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Methods from Machine Learning (ML) and Computer Vision (CV) have proven

powerful tools for quickly and accurately analyzing behavioral recordings.

The computational complexity of these techniques, however, often precludes

applications that require real-time analysis: for example, experiments where a

stimulus must be applied in response to a particular behavior or samples must

be collected soon after the behavior occurs. Here, we describe SARTAB (Scalable

Automated Real-Time Analysis of Behavior), a system that achieves automated

real-time behavior detection by continuously monitoring animal positions

relative to behaviorally relevant Regions Of Interest (ROIs). We then show how

we used this system to detect infrequent courtship behaviors in Pseudotropheus

demasoni (a species of Lake Malawi African cichlid fish) to collect neural tissue

samples from actively behaving individuals for multiomic profiling at single

nucleus resolution. Within this experimental context, we achieve high ROI and

animal detection accuracies (mAP@[.5 : .95] of 0.969 and 0.718, respectively)

and 100% classification accuracy on a set of 32 manually selected behavioral

clips. SARTAB is unique in that all analysis runs on low-cost, edge-deployed

hardware, making it a highly scalable and energy-e�cient solution for real-

time experimental feedback. Although our solution was developed specifically to

study cichlid courtship behavior, the intrinsic flexibility of neural network analysis

ensures that our approach can be adapted to novel species, behaviors, and

environments.

KEYWORDS

behavior, computational ethology, cichlid fish, Computer Vision, Machine Learning,

real-time analysis

1 Introduction

In recent years, we have seen the emergence of numerous advanced animal behavior

analysis tools based on Deep Learning (DL) technologies (Mathis and Mathis, 2020;

Pereira et al., 2020; Datta et al., 2019; Couzin and Heins, 2023). These tools have

found applications throughout our experimental workflows, driving improvements in

both data acquisition (Karashchuk et al., 2021; Bala et al., 2020; Mathis et al., 2022)

and interpretation (Luxem et al., 2022; Hsu and Yttri, 2021; Yamazaki et al., 2019).
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Methods from the field of Computer Vision (CV) have proven

particularly useful for extracting behaviorally relevant low-level

representations (e.g., positions, poses, and kinematics) directly

from high-volume video of freely behaving animals (Dunn et al.,

2021) - an increasingly ubiquitous data format (Von Ziegler et al.,

2020). For the first time in history, it is possible to capture

and efficiently analyze behavioral data at something approaching

the true range of spatial, temporal, and sensory scales involved

(Gomez-Marin et al., 2014).

The remarkable capabilities of DL-based analysis, however,

come at a steep computational cost. This is particularly true

for video analysis due to the complexity, volume, and high

dimensionality of video data. Most applications therefore focus on

offline analysis, in which stored video data are analyzed in bulk.

This allows for better sharing of limited GPU (Graphics Processing

Unit) resources as well as significantly faster inference due to batch

processing efficiencies (NVIDIA, 2015). This offline approach,

while practical in many settings, precludes an important class of

experimental designs that require continuous real-time analysis.

Examples include (1) closed-loop experiments in which a stimulus

(such as a reward, a sensory cue, or even direct neurostimulation)

must be presented in response to a particular behavior, and

(2) human-in-the-loop experiments where samples must be

collected soon after the behavior of interest occurs (e.g., when

profiling transient behavior-dependent hormonal, transcriptomic,

or epigenomic states; Johnson et al., 2020a; Baran and Streelman,

2020). Although such experiments can often be achieved through

manual observation of behaving individuals or constrained

experimental design, this involves either investing significant

person-power to constant manual observation or restricting the

natural behavioral repertoire to simplify measurement. DL-based

approaches, with their proven track record of achieving human-

level accuracy in complex naturalistic environments (Sturman

et al., 2020), present an obvious solution – so long as we can achieve

real-time performance.

