required for SMS: attention, anticipation,
and adaptation. Anticipation and adaptation are built into ADAM
as discussed above (Van Der Steen and Keller, 2013), however,
attention has not been incorporated. Similarly, swarmalators, in
their current form, assume 360◦ vision (O’Keeffe et al., 2017), which
limits their applicability to humans interacting on a dance floor,
in which the orientation of dancers is crucial to their successful
coordination (Bamford et al., 2023).

The novel solution developed in this paper is to introduce
a directional swarmalator model. This maintains the oscillatory
and translational dynamics of typical swarmalators (O’Keeffe et al.,
2017), but also includes rotational dynamics, acknowledging the
role of “facingness” in a social interaction. Each agent oscillates,
can move around in a defined space, and can also change the
orientation of its gaze. In addition, within this model, there is
an external driving oscillation to which the agents are entrained.
Within the model specified below, agents will be attracted to others
that oscillate with a beat aligned to their own, and attraction can
happen through both moving toward a target, and rotating to
face it. An agent may also become entrained to other agents in
the space, but only those within its field-of-view. Consequently,
directional swarmalators offer an opportunity to study all three
social primitives in large groups of dancers.

This paper specifies the directional swarmalator model with
its three dynamics: translation, rotation, and oscillation. It then
outlines measurements for each of these dynamics.

As circles are common formations in many dance cultures
worldwide (Chauvigné et al., 2019; Sachs, 1965), we developed
measures of self-organization to quantify the degree of circularity
within the group, as well as centroidal alignment—the extent
to which all group members were oriented toward the group’s
midpoint. Finally, a phase coherence measure was used to
quantify phase locking between swarmalators. Results for each of
these measures were compared between simulated data from the
directional swarmalator model, and real-world motion capture data
from a silent disco.
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2 Directional swarmalator model

Let the swarm consist of swarmalators sj, j = 1, ..., N. The
instantaneous state of sj is defined by five state variables. These are
the position xj ∈ R2, oscillation phase θj, azimuth of gaze direction
δj, spontaneous oscillation frequency ωi, and phase of external
stimulus ϕ j.

For future purposes, we define the proximity between si
and sj as the inverse of their mutual Euclidean distance,
wjk : = 1/

∣∣xj − xk
∣∣.

2.1 Translational dynamics

The translational dynamics of the model comprise three
parts, those of global attraction, repulsion, and phase-and-gaze-
dependent attraction. Consequently, the instantaneous velocity
of sj, denoted by ẋj, consists of three components. First, overall
attraction component constraints its distance from the origin, and
is defined by

ẋAj = − Axj
∣∣xj
∣∣a−1 (1)

Here A determines the strength of attraction and a defines its
degree of exponential increase with distance. Second, the repulsion
component prevents si from coalescing with other swarmalators,
and is defined by

ẋRj = −
R
N

∑
k 6= j

wr
kj
(
xk − xj

)
/
∣∣xk − xj

∣∣ (2)

Here R determines the overall strength of repulsion and the spatial
decay exponent r dictates how the force or interaction decays with
increasing distance to another swarmalators.

Third, phase-and-gaze-dependent spatial coupling is defined by

ẋPj =
P
N

∑
k 6= j

wp
kj�(θk − θj)ϒ(αkj−δj)

(
xk − xj

)
/
∣∣xk − xj

∣∣ (3)

where P and p determine the strength and spatial decay of the
interaction, respectively, � denotes the phase coupling function, ϒ
the gaze coupling function, and αkj : = 6

(
xk − xj

)
the azimuth

angle of the vector pointing from sj to sk. The phase and gaze
coupling functions should be defined so that sj is maximally
attracted by sk when the two are similar in phase, and the gaze of
sj is pointing toward sk. In the present instance of the model, we
define the phase coupling function to be

� (θ) =
1+ cos(θ)

2
(4)

Similarly, in the present instance of the model we define the gaze
coupling function by

