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Sensation seeking and risk
adjustment: the role of reward
sensitivity in dynamic risky
decisions
Yin Qianlan†, Chen Shou†, Hou Tianya, Dong Wei* and
Taosheng Liu*

Faculty of Psychology and Mental Health, Naval Medical University, Shanghai, China

Objective: The primary objective of our research is to delve into the relationships

between sensation seeking (SS), reward sensitivity (RS), and risk adjustment

(RA) within the context of dynamic risk-taking behaviors. By integrating the

reinforcement learning model and neural measures obtained from dynamic risk-

taking tasks, we aim to explore how these personality traits influence individual

decision-making processes and engagement in risk-related activities. We aim to

dissect the neural and cognitive mechanisms underlying this interplay, thereby

shedding light on the stable brain-based characteristics contributing to the

observed variability in risk-taking and decision-making behaviors. Understanding

these links could significantly enhance our ability to predict individual differences

in risk preferences and develop targeted interventions for managing risky

behaviors across different contexts.

Method: We developed a task to measure RA through a structured yet

uncertain environment modeled after the Balloon Analog Risk Task. We enlisted

80 young adults to perform this task, and of these, 40 were subjected to

electroencephalography (EEG) to assess neural correlates of RS. Subsequently,

we analyzed event-related potentials and spectral perturbations to discern

neural distinctions related to RS. We compared these distinctions concerning

RA among participants exhibiting different levels of SS.

Results: Individuals exhibiting higher levels of SS (HSS) in the study displayed a

tendency to disregard past risks, potentially resulting in diminished behavioral

adaptability. EEG results indicated that individuals with HSS exhibited reduced

neural responses to feedback compared to those with low SS, potentially

affecting their feedback processing and decision-making. Moreover, the

comparison of effects underscores the significant impact of RS and SS on

shaping RA during dynamic decision-making scenarios.

Conclusion: This study has advanced the understanding of how SS and

RS influence RA, revealing that RS prompts RA, while individuals with HSS

often exhibit blunted RS, leading to worse RA. Future research should focus
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on the specific aspects of HSS and their implications for decision-making

across different risk contexts. Employing advanced neuroimaging and cognitive

modeling techniques will be pivotal in unraveling the neural mechanisms driving

these individual differences in risky behavior.

KEYWORDS

sensation seeking, risk adjustment, reward sensitivity, risky decisions, cognitive model,
neural activity

1 Introduction

Sensation seeking (SS) denotes individual tendency to seek
diverse, new, intricate, and intense sensations and experiences,
along with a willingness to take risks across various life domains for
the sake of such experiences (Zuckerman, 2013). This characteristic
is linked to engaging in real-world risky behaviors and experimental
risky decisions. Some researchers have suggested that SS plays
a direct role in risky decision-making by being associated with
sensitivity toward reward during dynamic decision-making tasks
involving uncertain rewards (Bornovalova et al., 2009; Aven and
Renn, 2013). In scenarios involving risky decisions with uncertain
rewards, reward sensitivity (RS) is connected to the assessment of
particular rewards and may show variations in expectancy across
different risk levels (Neuser et al., 2020). Research has demonstrated
that SS can be both adaptive and maladaptive, depending on how it
manifests and interacts with other personality factors. High levels
of SS have been associated with various risk behaviors, including
substance use and problematic internet use (Chase and Ghane,
2023). Moreover, RS is significant in certain psychiatric disorders,
such as bipolar disorder and substance use disorders, which exhibit
elevated levels of RS (Whitton et al., 2015; Kim-Spoon et al., 2016).
Therefore, both SS and RS play a crucial role in the development of
behavioral disorders.

Psychologists differentiate between SS and RS in the context of
risky decision-making. SS is considered a stable personality trait,
reflecting individual differences in the propensity to seek novel
and intense experiences. RS, on the other hand, is viewed as a
more state-like characteristic, varying within individuals based on
their current motivational and emotional context (Fleeson and
Jayawickreme, 2015). Research findings demonstrate that both
aspects of personality contribute to molding individual disparities
in decision-making processes. Individuals with high SS (HSS)
tend to appraise risks lower than those with low SS (LSS). This
difference is attributed to HSS individuals temporarily attenuating
their attention to or sensitivity toward potential negative outcomes,

Abbreviations: BIT, Balloon Inflation Test; EEG, electroencephalography;
ERP, event-related potentials; ERS, event-related synchronization; ERSPs,
event-related spectral perturbations; FRN, feedback-related negativity; HSS,
high sensation seeking; KL, Kalman filter; LOOIC, leave-one-out information
criterion relative to the winning model; LSS, low sensation seeking; MCMC,
Markov Chain Monte Carlo; MSS, middle level of sensation seeking; PE,
prediction error; RL, reinforcement learning; RW-RL, the simple RL model
according to the Rescorla-Wagner learning rule; KL-RL, the RL model
with Kalman filter; RA, risk adjustment; RS, reward sensitivity; SS, sensation
seeking; SD, standard deviation.

while LSS individuals maintain a greater focus on potential losses
(Horvath and Zuckerman, 1993; Lauriola et al., 2014). RS is thought
to influence risk-taking by modulating the valuation of potential
rewards or the impact of feedback during learning (Smillie et al.,
2006). Hence, it could be understanded that SS may provide a stable
framework for predicting risk-taking tendencies, while RS allows
for a more nuanced understanding of how individuals may adjust
their behaviors based on immediate circumstances and feedback.
Importantly, they may be interconnected, such that RS could be a
mechanism by which SS influences risk-taking behaviors (Bianca
et al., 2023). However, limited empirical evidence exists for these
interconnections.

Reward sensitivity is commonly evaluated in dynamic decision-
making situations involving uncertain rewards and punishments,
where individuals’ choices impact their sequential risk-taking
behaviors. A key aspect of RS is reward responsivity, which refers
to an individual’s responsiveness to rewards (Ross, 1975). Lower
variation in reward responsivity corresponds to decreased RS
(DiMenichi and Tricomi, 2016). Moreover, reward responsivity
may influence individuals’ adjustment of their risk-taking behavior
in response to feedback, as individuals are more likely to repeat
rewarded actions and avoid unrewarded ones (Harmon et al., 2021;
Lee et al., 2021; Markanday and Galarraga, 2021). The process
by which individuals modify their risk-taking behavior based on
feedback is also referred to risk adjustment (RA) (Iezzoni, 1997;
Ahn et al., 2003; Juhnke et al., 2016; Kelley et al., 2019). RA
is a key element in dynamic decision-making, illustrating how
individuals flexibly adjust their risk preferences in response to past
choice outcomes. Despite the recognized link between RA and RS,
there is a scarcity of empirical research on RA in dynamic risky
decision-making scenarios and its association with RS and SS.