Despite the inherent challenges, examples of real-time DL-

based animal behavior analysis do exist. One common approach

requires access to a GPU-enabled computer or server, either

directly or via the local network, and configuring the DL model to

process each frame as it arrives (rather than processing frames in

large batches for efficiency, as is common when analyzing stored

video). Examples of this approach include DLC-Live! (Kane et al.,

2020) and EthoLoop (Nourizonoz et al., 2020), both of which can

perform pose estimation on live video streams at more than 90 FPS

on a GPU-enabled computer. The obvious downside, however, is

that this approach requires persistent, dedicated access to expensive

hardware. This presents a particular hurdle in experiments where

multiple video streams must be processed in parallel, such as when

monitoring multiple experimental replicates concurrently or using

multiple cameras to cover a large behavioral arena.

Here, we present SARTAB (Scalable Automated Real-Time

Analysis of Behavior), a modular system for real-time behavior

analysis. We then show how it can be used to detect specific

courtship behaviors in P. demasoni cichlids. Unlike existing

GPU-based solutions, our approach uses an Edge TPU (Tensor

Processing Unit) peripheral. TPUs, like GPUs, are hardware

components that can be used to accelerate neural network

inference. Edge TPUs are a subclass of TPUs designed for “edge

AI” applications—i.e., lightweight systems that utilize AI (Artificial

Intelligence) to process data locally, rather than relying on off-

site GPU-enabled servers or the cloud. By pairing an Edge TPU

peripheral with the popular Raspberry Pi SBC (Single Board

Computer), we achieve AI-assisted real-time behavior analysis in a

small, cheap, power-efficient, and self-contained system. We show

that despite the computational limitations of our chosen hardware,

SARTAB is capable of robust behavior detection under challenging

real-world experimental conditions. Although the analysis pipeline

we present was built specifically for detecting P. demasoni courtship

behavior, the intrinsic flexibility of neural networks means that

our approach should be adaptable to novel species, environments

and behaviors.

2 Materials and methods

2.1 Tank configuration

Cichlids were housed in their home-tank environments,

consisting of 50-gallon (∼190 L) glass aquariums connected to

a centralized filtration system. A tinted film (BDF NA35 from

buydecorativefilm.com) was applied to the exterior of the tanks to

reduce reflections in the recorded video, and opaque white vinyl

shower curtains were used to block visibility between adjacent

tanks. To mimic the rocky crevices where P. demasoni mate in the

wild, we used a 6" length of 6" diameter green PVC pipe (Charlotte

Pipe 6" SDR35 Sewer Main Pipe) with a semicircular entrance cut

in one side and the top left open for visibility (Figure 1A). The

pipe was placed in a shallow acrylic tray (custom built) containing

a crushed coral and a rock painted with a white aquarium-safe

paint for improved contrast. Each tank was illuminated using

a combination of an LED strip light encircling the tank (Lepro

4100058-DW) and a small LED spotlight (Kuange XY0045) pointed

downward into the pipe. All lights, including the overhead lights in

the room, were connected to timers that turned them on at 7 am

and off at 7 pm each day. To eliminate surface ripples (which cause

distortion when imaging from above), we submerged a shallow

acrylic tray (custom built) just below the water surface. Each tank

was stocked with a group of one male and two female sexually

mature P. demasoni, as well as three “dither” fish – female fish

of an unrelated, less aggressive benthic cichlid species (Mchenga

conophoros X Copadichromis virginalis F2 hybrids) that were

included to disperse the aggressive tendencies of the focal male.