ϒ (θ) =

(
1+ cos(θ)

2

)c
/

∫ π

−π

(
1+ cos(θ)

2

)c
dθ (5)

Parameter c affects the width of the modeled visual field and
is referred to as constriction. The denominator in Eq. 5 is a
normalization parameter that makes the average value of ϒ

independent of c. The constriction parameter defines the width
of a swarmalator’s visual field, determining the angular region in

which interactions are strongest. Higher values of narrow the visual
field, making the swarmalator less sensitive to individuals outside
a forward-facing region. This models the limited visual attention
of real-world agents, such as dancers, who primarily interact with
those within their line of sight. See Figure 1 for an example of the
effect of constriction.

Finally, the total instantaneous velocity of si is defined as the
sum of the three previous terms:

ẋj = ẋAj+ẋRj+ẋPj. (6)

2.2 Rotational dynamics

The gaze direction of swarmalators is attracted by other
swarmalators, most strongly by those that are proximal and similar
in phase. Formally, the time derivative of the gaze direction of sj is
defined as

δ̇j =
D
N

∑
k 6= j

wd
kjϒ

′

(αkj−δj)�(θk − θj) (7)

Here D and d determine the strength and spatial decay of
rotational interaction, respectively, and ϒ

′

(θ) = dϒ
dθ

. Using the
gaze coupling function of Eq. (5), we get

ϒ
′

(θ) =
csin2

2

(
1+ cos(θ)

2

)c−1
(8)

2.3 Oscillatory dynamics

The oscillatory dynamics of si comprises three components:
spontaneous frequency, auditory entrainment to external stimulus,
and visual entrainment to other swarmalators. Spontaneous
frequency can, for instance, be drawn from a normal distribution
centered at a mean spontaneous moving rate, ωjN (µ, σ). The
auditory entrainment component is expressed by

θ̇αj = Usin(ϕj − θj) (9)

where U denotes the strength of auditory coupling and ϕj the phase
of the external stimulus.

Visual entrainment, in turn, is expressed by

θ̇Vj =
V
N

∑
k 6= j

wv
kjϒ(αkj−δj)sin(θk − θj) (10)

where V and v determine the strength and spatial decay of the
interaction. According to this equation, visual entrainment is
strongest to other swarmalators that are proximal and similar
in phase. Finally, the time derivative of the oscillation phase is
expressed as the sum of the three abovementioned terms:

θ̇j = ωj+θ̇αj+θ̇Vj (11)

3 Group-level measures of
self-organization

Swarmalators manifest self-organization in terms of their
location, direction, and oscillation phase. In the following, we
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FIGURE 1

Effect of constriction parameter c on the gaze coupling function. Front view is on the top of this figure.

propose measures that can be used to quantify the degree of self-
organization as a function of time in each of these three domains.
In settings where groups of swarmalators are fed with different
external stimuli, such as in a silent disco, all these measures can
be calculated on both global and group levels.

3.1 Translational self-organization

Circularity κ measures the degree to which the swarmalators
form a circular configuration, and is operationalized as standard
deviation of distances from group centroid:

κ = σ
(∣∣xj − 〈x〉

∣∣) (12)

where 〈x〉 = 1
N
∑

j xj denotes the position of the group mean.
The value κ = 0 indicates that the swarmalators are organized in
a perfect circle.

Grouping coefficient ρ measures the extent to which
swarmalators driven by the same stimulus are grouped together. It
is operationalized as the intracluster correlation coefficient

ρ =
σ2

b
σ2

b + σ2
w

(13)

where σ2
b and σ2

w are the between- and within-cluster variances,
respectively, and ranges between 0 and 1. A cluster is defined based

on the auditory stimulus received by each swarmalator, with each
unique stimulus corresponding to a distinct group.