Dynamic decision-making tasks provide a critical framework
for understanding how individuals progressively develop
behavioral strategies by systematically exploring the intricate
relationships between SS, RS, and RA. By employing reinforcement
learning (RL) models, particularly in contexts involving
probabilistic monetary outcomes, researchers can effectively
illuminate the complex mechanisms underlying reward processing
and adaptive decision-making strategies (Botvinick and Braver,
2015; O’Doherty et al., 2017). RL methodologies formalize the
acquisition of action values based on past experiences and elucidate
the role of different valuation systems in decision control and the
mechanism of reward anticipation (Sutton and Barto, 2018). They
provide insight into how rewards or losses influence subsequent
choice behavior and allow for an investigation into how RS shapes
reward-driven behavior, particularly RA (De Wit et al., 2012;
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Patzelt et al., 2018). According to RL theory, learning is shaped
by prediction errors (PEs) – essentially a type of unexpected
result in comparison to the anticipated value, and determining
this disparity (Sutton and Barto, 2018). These PEs update value
expectations, shaping subsequent actions. Individual differences in
RS likely moderate the impact of these PEs, effectively influencing
the learning rate (Luman et al., 2012). Hence, a computational
model incorporating RL principles could offer valuable insights
into RA during dynamic risky decision-making. Specifically, such
a model could elucidate the interplay between RS, as a state-like
characteristic, and SS, a trait-like personality factor, in shaping
risk-taking behavior.

Additionally, analyzing stable brain-based characteristics of a
neural trait approach can partially account for this diversity in
behavior (Nash and Knoch, 2016). Recently, investigations have
suggested potential links between the rate of evidence learned
from feedback and variations in the relative brain activity of RS
via electroencephalography (EEG) (Frank et al., 2015; Fukunaga
et al., 2018). Feedback-related negativity (FRN), an event-related
potential component arising from the variance in electrical
potentials between losses and gains, is sensitive to the valence of
outcomes (Frank et al., 2015; Kim-Spoon et al., 2016; Nash and
Knoch, 2016). It acts as a neural representation of reward PE and is
responsive to discrepancies in reward probability and adjustments
in posterior magnitude (Cohen and Ranganath, 2007; Walsh and
Anderson, 2011). Furthermore, analyzing EEG data through time-
frequency analysis to investigate reward processing has unveiled
a wealth of insights. This method aids in distinguishing the
distinct impacts of overlapping event-related potentials (ERPs) by
segmenting the EEG signal into spectral power. Studies indicate
that delta band activity (1–4 Hz) is especially responsive to
rewards and positive reward PEs, whereas theta band activity
(4–8 Hz) is primarily associated with negative outcomes and
unsigned PEs (Sambrook and Goslin, 2016; Brown and Cavanagh,
2020). For these reasons, tracking neural activity during dynamic
risky decision-making could contribute to illuminating state-based
expression tendencies like SS and RS personality traits.

This article addresses the intricate connections among SS, RS,
and RA through a RL framework and EEG signals from a dynamic
uncertain decision task. We hypothesized that individuals with HSS
would show a greater tendency to modify their choices due to
deficiencies in intentional decision-making processes or generally
exhibiting reduced preference for rewards. These anticipated
findings might indicate that SS could have moderating influences
on choice variability and reward, which relate to RA and RS.

2 Materials and methods

2.1 Participants

All participants in this research were students enrolled in a
medical university. They were all right-handed individuals with
normal or corrected-to-normal vision, devoid of any history of
neurological or psychiatric disorders, head trauma, or recent
alcohol or tobacco consumption within 2 weeks before the study.
The experimental protocols were endorsed by the Research Ethics
Committee of Second Military University, Shanghai, China. Each

participant provided written informed consent, acknowledging
the objectives and methodologies of the study. There were no
anticipated risks or discomfort, and participants were compensated
upon task completion.

In study 1, 44 participants completed the task in our behavior
lab using computers without EEG equipment. In study 2, 44 college
students who did not participate in study 1 performed the task in
the behavior lab while wearing EEG caps. However, one participant
withdrew from study 1, and seven participants from study 2 were
excluded from subsequent analyses due to technical issues or
movement artifacts during data collection.

2.2 Procedure

Initially, all participants were invited to our laboratory and
instructed to complete paper questionnaires, which included
assessments of personality traits and demographic details, after
providing written informed consent. Following a briefing on the
safety protocols associated with EEG devices, participants engaged
in computer-based tasks using the Windows 7 operating system and
E-prime 2.0 software within a noise-reduced psychology laboratory
environment, positioned approximately 60 cm away from a 20-
inch LCD screen. Notably, participants in study 2 undertook the
task while wearing a 64-channel EEG cap (Biosemi Product) with
conductive gel. Both sets of participants completed the tasks within
the same laboratory setting.

The task duration in study 1 averaged 15 min without fixed
intervals between interfaces. In contrast, in study 2, the task lasted
no less than 45 min due to the EEG setup prolonging interface
delays and incorporating intermediate breaks. Before commencing
the experiment, all participants underwent 15 practice trials, during
which they carefully reviewed the task instructions and familiarized
themselves with the risk characteristics. Participants wearing EEG
caps were instructed to maintain stable head positions, focus on the
screen, and minimize muscular movements. However, occasional
glances at the keyboard for responses were inevitable, prompting
a brief task delay to refocus attention on the screen. Following
this delay, feedback on task performance was provided. Upon task
completion, participants received compensation proportional to
their risk decision-making performance, with an average payment
of approximately 100 yuan for all participants and a standard
compensation of 100 yuan for participants in study 2 to meet the
experimental requirements.

2.3 Sensation Seeking Scale

The Sensation Seeking Scale Version 5 (SSS-V) is a
psychometric tool that assesses individual variations in the
desire for novel experiences and sensations (Zuckerman, 2007).
This scale can evaluate both enduring personality traits and
temporary states of SS, making it applicable to individuals across
various age groups, including adults and adolescents, and suitable
for diverse settings such as clinical, research, and educational
environments (Zuckerman and Aluja, 2015). Widely recognized
for its reliability and validity in measuring SS, the SSS-V has
been extensively utilized in research to investigate the correlation
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between SS tendencies and a range of behaviors and outcomes
(Zuckerman, 2015).