2.2 Recording hardware

Each tank was equipped with a data collection and analysis unit

consisting of a single-board computer (Raspberry Pi 4 model B)

equipped with a camera (Raspberry Pi Camera version 2.1) and

a peripheral TPU (Google Coral USB Accelerator model WA1;

Figure 1B). The camera was connected (via a ribbon cable) to the

Pi’s dedicated camera port, and the TPU (via the included USB

cable) to one of the Pi’s USB3.0 ports. Each unit also requires

a power supply (Raspberry Pi model KSA-15E-051300HU or

equivalent), a MicroSD card (SanDisk 256GB Extreme microSDXC
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FIGURE 1

Tank setup and data collection/analysis hardware. (A) Each tank is populated with one male and two female P. demasoni, as well as three "dither" fish

of an unrelated cichlid species. The male will occupy the green pipe and try to entice females inside to mate, making the pipe an important Region

Of Interest (ROI). (B) Above each tank is a data collection and analysis unit consisting of a Raspberry Pi 4b, a Pi Camera v2, and a Coral USB TPU to

accelerate neural network inference.

or equivalent), and an Ethernet cable (Cat5e or better). At

the time of writing, the total MSRP for these parts was $153.

Optionally, each unit can be equipped with a screen for ease

of interfacing and troubleshooting (e.g., a Raspberry Pi Touch

Display) and /or a case for added protection (e.g., a SmartiPi

Touch 2). When deploying multiple units, an unmanaged gigabit

Ethernet switch can be used to run all network traffic to a single

wall port.

2.3 Software

Continuous data collection, behavior detection, and

system response is executed using custom python code.

For the complete code, as well as detailed instructions

for installation and use, see: https://github.com/tlancaster6/

RBA.

2.3.1 Analysis overview
While the behavior of interest (courtship) in our study

system is itself complex, it is strongly associated with a

comparatively simple (yet sufficient) condition on the animals’

locations. Specifically, if we observe exactly two fish within

a particular ROI (the green pipe in Figure 2) for more than

a few consecutive seconds, we can be relatively confident

that courtship is occurring, and vice versa. We leveraged this

behavioral insight to design the analysis workflow outlined in

Figure 2, which can be divided conceptually into an object

detection phase (Figure 2A) and a behavior detection phase

(Figure 2B).

The goal of the object detection phase is to determine the

number of P. demasoni within the Region Of Interest (ROI) in each

frame. This is achieved using two object detection networks: one

trained to locate the ROI (defined as the rectangle circumscribing

the circular mouth of the pipe) in full-frame images, and another

trained to locate P. demasoni in images cropped to the ROI area.

For efficiency, ROI detection is run infrequently (once every 5 min)

and the cached results reused to perform the cropping operation.

P. demasoni detection is run at the highest possible frequency

such that the average per-frame processing time is less than the

actual time interval between frames (i.e., frames are not generated

faster than they can be processed). The number of frames passing

through the analysis pipeline per second does not need to match

the frame rate of the video being captured for later analysis, but

the former must be less than the latter. For a given frame, the

number of P. demasoni within the ROI (the ROI occupancy) is

determined by counting the number of high confidence (C > 0.5)

P. demasoni detections.

The goal of the behavior detection phase is to take a series of

recent ROI occupancies and determine whether courtship behavior

occurred. First, the system calculates ratio of frames where the

occupancy was 2 to the total number of frames in the series (double-

occupancy fraction). If the double-occupancy fraction is above a set

threshold, it concludes that a courtship display is in progress and

generates an email notification with a short video clip attached for

manual confirmation of courtship. In our system, we ran behavior

detection every 30 s using the previous 60 s of occupancy data

(resulting in a sliding analysis window with 50% overlap) but these

parameters can be easily adjusted via a configuration file.
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FIGURE 2

Overview of the SARTAB behavior detection pipeline. (A) To determine the number of fish in the ROI (the ROI occupancy) the system uses one object

detection network to locate the ROI, and another to locate the P. demasoni within an image cropped to the ROI area. (B) To infer whether courtship

is occurring from these detections, the system periodically calculates the fraction of recent frames where the ROI occupancy was 2 (double

occupancy fraction). If the fraction is above a certain threshold (which is pre-computed using a logistic regression classifier) the system generates an

email notification which prompts a researcher to collect tissue samples for later multi-omic analysis.