3.2 Rotational self-organization

Gaze locking coefficient γ measures the degree to which
swarmalators are facing at each other. It is defined by

γ =
1

N(N − 1)

∑
k 6= j

cos(αkj−δj) (14)

and ranges between−1 and 1.
Centroidal alignment χ measures the degree to which

swarmalators are facing at the group centroid, and is defined by

χ =
1
N

∑
j

cos(εj−δj) (15)

where εj denotes the azimuth angle from xj to 〈x〉,
εj : = 6

(
〈x〉 − xj

)
. Again, χ ranges between -1 and 1.

3.3 Oscillatory self-organization

Phase coherence R measures the degree of phase locking
between the swarmalators, and is calculated as the norm of the
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Kuramoto order parameter

R =
1
N

∣∣∣∣∣
N∑

i = 1

eiθi

∣∣∣∣∣ (16)

To measure local phase coherence, we first define the individual
local phase coherence of swarmalator j by

Rσ
j : =

∣∣∣∑k Kσ
jkeiθk

∣∣∣∑
k Kσ

jk
(17)

where
Kσ

jk : = e−|xj−xk|
2
/2σ2

(18)

is the spatial kernel and σ the kernel width. The index Rσ
j thus

weights the contribution of each swarmalator so that the weight
decreases with increasing distance, and the value of σ determines
the degree of locality in the measure. Subsequently, the local phase
coherence Rσ is calculated as the mean of Rσ

j across all swarmalators:

Rσ
: =

1
N

∑
j

Rσ
j (19)

It is straightforward to see that when σ increases, Rσ approaches the
global phase synchronization measure:

lim
σ→∞

Rσ
= R (20)

4 Estimating state parameters from
empirical data

When the participants in a silent disco experiment have been
motion-captured with, for instance, two markers on the head,
achieving the position and gaze direction is straightforward. As
regards the oscillation phase, it has been found in several studies
that in spontaneous dance the vertical velocity of the head tends
to be synchronized to the tactus-level beat of music (Toiviainen
et al., 2010, Toiviainen and Carlson, 2022, Burger et al., 2014).
Consequently, the oscillation phase θi can be estimated from the
vertical velocity component of head marker, ẋiZ , by means of the
analytical signal using

θi = 6 (ẋiZ + iH(ẋiZ)) (21)

where 6 denotes the argument (direction angle in complex plane),
and H the Hilbert transform.

5 Simulations

5.1 Silent disco experiment

A silent disco was organized in an optical motion capture lab.
Twelve participants (11 females, mean age = 22.9, SD = 1.83) were
outfitted with silent disco headsets (Silent Disco King),1 which had
been fitted with reflective markers.

1 https://www.silentdiscoking.com/equipment

The participants were asked to move in 20 conditions while
listening to either metronome sequences or excerpts of real
music stimuli through the silent disco headsets, however, only
two were included in the current analysis due to their relevance
for testing the directional swarmalator model. The first eight
conditions involved participants bouncing to auditory stimuli
(metronome or music) with varying phase or frequency shifts,
without any specific instructions about grouping. The next eight
conditions instructed participants to form groups based on visual
information while listening to the same types of stimuli. In the final
four conditions, participants were asked to dance freely without
specific instructions. The sequence of conditions was randomized
to minimize order effects. Each condition was motion-captured
using the Qualisys Oqus cameras, capturing the movements of the
markers affixed to the headsets at 120◦Hz.

Recruitment was conducted via advertisements to Musicology
and Music Education student associations at the University of
Jyväskylä, and all participants were students of the Department
of Music, Arts and Culture Studies. The study complied
with ethical standards, including approval from the university’s
ethical review board.

In the conditions included in the present paper, the participants
were randomly put into two different groups (Group 1 and Group
2). Group 1 heard the original version of the auditory stimuli, while
Group 2 heard the stimuli with either a phase difference (90◦ or
180◦) or a frequency difference (sped up) version of the stimuli.
The groups were identified according to the number of markers
affixed to the headsets (Group 1 headsets had three markers on
the left side, while Group 2 headsets had two markers on the left
side). A “dummy” marker was placed on the left side of the Group
2 markers so the participants would not be able to discern which
group they were in Figure 2.