In this study, the Chinese version of the Sensation Seeking
Scale Form V (SSS-V) was utilized and completed by all
participants before engaging in the behavioral assessments. This
scale comprises four sub-scales, each comprising 10 items: thrill
and adventure seeking, boredom susceptibility, experience-seeking,
and disinhibition (Wang et al., 2013). The total score is derived
by summing the responses to all 40 items, providing an overall
SS score reflecting the combined contributions. The scale’s internal
consistency, as indicated by Cronbach’s alpha, was calculated to
be 0.805, demonstrating good reliability. Detailed results of the
interrelationships between sub-scales and the outcomes of factor
analysis can be found in the Supplementary material.

2.4 Dynamic decision-making task
(Balloon Inflation Test)

The Balloon Inflation Test (BIT) was derived from the Balloon
Analog Risk Task (BART) (Lejuez et al., 2002). The BIT entailed
a calculated risk assessment to quantify RA and incorporated
more sophisticated measures for observing behaviors. The task was
structured with fixed intervals between interfaces, as illustrated in
Figure 1. Participants were briefed that they could earn money by
inflating balloons, with the earnings directly linked to the chosen
inflation percentage. Following a practice session, participants
made trial-by-trial adjustments to optimize their earnings. Each
choice corresponded to a specific likelihood of the balloon bursting,
and rewards were determined based on the degree of inflation
chosen. While the quality of the balloons was randomly generated
and undisclosed to the participants, statistically, the optimal
choice at the group level was 50%. Behavioral data from each
trial, encompassing responses, reaction times, feedback, losses,
and earnings, were meticulously recorded using E-prime 2.0
Professional.1 After completing the 60 trials, participants were
queried about their preferred inflation range by selecting options
such as “1 – among 10%–30%,” “2 – among 30%–50%,” “3 – among
50%–70%,” and “4 – among 70%–90%.”

2.5 Electroencephalography recording

During the BIT, EEG recordings were conducted using
the Biosemi ActiveTwo amplifier system (Biosemi, Amsterdam,
Netherlands) with a bandpass of 0.1–100 Hz and a sampling rate
of 512 Hz. This system utilizes two active electrodes, the Common
Mode Sense (CMS) and Driven Right Leg (DRL), in place of
traditional “ground” electrodes. The CMS is a recording reference,
while the DRL serves as ground. Participants wore a flexible
electrode cap with 64 Ag/AgCL electrodes arranged according to
the International 10–20 system. EEG data were initially recorded
using nasorostral as an online reference and then re-referenced
algebraically to the average of all 64 channels for each participant.
Electrode impedance was maintained below 3 k�. Horizontal and

1 https://www.pstnet.com/

vertical electrooculograms were captured to detect blinks and eye
movements. Subsequently, all data were processed offline using
MATLAB R2020a (Math Works, Natick, MA) and the EEGLAB
Toolbox 12.0.1 (Delorme and Makeig, 2004). A 30-Hz low-pass
filter and a 0.1-Hz high-pass filter were applied for data filtering.
Each EEG epoch commenced 1,000 ms before the feedback
onset and concluded 1,000 ms after onset. Prior to averaging,
independent Components Analysis was employed to correct for
eye-blink and movement artifacts. Any trials contaminated by eye
movements, blinks, or muscle potentials exceeding±100 µv at any
electrode were excluded from the analysis.

3 Statistical analysis

3.1 Behavioral data processing

In the context of the BIT, it is crucial to assess the average
inflation level and its variation to comprehend participants’ risk-
taking behavior. Analyzing the average inflation level provides
insight into general risk inclination while studying inflation
variability, which can yield valuable information on decision-
making processes and response dynamics during the task.
Additionally, a detailed examination was conducted on a trial-by-
trial basis to improve understanding of decision precision, learning
effects, and behavioral dynamics observed in the experimental
data. This approach involved treating the number of trials as a
fixed-effect factor and examining its influence on inflation choices
based on sensation-seeking levels. Linear mixed-effects modeling
using R’s lme4 package was conducted to conduct this trial-by-
trial analysis. Furthermore, these effects were visualized using the
ggplot2 package for comprehensive interpretation.

3.2 Computational modeling

To characterize the learning behavior of participants in BIT
and reveal underlying trial-by-trial aspects of decision-making
variables, we developed two sets of computational models. We
applied them to the behavioral data of participants. These models
were based on the simple RL model following the Rescorla-Wagner
(RW) learning rule, as well as the RL model incorporating a Kalman
(KL) filter (Rescorla, 1972). We assessed the suitability of these
models and progressively integrated the most effective ones by
comparing their performance. Within the RL model framework,
each decision was represented by a 9-option value spanning from
10% (Vt(1)) to 90% (Vt(9)):

Ṽt = [Vt(1) , Vt(2), Vt(3), Vt(4), Vt(5), Vt(6), Vt(7),

Vt(8), Vt(9)] (1)

In each trial t, Vt (representing the option’s value) was depicted as
a two-element vector with a value of zero (indicating not chosen)
or one (indicating chosen). Given the nature of the task, where
each option was associated with increasing rewards, the likelihood
of each option remaining at its current level or advancing to a
higher degree was considered. For example, if a participant selected
50%, they were expected to choose 40% in the next trial, indicating
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FIGURE 1

The diagram depicting BIT with consistent intervals between interfaces. In the balloon inflation task, participants’ focus was directed by the “start
choice” phase lasting 1,000 ms, allowing them to choose the degree of inflation. Subsequently, an empty screen was displayed for 1,000 ms,
followed by feedback lasting 1,000 ms. A 2,000 ms interval with a blank screen followed before initiating the next trial.

a gradual progression in their decision-making. This aligns with
the notion that participants were inclined to advance to higher
degrees cautiously, as evidenced by their reluctance to jump directly
to 70% without first embracing the risk of 60%. This decision-
making process was reflected in the probability of choosing option
i (indexed from 1 to 9), as outlined below.