2.3.2 Object detection model training
For the two object detection tasks (ROI detection and P.

demasoni detection), we focused on EfficientDet-Lite networks—a

family of modified EfficientDet models (Tan et al., 2020) optimized

to run on Coral TPUs. We tested both Lite0 and Lite1 size variants,

as the larger variants must be pipelined through multiple TPUs

to function. We also trained YOLO-V5s models (a recent variant

of the popular YOLO architecture (Redmon et al., 2016) for P.

demasoni and ROI detection. While this model is not compatible

with the Coral TPU, it was useful for benchmarking the accuracy

of EfficientDet-Lite networks against state of the art models run

on traditional GPU-enabled workstations. A summary of the

properties of each network variant used in this paper can be found

in Table 1.

All ROI detection models were generated using a set of 99

manually-annotated full-frame images (720 x 1280), each with

exactly one ROI annotation. All P. demasoni detection models were

generated using a set of 2,228 manually-annotated images pre-

cropped to the ROI area (average resolution 402 x 408) containing

an average of 1.05 annotations per image. For both annotation sets,

we used a 90:10 train test split. Images were sampled from videos

of nine different tanks (each with a unique set of individual fish)

to maximize generalizability. For the ROI detection dataset, images

were sampled uniformly from full-day videos. For the P. demasoni

detection dataset, images were generated by first performing a

dense uniform sampling of full-day videos, then using the FiftyOne

library to bootstrap a smaller dataset of highly unique images.1

All models were trained for 50 epochs on a desktop equipped

with a NVIDIA RTX4070ti GPU. EfficientDet models were

trained using the TensorFlow Lite ModelMaker api, converted

1 https://github.com/voxel51/fiftyone-examples/blob/master/examples/

image_uniqueness.ipynb

to quantized TensorFlow-Lite models using full-integer post-

training quantization, and finally compiled for execution on the

Edge TPU using the Edge TPU Compiler command-line tool.2

The YOLO-V5s model was trained using the official YOLO-V5

software (version 7.0).3 All models were initialized with COCO

pretrained weights.

2.3.3 Object detection model evaluation
Model performance was primarily evaluated using

standard COCO metrics, and reported here in terms of

mAP@[0.5 : 0.05 : 0.95] (shortened to mAP@[.5 : .95] henceforth).

For comparisons between EfficientDet models, COCO metrics

were calculated both pre- and post-quantization, and average per-

frame inference speed was measured under realistic experimental

conditions. One-tailed two-sample t-tests were used to establish

the significance and directionality of differences in average

inference speed between models. The impact of training set size

on P. demasoni detection accuracy was quantified by retraining a

model with progressively smaller subsets of the training dataset

and comparing the mAP@[.5 : .95] on the original validation set.

The relative contribution of dither fish vs. background objects to

false positive detections was explored using a modified version of

the original validation set with dither fish annotated. One-tailed

Mann-Whitney U tests were used to establish the significance and

directionality of differences in the confidence score distributions

between detections associated with each of the three possible

ground truth labels (P. demasoni, dither, and none).

2 https://github.com/google-coral/tutorials/blob/master/retrain_

e�cientdet_model_maker_tf2.ipynb

3 https://zenodo.org/records/7347926
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TABLE 1 Properties of the network architectures used in this paper.

Architecture Quantized mAP@[.5 : .95] on COCO Model size (MB) Input dimensions (pixels)

EfficientDet-Lite0 Yes 0.257 4.56 320x320

EfficientDet-Lite1 Yes 0.306 6.08 384x384

YOLO-V5s No 0.374 14.81 640x640

Values taken from: https://www.kaggle.com/models/tensorflow/efficientdet/tfLite and https://github.com/ultralytics/yolov5.