The instructions given during the conditions were either to
move freely or bounce to the auditory stimuli’s main beat (tactus).
Moving freely was instructed as being dance-like movements and
bouncing was defined as vertical movement caused primarily by
knee flexions and extensions. In some conditions participants were
tasked with finding members of their groups by identifying similar
or synchronous movements. Visual inspection of the motion
capture data revealed that the groups swarmed more easily in the
bouncing conditions than those where they were dancing.

For the sake of the current study’s modeling focus, four
bouncing conditions are selected for analysis: Metronome 120 BPM
with 90◦ and 180◦ phase shifts, and two musical excerpts (Girls
and Boys by Blur with a 90◦ and Bad Romance by Lady Gaga with
a 180◦ phase shift). The musical stimuli were time stretched to
have a bpm of 120.

5.2 Model optimization

5.2.1 Parameters to be optimized
We used the motion capture data collected in the silent disco

experiment described above to perform parameter fitting for our
swarmalator model. The primary goal of this fitting was to align
the final configurations of the swarmalators after one minute of
simulation with the observed configurations from the silent disco
data as closely as possible. Due to the complexity of the model and
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FIGURE 2

Headphones with reflective markers. Group 2 pictured on the right with the dummy marker. The top row shows the markers under normal lighting
conditions, as they appeared to the participants.

the limited amount of empirical data available, we constrained our
optimization efforts to only two parameters while maintaining fixed
values for the rest.

Particularly, since the rotational dynamics represent a novel
aspect of this model, we focused our optimization on parameters
that directly influence this dynamic: gaze attraction strength and
the constriction parameter, which affects the width of the modeled
visual field. These parameters are crucial for accurately modeling
how individual swarmalators adjust their gaze direction based on
the positions and orientations of nearby peers, a key behavior
observed in dance settings.

The fixed parameter values were adjusted to ensure that the
mean distance between the swarmalators closely mirrored the
trajectory observed in the empirical data from the silent disco
experiment. This process involved iterative testing and refinement
to achieve a dynamic alignment with real-world behavioral
patterns. Consequently, we used the fixed values indicated in
Table 1.

5.2.2 Optimization procedure
For the parameter optimization of our swarmalator model, we

utilized simulated annealing (Kirkpatrick et al., 1983), a robust
optimization technique particularly suited for handling complex

TABLE 1 Fixed parameter values used in the optimization.

Parameter name Fixed value

Attraction strength A = 0.1 s−1

Attraction range exponent a = 1

Repulsion strength R = 1.5 s−1

Repulsion decay exponent r = 2

Phase-and-gaze-dependent attraction strength P = 0.5 s−1

Spatial decay in phase-and-gaze coupling p = 1

Spatial decay in rotational dynamics d = 1

Auditory entrainment strength U = 0.8

Visual entrainment strength V = 0.4

Spatial decay in visual entrainment v = 1

Attraction strength A = 0.1 s−1

problems where the cost function may be non-continuous and
non-differentiable. This characteristic arises in our model due
to the inclusion of the grouping coefficient, which introduces
discontinuities in the cost function. Simulated annealing is ideal for
such scenarios as it effectively navigates the parameter landscape

Frontiers in Behavioral Neuroscience 06 frontiersin.org

https://doi.org/10.3389/fnbeh.2025.1534371
https://www.frontiersin.org/journals/behavioral-neuroscience
https://www.frontiersin.org/


fnbeh-19-1534371 February 1, 2025 Time: 11:48 # 7

Toiviainen et al. 10.3389/fnbeh.2025.1534371

to find global optima, avoiding local minima that are common
with more traditional gradient-based optimization methods. The
optimization was implemented using MATLAB’s simulannealbnd()
function.