Pt(i) =
eVt(i)

eVt(i) + eVt(i+1) =
1

1+ e−(V t(i)−Vt(i+1)) (2)

The values were subsequently transformed into action probabilities
through the utilization of a SoftMax function:

Pt (i) = 8(Vt(i)) (3)

Where8 was the inverse logit linking function:

8(x) =
ex

1+ex =
1

1+e−x (4)

It is important to note that we incorporate the widely employed
inverse SoftMax temperature parameter τ in the model
specifications of action probability. This parameter regulates
the degree of randomness in decision-making, varying from τ = 0
for entirely random responses to τ = ∞ for selecting the highest
value option with certainty. In the basic model, an RW model was
employed to represent decision-making, where only the selected
value was adjusted based on the PE. In contrast, the unselected
value remained unchanged from the previous trial.

PE = Rt(i)− Vt(i) (5)

Vt+1(i) = Vt(i)+ αPE (6)

Here, Rt represented the reward received in trial t, and the learning
rate (αt) denoted by RS (0 < αt 1) determined the influence of the

PE on updating the value. Upon inputting values of (1), (2), (3), (4),
and (5), we obtained the categorical distribution of choices as:

Choice Categorical (8 (τ× V t)) (7)

The model incorporating the KL filter, known as the Pearce-Hall
model, is additionally computed with the standard error (Gheza
et al., 2018). This error signifies the dynamic learning rate that
governs the impact of the PE and employs a form of the delta
rule to adjust the estimated value according to the reward PE.
KL filter models stand out by monitoring the (posterior) variance
of the estimated value for each choice, reflecting estimation
uncertainty, and leveraging this information to modify the learning
rate adaptively. The lazy KL filter introduces a bias to the learning
rate, facilitating a slower learning process. This model introduces
additional parameters: the initial learning rate and the asymptotic
learning rate, which collectively characterize the progression of the
effective learning rate over time. The term “KL gain” represented
by kt functions as a learning rate. Consequently, Equation 6 was
revised as:

Vt+1(i) = Vt(i)+ktαtPE (8)

The parameter η ? (0, 1) dictates the bias in the updates of the KL
gain, potentially leading to a slower learning rate (hence the term
“lazy”). In the standard KL filter, this parameter is set at η = 1,
whereas in the lazy versions, it is a variable parameter, allowing for
less precise updates. The term kt is influenced by St , representing
the variance of the posterior distribution of the average reward,
incorporating the innovation variance and the reward variance of
the option. When t = 1, it signifies the initial variances as priors.
These concepts are outlined as follows:

αt+1 = η|PE|+(1−η)αt (9)

kt =
St + σ2

ζ

St + σ2
ζ + σ2

ε,t
(10)
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In our models, logistic regressions are commonly utilized for
vectors, and we employed the logistic model due to the U-shaped
pattern observed in the expected values in our study. Specifically,
the choice of 30% was rewarded equivalently to 70% based
on probability. Consequently, we postulated a non-continuous
computational process of choice utilities when individuals were
making choices, aligning with the fundamental assumption of the
logistic regression model. In this analysis, we initialized the values
of Vt(i) at 0, while the subsequent choices, V1–V9 (representing
the utility of the 9 options calculated as the product of risk
probability and reward), were 9, 16, 21, 24, 25, 24, 21, 16, and
9, respectively. The standard deviations derived from reward
probability were 3.12, 4.22, 4.83, 5.16, 5.27, 5.16, 4.83, 4.22, and
3.12, respectively.

We evaluated the superior model against alternative
computational hypotheses within the hierarchical Bayesian
framework (Table 1). To further validate our leading model,
we employed two rigorous approaches. Firstly, we conducted a
parameter recovery analysis to ensure the accurate and specific
identification of all parameters (refer to Supplementary material).
We conducted posterior predictive checks by leveraging model
comparison to assess relative model performance. These analyses
were executed in the R environment utilizing a combination of
Rstan for Bayesian inference, hBayesDM for hierarchical Bayesian
modeling, and loo for model comparison. The distinction in
parameters was assessed using the Wilcoxon Rank Sum Test.

3.3 Event-related potentials and spectral
perturbations analysis

For each EEG epoch, we established the baseline for ERPs
measurements by averaging the voltage recorded during the
200 ms pre-feedback interval and 1,000 ms. Subsequently, FRN
was evaluated by calculating the mean wave amplitudes within
a time window of 250–320 ms following positive or negative
feedback onset. In line with previous studies, the FRN was initially
evaluated across three electrodes: Fz, FCz, and Cz, prompting a
focused and detailed analysis on these specific electrodes (Euser
et al., 2011; Takács et al., 2015). Therefore, our detailed analyses
were centered on the Fz, FCz, and Cz electrodes. Additionally,
we conducted a time-frequency analysis on single-trial ERP data
synchronized with feedback. This analysis involved averaging and
baseline correction to ascertain event-related spectral perturbations
(ERSPs). The algorithm used for time-frequency analysis is based
on the Morlet wavelet transform principle involving convolution
between wavelets with peak frequencies and the temporal signal
under investigation to obtain a representation of power at different
frequencies within the temporal domain signal. The dataset
examines a frequency range from 0.1 to 30 Hz in the frequency
domain divided into 50 frequency points. The temporal width
spans 2 s, encompassing the entire epoch, with a margin of
±1 s around the presentation of the result feedback. The wavelet
cycles range from 3 to 14, and trial-specific time-frequency results
undergo averaging and normalization processes. To reveal the
effect of SS on RS related neural substrates, we compared the
difference in these related substrates using the Wilcoxon Rank Sum
Test

3.4 Moderation effect statistic

The moderation effect statistic was computed to examine the
interaction between SS and RS on RA measured in the dynamic
risky decision. We used multiple regression analysis to test the
interaction effect, with SS and RS as predictors and the choice
degree varied across bins as the outcome variable with choice order
as the intercept. The interaction between SS and RS can be defined
mathematically as:

Yij = β0 + β1SSi + β2RSj + β3
(
SSiRSj

)
+ γk+?ij (11)

In this context, Y is the choice degree varied across trials, and
β3 signifies the interaction effect that demonstrates the varying
impact of RS on the outcome, in response to the dynamic risk
associated with RA, based on the level of SS. By including random
effects, mixed models can handle correlations within the data
and provide more accurate estimates of fixed effects. The analyses
were performed in R with the “lmer” function. Additionally, we
verified the centering of all variables in the model using the R
functions (scale).