FIGURE 3

E�ect of architecture, detection target, and quantization stage on object detection accuracy. The detection target (ROI vs. P. demasoni) has the

largest e�ect on accuracy, as seen from comparing the left and right plots. For both detection tasks, YOLO-V5s achieved the highest accuracy,

followed by E�cientDet-Lite1, then E�cientDet-Lite0. Post-quantization accuracies (dark blue) were marginally lower than their respective

pre-quantization accuracies (light blue). Note that, for YOLO-V5s models, only pre-quantization accuracy is shown.

2.3.4 Behavior detection model training and
evaluation

During operation, our system detects the behavior of

interest using a simple threshold on the double-occupancy

fraction summary statistic; if the double-occupancy fraction is

above this threshold, the system infers that courtship is likely

occurring, and vice versa. The threshold value was determined

empirically using a binary logistic regression classifier. First, a

reference set of 32 1-min clips (16 with courtship, and 16

without) were manually extracted. Next, the double-occupancy

fraction each clip was calculated automatically using the object

detection approach described above. This data was then used

to train a binary logistic regression classifier (SciKit-Learn

LogisticRegressionCV model with default parameters and a

training fraction of 0.8). Finally, the double-occupancy threshold

was set such that P(xcutoff ) = 0.5. Classification accuracy

was calculated for both the training and validation set. To

determine whether this approach was robust to sparseness in

the occupancy data, inference framerates ranging from 30 fps

(i.e., inference performed on and occupancy estimated for every

frame of the video) to 1fps (i.e., inference and occupancy

estimation only performed on every 30th frame) were simulated

and the effects on double-occupancy fraction and classification

accuracy explored.

3 Results

In this paper we present SARTAB, a system for automatically

detecting courtship displays in Pseudotropheus demasoni. We

developed this system to facilitate the collection of tissue samples

containing short-lived behaviorally-relevant neural biomarkers for

multi-omic analysis. Previously, our lab has used a similar approach

to explore the transcriptomic landscape of courtship in bower-

building cichlids (Johnson et al., 2020b; Long et al., 2020; Johnson

et al., 2023). In these species, males build elaborate sand structures

(bowers) to attract mates. By monitoring the bower construction

process, we could easily distinguish between behaving (actively

building) and non-behaving males. The cichlid fish P. demasoni

(the focal species of this study) belongs to the mbuna ecogroup,

which inhabits the rocky shorelines of LakeMalawi. Mbuna cichlids

do not build bowers; instead, males establish a territory around

a protected cave or crevice, then try to entice females into their

territory to mate. In the lab, a short length of PVC pipe stands

in for the cave. Observing two fish within this pipe is a strong

indicator of courtship behavior, and vice versa. To detect courtship

behavior in real-time, and thus facilitate neurogenomic analysis,

we developed a system that uses object detection to continuously

monitor the number of individual P. demasoni within the Region

Of Interest (ROI) defined by the pipe, then infers whether courtship
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TABLE 2 mAP@[.5 : .95] values from Figure 3.

Architecture Quantized Detection
target

mAP@[.5 : .95]

EfficientDet-Lite0 No ROI 0.991

EfficientDet-Lite0 Yes ROI 0.969

EfficientDet-Lite1 No ROI 0.992

EfficientDet-Lite1 Yes ROI 0.978

YOLO-V5s No ROI 0.999

EfficientDet-Lite0 No P. demasoni 0.734

EfficientDet-Lite0 Yes P. demasoni 0.718

EfficientDet-Lite1 No P. demasoni 0.745

EfficientDet-Lite1 Yes P. demasoni 0.737

YOLO-V5s No P. demasoni 0.808

is occurring from patterns in this data (see Figure 2 and section 1.31

for additional details).

3.1 Object detection performance

The first stage of the behavior detection pipeline uses

a pair of object detection networks to locate the ROI

(pipe), then locate the P. demasoni within the ROI. For

each of the two detection tasks, we trained and evaluated

three models: EfficientDet-Lite0, EfficientDet-Lite1, and

YOLO-V5s. Note that because the YOLO-V5s model is

incompatible with our TPU-based system, it is excluded from

some analyzes.