Each of the four datasets from the silent disco experiment
was used to set the initial configuration of the swarmalators,
including both their positions and gaze directions. Following this
initialization, we simulated the dynamics of the swarmalators for
1 min to observe the evolution of their configurations. In the
simulations the phase of the external stimulus, ϕj, was set to be
equal to the phase of the beat of the musical stimulus the respective
participant was presented with. The differential equations were
numerically simulated using the Euler method with a time step
of 1/120 second.

To assess the alignment between our simulated swarmalator
configurations and the empirical data from the silent disco settings,
we developed a composite error measure that included:

1. The spatial variance of positions, reflecting the group size,
2. The grouping coefficient, gauging the extent to which

swarmalators influenced by similar stimuli grouped together,
3. The centroidal alignment, measuring the orientation of

swarmalators toward the group’s centroid.

For each dataset, this error measure was calculated as the
sum of the absolute differences between these three components
in the empirical silent disco data and the simulated swarmalator
configurations at the end of one minute. It is to be noted that for the
sake of simplicity, we did not consider any measures of oscillatory
self-organization in this simulation. However, with the parameter
values used in the simulations, each swarmalator was accurately
synchronized with its respective driving oscillation.

5.2.3 Results of optimization
The optimization process identified that the parameter values

for constriction (c = 0.252) and gaze attraction strength (g = 0.251)
resulted in the smallest error, effectively aligning the simulated
behaviors of the swarmalators with the observed dynamics at
the silent disco.

Figure 3 illustrates the error surface across the parameter range
[0,1] for both c and g. The visualization highlights the model’s
sensitivity to changes in these parameters. Notably, the constriction
parameter (c) has a more pronounced effect on the overall error
compared to the gaze attraction strength (g), indicating that the
width of the visual field modeled by constriction significantly
impacts the accuracy of the model. Comparisons show that the
model performs better with heading dynamics included (c > 0)
than without (c = 0), with error values of 1.60 and 1.81, respectively.

Figure 4 displays the dynamic evolution of the three metrics
used in the cost function—spatial variance, grouping coefficient,
and centroidal alignment—over the first minute averaged across
the four stimuli, using the optimal parameter values (c = 0.25
and g = 0.25). This visualization provides insights into how these
metrics, integral to assessing the model’s performance, change over
time under the influence of the identified optimal settings.

The figure shows that group size decreases sharply at the
outset before stabilizing, with the model closely mirroring the
empirical data but slightly underestimating the change of group

FIGURE 3

Error surface across the parameter range [0,1] for constriction (c)
and gaze attraction strength (g).

size over time. The grouping coefficient begins low, indicating
initial loose cohesion, and gradually increases; however, the
model’s response to this increase is smoother compared to
the empirical data. Centroidal alignment exhibits considerable
fluctuation with an overall downward trend, suggesting a
gradual reduction in central alignment, with the empirical data
displaying greater variability than the model’s more uniform
decline. These observations suggest that while the model captures
the general trends in group behaviors effectively, its dynamics
unfold slower than those observed in human interactions,
highlighting a need for refining the model’s responsiveness
to more accurately simulate the quick adjustments seen in
real human behavior.

Figure 5 shows the temporal evolution of the three metrics
separately for each of the four stimuli. As can be seen, there are
some differences in the model’s accuracy between the stimuli. This
is most notable for the second stimulus (Girls and Boys, phase shift
180◦). In particular, for this stimulus the evolution of Grouping
coefficient, while being of similar magnitude at the end of the 60-s
interval, follows a more constant increase for the model than for
the humans. Centroidal alignment for this stimulus, on the other
hand, remains smoother and more stable in the model, while the
human data shows greater fluctuation and a gradual decrease over
time. This difference suggests that the model lacks the flexibility to
capture the dynamic reorientations and variability seen in human
behavior.