4 Results

4.1 Demographic characteristics

A summary outlining the demographic features of all
participants is displayed in Table 2. The collective average SS scores
stood at 99.63, with a standard deviation of 13.23. As there were
no notable distinctions in the behavioral outcomes (Ps > 0.055),
we simultaneously evaluated participants’ behavioral performance
across both studies.

4.2 Risk adjustment behavior among
individuals with varying level of SS

At the initiation of our analysis, we investigated the associations
between the Sensation Seeking Scale (SSS) scores and the behavioral
indexes derived from the BIT. The findings revealed predominantly
insignificant correlations between SSS and its subscale scores with
BIT indexes, including reaction time, variability, and maximum
scores (refer to the Supplementary material). To further explore the
relationship between different levels of SS and their impact on BIT
performance, we conducted a three-group analysis, categorizing
participants into high (HSS), medium (MSS), and low (LSS)
sensation seeking groups based on the 33rd and 66th percentiles
of the SSS scores considering a potential nonlinear relationship
between SSS and BIT results. This allowed us to more meticulously
explore the relationship between different levels of SSS and
behaviors. During the grouping process, we ensured a balanced
amount of data in each group to guarantee the accuracy and
reliability of the results. This resulted in 27 participants being
placed into the LSS group, 30 into the MSS group, and the
remaining 23 into the HSS group. To further explore behavioral
differences between these groups, we analyzed their choice details
as depicted in Figure 2. The figure illustrates similar choice
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TABLE 1 Computational models, model parameters, and model comparison.

Model Parameter Prior Hyperpriors LOOIC

RW-RL Learning rate (α) 8 (µα + ζα να) µα ∼Normal ζ∼Half-Normal 17,413.6± 379.0

Inverse temperature (τ) exp (µτ + ζτ ντ) (−1, 1)
µτ ∼Normal (0, 1)

(0, 1)
ν∼Normal (0, 1)

KL-RL The innovation variance (σ2
ξ ) exp (µσ2

ξ + ζσ2
ξ νσ

2
ξ ) µ∼Normal (0, 1) 17,383.6± 380.7

Initial variance (σ2
ε ) exp (µσ2

ε + ζσ2
ενσ

2
ε ) µ∼Normal (2, 1)

The bias of KL gain (η)
8 (µη + ζη νη)

µη ∼Normal (1, 1)

Inverse temperature (τ) exp (µτ + ζτ ντ) µτ ∼Normal (0, 1)

All models employ non-centered reparameterization as specified in the prior column, frequently transformed to restrict parameters to non-negative values (exp) or within a specific range
(Probit function,8). LOOIC refers to the leave-one-out information criterion concerning the winning model (a lower LOOIC value signifies enhanced out-of-sample predictive accuracy). The
group level is denoted by µ, with v representing the individual level, and ζ indicating the standard error of the samples.

TABLE 2 Sample demographic characteristics, SS scores (SSS), and the averages of behavioral variables.

Characteristic Total Study 1 Study 2 P-value

N = 80 N = 43 N = 37

Gender 0.096

Male 27 (34%) 11 (26%) 16 (43%)

Female 53 (66%) 32 (74%) 21 (57%)

Age 21.39± 3.13 21.16± 2.92 21.65± 3.38 0.442

SSS 99.63± 13.23 95.58± 11.99 104.32± 13.20 0.003

Mean choice (%) 46.26± 8.27 45.70± 8.56 46.91± 7.98 0.689

Mean RT 1,215.09± 493.32 1,261.78± 693.11 768.93± 636.07 0.828

Choice standard deviation 17.16± 5.01 18.15± 4.97 16.00± 4.86 0.055

Choice counts of 50% 15.96± 11.88 15.74± 11.31 16.22± 12.66 0.973

Attitude 0.040

10%∼30% 26 (33%) 14 (33%) 12 (32%)

30%∼50% 46 (58%) 28 (65%) 18 (49%)

50%∼70% 8 (10%) 1 (2.3%) 7 (19%)

Cell were presented as number (%) or mean ± SD. Behavioral variables include the mean of chosen degree (abbreviated as Meanchoice), mean of reaction time (Mean RT), choice variability
(choice standard deviation), times of choosing 50% (choice counts of 50%).

distributions for LSS and HSS groups, while MSS preferred lower
risk over other groups (χ2 = 27.94, df = 2, P < 0.0010, see Figure
2A). The regression results also indicated that trial orders affected
choice preferences (β = −0.339, SD = 0.127, P = 0.007, see Figure
2B) and being in the MSS (β = −6.383, SD = 2.444, P = 0.010,
see Figure 2B). However, there was no significant difference in the
choice of standard deviation among these groups (see Figure 2C).

4.3 Estimation and comparison of
parameter values for RS

We collectively inputted the data from the three groups into
the Hierarchical Bayesian models to uncover the distinction at
a more detailed level. Utilizing the Markov Chain Monte Carlo
(MCMC) method, we performed a comprehensive simulation
of data, primarily aimed at estimating the range of parameters
as posterior distributions for each parameter at the individual
level (Gallagher et al., 2009). The specifics of each hierarchical
Bayesian model were outlined in Supplementary material. Based
on the leave-one-out information criterion (LOOIC) presented in

Table 1, the KL-RL model exhibited slightly superior predictive
performance compared to the RW-RL model. Consequently,
we concluded that the parameters of the KL-RL model were
more effective in representing RS during the learning process.
Figure 3 displayed the connections among model parameters,
demonstrating a negative correlation between model parameters
and choice standard deviation.

Hence, we separately entered the behavior data of three groups
into the three hierarchic models, and the posterior distributions
for the bias of KL the bias of KL gain (η, Figure 4A), inverse
temperature (τ, Figure 4B), the innovation variance (σ2

ξ , Figure
4C), and initial variance (σ2

ε , Figure 4D) were calculated at the
individual level. As depicted in Figure 4, only one parameter
showed significant differences among the groups with varying levels
of SS. The HSS group exhibited the highest value, which was
significantly different from the LSS and MSS groups (Ps < 0.038);
however, there was no significant difference between the MSS and
LSS groups (P = 0.923). These findings suggest that individuals with
HSS may have a stronger inclination toward unfamiliar risks and
show persistence in their decision-making.
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FIGURE 2

Group-behavioral characteristics of LSS, MSS, and HSS groups. Panel (A) presents a bar graph illustrating the correlation between the distribution of
sample proportions and choices. The bars are color-coded to represent distinct groups, with each bar labeled by its corresponding percentage,
signifying the proportion of each choice within the group. Panels (B,C) depict three-line graphs, evidently linked to a time series of experiments. The
x-axis denotes the experimental stage with increments of five trials, grouped into bins. Meanwhile, the y-axis portrays the mean and standard
deviation of choices over five trials. In both graphs, different colored lines signify data from diverse groups. Error bars denote the variability or
uncertainty of the measured points within the bin.

FIGURE 3

Relationships between model parameters and behaviors. Each of the small plots in the lower triangle of the matrix is a scatterplot of two variables.
The plots on the diagonal are histograms showing the distributions of individual variables. Above the diagonal, there are correlation coefficients. The
histogram visually displays the occurrence frequency of values for each variable at the individual level, encompassing the bias of KL gain (eta_ind),
inverse temperature (theta_ind), the innovation variance (varm_ind), and initial variance (vari_ind), the mean of the selected degree (Meanchoice),
the mean reaction time (MeanRT), the variability in choices (standard deviation of choices, abbreviated as StdDevchoice), and the frequency of
choosing 50% (choice counts of 50%). The symbols in this figure represent statistical significance levels: * indicates p < 0.05; ** indicates p < 0.01,
*** indicates p < 0.001.

4.4 The correlation between SS and
neural substrates of RS

In BIT, successful inflation results in a “Win” and
corresponding scores, while bursting the balloon leads to a
“Loss.” Therefore, measuring RS is based on the differences
in event-related potentials recorded from Fz\FCz\Cz channels.
Figure 5A illustrates significant variations between the two
conditions at time points around 250–450 ms, evident in overall
ERPs and individual participant trial differences. Moving forward
to Figure 5B, it seems that participants’ trial differences reach
their peak latency around 300 ms, further supported by statistical
analysis shown in Figure 5C. A detailed analysis of ERP differences
and their correlation with SS was presented in Supplementary
material. This analysis demonstrates that the time window between

approximately 250–450 ms exhibits significant differences in the
grand-averaged ERPs between the two experimental conditions.

Moreover, we conducted ERSP analysis focusing on the signals
between 250 and 450 ms. Figure 6 illustrates the ERS in the 1–
30 Hz frequency range within the notable time-frequency window.
Consistent with the ERP outcomes, we observed heightened power
at FCz following the feedback, aligning with earlier findings related
to FRN. In Figure 6D, statistical significance was evident within
the 200–400 ms timeframe and across frequencies spanning 1–10,
showing notable differences in the comparison at the low- and
middle frequency bands. Additionally, topographic maps for the
ERSP results, contrasted across different channels, were provided
in the Supplementary material.

To demonstrate the impact of SS on RS concerning neural
pathways, we compared individuals with varying levels of SS. This

Frontiers in Behavioral Neuroscience 08 frontiersin.org

https://doi.org/10.3389/fnbeh.2025.1492312
https://www.frontiersin.org/journals/behavioral-neuroscience
https://www.frontiersin.org/


fnbeh-19-1492312 February 4, 2025 Time: 17:20 # 9

Qianlan et al. 10.3389/fnbeh.2025.1492312

FIGURE 4

The posterior distributions for individual parameters of KL_RL model. Panels (A–D) depict the model parameters distributions in the three groups,
respectively. The violin plots combine elements of a box plot with a kernel density estimation. The thick black line inside each colored shape shows
the interquartile range (IQR), and the white point represents the median. The width of the colored shape at different points on the y-axis shows the
probability density of the parameter values: the wider the section, the higher the probability of the parameter taking a value within that range. The
different colors per group allow for a quick visual comparison across groups.

FIGURE 5

The different representations of the ERP data of two conditions. (A) Mean ERPs with 95% confidence intervals. The black dots on the x-axis indicate
time points with significant paired t-test results (P < 0.05). The dark-blue line represents the win condition, the light-blue line represents the loss
condition, and the red line signifies the comparison between loss and win conditions. (B) The temporal evolution of ERP variances between the two
conditions for individual participants is displayed. (C) The progression of individual differences over time, with participants arranged along the y-axis.
ERP amplitudes are color-coded to correspond with the outcomes depicted in panel (B). Significant time points are highlighted with transparency.
A bootstrap cluster sum method was employed to adjust for multiple comparisons.

comparison revealed significant differences between high and low
levels of SS in terms of both the FRN amplitude (P = 0.037, Figure
7A) and the power within the 1-10 Hz frequency band (P = 0.0072,
Figure 7C). No significant difference showed in the LPP amplitude
(Figure 7B). Individuals with HSS exhibited smaller amplitudes and
weaker responses to negative feedback than those with LSS.

4.5 The moderating effect of SS on RS
and RA

Three regression models were constructed to examine the
moderate impact of SS (Table 3). These models used RA to
represent the variation in choice degree as the outcome variable.
The random effect was defined as choice order (categorized 10

times), and the common fixed effect was represented by levels of SS.
Model1 included the individual-level model parameter (σ2

ξ ) and tits
interaction with SS from study 1 and 2 samples. In model 2 and 3,
FRN, band power, and their interaction with SS were the predictive
variables with samples from study 2. When compared to the HSS
group, it was observed that the interaction between SS and FRN
significantly predicted variations in choices across bins, indicating
that at higher levels of SS, the positive predictive effect of FRN on
choice variation became stronger.

5 Discussion

As we predicted, SS may have a moderating influence on choice
variability, demonstrating RA through RS. This was confirmed by
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FIGURE 6

Event-related synchronization related to feedback. Panels (A,B) illustrates brain activity’s intensity or synchronization levels. The color scheme
typically indicates intensity or power, with blue possibly representing lower synchronization or power and red indicating higher synchronization or
power. Panel (C) may present a T-contrast of the (Win vs. Loss) conditions. Panel (D) displays P values, a measure of statistical significance; the blue
areas indicate time points and frequencies where the data significantly differ from background or control conditions.

FIGURE 7

The difference of neural substrates for RS among groups with different levels of SS. Panels (A–C) depict the amplitude of the feedback-related
negativity (FRN), the late positive potential (LPP) amplitude, and the power within the 1-10 Hz frequency band, respectively.

the RL model method and further supported by neural substrates
showing the relationship between SS and RS. Regarding behavioral
findings, individuals with HSS are likely to display a decreased
tendency to alter choices and low levels of RS in response to reward
feedback. Additionally, EEG results revealed a significant effect of
SS on the neural substrates of RS. In particular, FRN related to RS

predicted RA, and its effect was moderated by SS. These results
highlight SS’s behavioral presentation and neural substrates and
contribute to understanding the complex interplay between SS and
RS in influencing RA.