6 Discussion

The directional swarmalator model presented here may be
useful in understanding how people coordinate on the social
dance floor. By combining oscillatory, translational and rotational
dynamics, it provides a model of group dynamics during dance.
Crucially this enables the study of larger groups of dancers,
going beyond dyadic interaction. In validating the model, we have
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FIGURE 4

The temporal evolution of three key metrics—group size, grouping coefficient, and centroidal alignment—over a 1-min period averaged across the
four stimuli. The blue lines represent empirical data from the silent disco experiment, while the red lines depict the corresponding metrics from the
swarmalator model simulations.

FIGURE 5

The temporal evolution of three key metrics—group size, grouping coefficient, and centroidal alignment—over a 1-min period for each of the four
stimuli. The blue lines represent empirical data from the silent disco experiment, while the red lines depict the corresponding metrics from the
swarmalator model simulations.

also developed metrics for measuring circularity and centroidal
alignment that may be useful in future research.

Through the inclusion of directionality in the swarmalator
model, circular shapes tended to form between agents. Circles are
common in many dance cultures around the world (Chauvigné
et al., 2019; Sachs, 1965), and this may be for anatomical
reasons due to the frontal placement of the human eye.
In our directional swarmalator model, optimizing the gaze
constriction parameter was vital. In this instance, a fairly wide

gaze was found to be optimal. Previous studies have found
that the horizontal field of view in humans is about 210
degrees (Strasburger, 2020), which approximates our findings
within the model, although the gaze strength gradient may not
perfectly reflect human data. Additionally, comparisons using our
error measure indicate that the model performs slightly better
when heading dynamics are included, further emphasizing the
importance of gaze direction in accurately modeling collective
behavior.
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Although the current model approximates human behavior,
there are some limitations. The most notable issue is that these
directional swarmalators are too smooth in their movement. They
tend to drift gradually toward an identified target, while the
humans are more erratic in their motion and in their visual
search behavior. This could be overcome by adding noise to the
gaze direction dynamic, in order to simulate searching behavior.
The directional swarmalator model is highly complex with many
parameters, and the optimization of parameters was done with a
very small dataset, which limits the generalizability of the model.
Currently only two parameters were optimized, due to limited
data availability. Collecting motion capture data with groups
is time-intensive, but more data would be required for better
optimization. The model could also be trained on a wider variety
of data, as the silent disco task was quite limited by design.
Participants were instructed to bounce, rather than dance, in order
to reduce noise in the oscillatory dynamics. A more complex
model may have been able to accommodate a wider variety of
individual motion, beyond vertical oscillation, but that would be
for future development.

The model could be further developed with a greater range
of data. The silent disco task used here was restrictive in its
instructions to bounce in time to the beat and to find a group.
Future studies could investigate the effect of these instructions,
for instance, whether participants behave differently if instructed
to attend to other features of the other participants, other
than their movement, or if they were instructed to sway rather
than bounce, for example. The auditory stimuli could also be
varied to investigate a wider variety of differences in timing or
quality of movement.

In theory, the model could be extended to other behaviors
beyond dance. Any situation where a group of agents form groups
based upon visual features would be eligible for modeling using
directional swarmalators. For instance, it could be used to study
group formation dynamics for conversations at a cocktail party.
Other features, other than phase matching, could be used as
markers of similarity, such as types of gesture or matching clothing.
Directional swarmalators may also be useful in modeling group
formation in non-human animals, depending upon the importance
of gaze direction. Existing swarmalator models do not account
for visual fields (O’Keeffe et al., 2017). For species that move in
three dimensions (e.g., schools of fish or flocks of birds) this would
require adding elevation to the gaze parameter. In any case, further
extensions could still be made for this model to better simulate
dance movement as well. Currently swarmalators are reactive,
rather than predictive, and anticipation of the beat is an important
process in human sensorimotor synchronization (Keller, 2023; Van
Der Steen and Keller, 2013). Adding an anticipation component
to the model may increase complexity but may improve the
dynamics. Overall, the directional swarmalator model presented
here provides a step toward better understanding the role of visual
attention on the dance floor, and potentially for other group
dynamics.
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