Previous studies also found that SS and RS are closely
connected in terms of the pursuit of reward and novelty

Frontiers in Behavioral Neuroscience 10 frontiersin.org

https://doi.org/10.3389/fnbeh.2025.1492312
https://www.frontiersin.org/journals/behavioral-neuroscience
https://www.frontiersin.org/


fnbeh-19-1492312 February 4, 2025 Time: 17:20 # 11

Qianlan et al. 10.3389/fnbeh.2025.1492312

T
A
B
LE

3
Su

m
m
ar
ie
s
o
f
ef
fe
ct
s
o
n
R
A
.

P
re

d
ic

to
rs

E
st

im
at

e
s

C
I

P
E

st
im

at
e

s
C

I
P

E
st

im
at

e
s

C
I

P

(I
nt

er
ce

pt
)

48
.4

4
46

.9
9–

49
.9

0
<

0.
00

1
55

.4
7

52
.7

2–
58

.2
2

<
0.
00
1

50
.6

3
47

.7
0–

53
.5

6
<
0.
00
1

G
ro

up
(L

SS
)

−
1.

12
−

3.
11

to
0.

86
0.

26
7

−
4.

19
−

8.
59

to
0.

20
0.

06
1

−
0.

73
−

4.
76

to
3.

29
0.

72

G
ro

up
(M

SS
)

−
4.

65
−

6.
67

to
−

2.
63

<
0.
00
1

−
10

.1
3

−
13

.2
4

to
−

7.
02

<
0.
00
1

−
6.

17
−

9.
44

to
−

2.
89

<
0.
00
1

va
rm

in
d

−
0.

82
−

6.
68

to
5.

03
0.

78
3

G
ro

up
(L

SS
)×

va
rm

in
d

−
4.

8
−

11
.9

6
to

2.
36

0.
18

9

G
ro

up
(M

SS
)×

va
rm

in
d

6.
14

−
0.

63
to

12
.9

1
0.

07
5

FR
N

1.
64

1.
11

–2
.1

7
<
0.
00
1

G
ro

up
(L

SS
)×

FR
N

−
1.

16
−

1.
98

to
−

0.
33

0.
00
6

G
ro

up
(M

SS
)×

FR
N

−
0.

76
−

1.
46

to
−

0.
06

0.
03
3

Po
w

er
5.

41
−

2.
23

to
13

.0
6

0.
16

5

G
ro

up
(L

SS
)×

po
w

er
0.

16
−

13
.9

1
to

14
.2

3
0.

98
2

G
ro

up
(M

SS
)×

po
w

er
1.

65
−

8.
45

to
11

.7
4

0.
74

9

Th
e

de
pe

nd
en

tv
ar

ia
bl

e
w

as
th

e
ch

oi
ce

de
gr

ee
va

ri
ed

ac
ro

ss
bi

ns
.T

he
ra

nd
om

eff
ec

tw
as

de
fin

ed
as

ch
oi

ce
or

de
r

(c
at

eg
or

iz
ed

10
tim

es
),

an
d

th
e

co
m

m
on

fix
ed

eff
ec

tw
as

re
pr

es
en

te
d

by
th

e
le

ve
lo

fS
S

us
in

g
H

SS
as

th
e

re
fe

re
nc

e.
Th

e
si

gn
ifi

ca
nt

p-
va

lu
es

ha
ve

be
en

hi
gh

lig
ht

ed
in

bo
ld

.

(Zuckerman, 1994; Bornovalova et al., 2009; Xu et al., 2019). HSS
individuals are more sensitive to rewards but less sensitive to
punishment compared with LSS. The potential explanation centers
around motivation in SS and the “hyperactive approach system”
(Kruschwitz et al., 2012). HSS might be inversely linked to RS,
as it may require a higher degree of risk to meet the seekers’
presumed excitement and arousal for reward (Zuckerman, 2007).
In particular, we made an unexpected observation after dividing the
comparison groups into three levels, which differs from traditional
pairwise comparisons. Our observations indicated that the MSS
group demonstrated a decreased tendency for risk compared to
the HSS group. This indicates that the MSS group may lead to
a lower preference for risk-taking. However, these distinctions
are only apparent in the average inclination and do not persist
in choice variability. These results indicate a difference in the
relationship between SS and risk inclination compared to SS and
RA. Advancedly, we used an RL model combined with a KL filter to
investigate the potential impact of SS on RA. We also incorporated
the influence of RS using relevant parameters. The KL filter’s ability
to handle uncertainty and evolving situations makes it ideal for
examining the effects of SS and RS on RA in decision-making
processes involving learning from feedback (Zhang et al., 2021; Kim
et al., 2022). Through model analysis, we found that individuals
with HSS tend to disregard past risks and concentrate excessively
on immediate stimuli and potential rewards, causing them to
neglect previous encounters with risks. This behavioral pattern
can impact their adaptability and decision-making flexibility in
dynamic environments.

Reward sensitivity has evolved from being a trait related to
the behavioral approach and inhibition system to being seen
as a state personality that can be applied in human behavioral
experiments (Kale et al., 2018; Fischer and Karl, 2020). However,
most field studies used self-reported surveys, with only a few
investigating the relationship between state and trait personality
in experimental behavioral tasks, especially those related to risky
decision-making. As a result, our research utilized an experimental
task to control the outcome of a risky decision. Subsequent choices
were influenced by outcomes that likely relate more to feedback
or reward-based learning processes. This served as a practical
measure for assessing how personalities affect decision outcomes.
Similar to previous studies, we discovered that RS (the tendency
to repeat previously rewarded actions while avoiding losses) played
a pivotal role in shaping decisions during reward-based learning
and decision-making situations (Cockburn and Holroyd, 2018).
RS directly links to individual learning rates that scale the effect
of PEs on updating values (Wu et al., 2017). These concepts
extend to environments involving dynamic uncertain decisions,
where RS involves comparing a choice’s expected value with
its actual outcome – signaling subjective-value representation or
“satisfaction” with a choice’s result. These results suggest that RS
affects how risk is evaluated and adjusted afterward, which implies
that people who are highly sensitive to rewards tend to take more
risks when making decisions and adapt their risk preferences based
on their experiences. Hence, this emphasizes the importance of
RS in shaping adjustments made for risky decisions in dynamic
environments.

Examining consistent brain-based traits in individuals using a
neural trait approach can help explain some of the variations in
behavior (Nash and Knoch, 2016). We aimed to investigate further
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the underlying neural mechanisms of SS and its influence on RS-
related behaviors. We employed EEG to examine the brain activities
associated with RS during a reward-based decision-making task
to achieve this. Our findings indicated that individuals with HSS
showed reduced responsiveness to different types of feedback
compared to those with LSS. Consistent with our observations
regarding differences in FRN, previous studies have demonstrated
that the magnitude of FRN changes based on learning from PEs
generated by RL models (Walsh and Anderson, 2011). FRNs have
been associated with risky decision-making behavior (Polezzi et al.,
2010; Takács et al., 2015; Zhong et al., 2020). The emergence
of an active FRN signal during such decisions may reflect a
conflict between expected and actual outcomes, leading to emotions
related to regret or disappointment. This suggests that features
defining FRNs make them valuable indicators for monitoring
neural activity during dynamic risky decision-making, offering
insights into overarching pattern analysis and potentially shedding
light on state-based expression tendencies such as SS and RS
personality traits. Our study provided supporting evidence for these
aspects of the value of FRN.

Besides, time-frequency analysis revealed that individuals
with HSS exhibited increased theta band power for reward
in the prefrontal cortex during decision-making, suggesting
their heightened cognitive processing and attention allocation to
reward-related information. Consistent with prior findings, the
links between theta (4∼8 Hz) signals associated with cognitive
control and adjustment of thresholds (Cavanagh et al., 2010;
Narayanan et al., 2013), as well as associations between trial-to-
trial variation in subthalamic nucleus activity and variance in
decision thresholds based on computational modeling analysis
(Cohen and Cavanagh, 2011; Crowley et al., 2014; Rawls et al.,
2020). Our findings indicate statistical significance between 200 and
400 ms, spanning frequencies of 1–10 Hz. This suggests that low-
frequency activity could be a reliable marker for reward processing,
providing more immediate and accurate understanding of the
cognitive mechanisms underlying decision-making in situations
with potential risks (Ratcliff and Frank, 2012; Cavanagh and
Frank, 2014). Hence, more EEG signals can be utilized to examine
neural mechanisms within RL models during dynamic decision-
making and provide additional details about enduring brain-based
characteristics.

Our study contributed novel advancements by widely
employing BIT design without necessitating numeracy skills,
as seen in BART (Lejuez et al., 2002). The variances between
BIT and BART are rooted in the inflation method, transitioning
from continuous clicks in BART to a single click in BIT.
This modification in BIT allows for a more explicit revelation
of decision-makers genuine preferences. Consequently, the
choice variability reflects RA quantitatively, as each decision is
uniformly assessed due to the consistent risk associated with
each renewed balloon. Another crucial disparity is that while
the burst probability signifies potential risk in both tasks, this
crucial information cannot be acquired in BART due to its
floating burst point, unlike in BIT, where risk ratios for each
option are deliberately designed. Hence, the RL model in BIT
facilitates the cognitive process of reward-driven choices and
generates structured model parameters that index RS. These
distinctive features of BIT contribute to the differentiation of
reward responsivity from RS, where RA is directly influenced by

behaviors impacting the most recent rewarded choice. At the same
time, RS is associated with the learning pace in a reward-centric
learning setting. Prior research utilizing questionnaires grounded
in approach-avoidance personality theories has faced difficulties
integrating perception/valuation sensitivity with motivation/action
sensitivity, which impacts the observed behaviors (Corr and
McNaughton, 2012; Nash and Knoch, 2016). The challenge arises
in handling perception/valuation sensitivity and motivation/action
sensitivity in self-report questionnaires. In BIT, money allows
for easy manipulation through the presentation or omission of
rewards, offering a significant advantage in modifying stimuli
and altering states. Similar to concepts in previous quantitative
frameworks related to self-valuation for rewards, RS scales the
subjective value of potential choices guiding decision-making
processes. In contrast, reward responsivity influences responses
and behavioral control, known as RA. Consequently, BIT analyzed
by RL models can provide direct indicators for RS and RA, which
is suitable for neural analysis of RS.

Various significant limitations need consideration when
interpreting the study results. The approach of treating SS as
a trait with a total score, instead of analyzing subscale scores
like experience-seeking and thrill-seeking, was chosen to facilitate
comparisons with prior research and enhance the integrated
understanding of SS. While utilizing total scores of SSS offers
advantages, it also poses limitations. Future research should delve
deeper into individual SS subscales and explore interaction effects
between these subscales and other psychological constructs, such
as RS, to enhance comprehension of the intricate dynamics of risk-
taking. Additionally, while our study focused on quantifying RA
using unknown but ordered risks within cognitive processes of
dynamic decision-making, it is important to note that dynamic
risk decision-making encompasses various contexts. As a result, the
results from BIT experiment may not generalize to other forms
of risk due to potential changes in the formation of risk aversion.
Lastly, our outcomes relied on trial-by-trial variance instead of
block-between-block analysis, presenting difficulties in merging
ERP data and requiring artifact removal and noise cancellation
across trials. Nonetheless, utilizing advanced techniques such
as time-frequency analysis, source analysis, or even microstate
analysis for ERP could provide resolutions and unveil additional
evidence concerning the neural underpinnings associated with
personality traits influencing risky decision-making.

6 Conclusion

In conclusion, our research findings have provided valuable
insights into the influence of RS and SS on RA. The evidence
suggests that individuals with high RS tend to take more risks
and adapt their risk preferences based on their experiences. This
underscores the importance of RS in shaping adjustments made
for risky decisions in dynamic environments. Moreover, our
study demonstrated that individuals with HSS showed reduced
responsiveness to different types of feedback compared to those
with LSS. This suggests SS may impact how individuals process and
respond to feedback in decision-making contexts.

Overall, our findings contribute to a better understanding
of how individual differences in RS and SS can shape decision-
making processes, with potential implications for decision-making
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strategies and interventions in real-world settings. About solutions,
our research highlights the importance of developing more
sensitive behavioral measures for RA and neural presentation
for sensation-seeking traits. Future research could benefit from
employing advanced methods such as cognitive modeling and
source analysis of ERP to investigate further the neural substrates
related to personality traits influencing risky decision-making.
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