3.1.1 E�cientDet-Lite accuracies are within 10%
from YOLO-V5s accuracies

The YOLO-V5s model outperforms both EfficientDet-Lite

models on both tasks (Figure 3 and Table 2). This is to be

expected, as YOLO-V5s is not quantized and uses advanced

augmentation techniques during training. The performance

difference was most significant between the YOLO-V5s and

EfficientDet-Lite0 P. demasoni detection networks (mAP@[.5 : .95]

of 0.808 and 0.718, respectively). Considering that the EfficientDet-

Lite models can run on an inexpensive TPU, while the

YOLO-V5s model requires a GPU (or at the very least a

high-power CPU), an accuracy reduction of at most 0.09

seems reasonable.

3.1.2 Quantization has little e�ect on
performance

For both detection tasks, and for both EfficientDet-

Lite variants, quantization appears to reduce accuracy, but

only by a small amount (Figure 3 and Table 2). During

quantization, a model’s internal parameters are converted

from float32 to int8 values. This reduces model size 4x and

approximately triples inference speed,4 but usually at the cost

of accuracy. In our case, however, the accuracy difference

was marginal, with a maximum observed mAP@[.5 : .95]

loss of 0.022.

3.1.3 E�cientDet-Lite0 models are slightly less
accurate but significantly faster than Lite1 models

The EfficientDet-Lite1 architecture achieved slightly higher

accuracy than the EfficientDet-Lite0 architecture on both tasks

(Figure 3 and Table 2), but was significantly slower (Figure 4).

The Lite1 variant, having more parameters and a larger input

resolution, is expected to achieve higher accuracy than the

Lite0 variant, but at the cost of inference speed. We found

that, on average, the mAP@[.5 : .95] of our Lite1 models was

0.014 higher than our Lite0 models (a 1.6% average relative

increase), while the per-image inference time was 0.066 s longer

(more than a 50% average relative increase). T-tests confirm that

the Lite1 average inference time is significantly (p < 0.001)

higher than the Lite0 average inference time for both detection

targets (ROI and P. demasoni). We did not perform a statistical

comparison of the mAP@[.5 : .95] results because the observed

differences between model variants were so small that, even if

technically significant, they would not have influenced our choice

of model. Because inference speed is critical for achieving real-

time performance, and the observed accuracy difference was

marginal, we selected the EfficientDet-Lite0 architecture for both

detection tasks.

3.1.4 High accuracy is achievable with relatively
few training samples

Model performance generally increases with training

set size, but so does the amount of manual annotation

work required. While we found that P. demasoni detection

accuracy generally increased with training set size, we were

also able to achieve reasonable accuracies with relatively few

annotations (Figure 5). Using the full set of 2007 training

images and an EfficientDet-Lite0 model, we achieved a post-

quantization mAP@[.5 : .95] of 0.718 on the validation set

(221 images). Using a random subset of just 200 images

from the training set, we achieve a mAP@[.5 : .95] of 0.628

on the same validation set. This suggests that we may have

been able to achieve satisfactory results with significantly less

annotation effort.

3.1.5 Dither fish have minimal impact on P.

demasoni detection accuracy
Each tank contains three P. demasoni (the species of interest)

but also three "dither" fish of an unrelated, non-aggressive cichlid.

While the P. demasoni detection network was trained to ignore the

dither fish, we were nevertheless concerned that mis-identification

of dither fish as P. demasoni might be a major failure mode for

our system. Our analysis, however, indicates that the impact is

4 https://www.tensorflow.org/lite/performance/post_training_

quantization
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FIGURE 4

E�ect of architecture and detection target on inference speed. For both detection targets (ROI and P. demasoni), the E�cientDet-Lite1 architecture

(dark green) had a significantly higher mean inference time than the E�cientDet-Lite0 architecture (light green). Note all times refer to inference

speed for a quantized model running on a Coral TPU, hence YOLO-V5s is excluded due to incompatibility. ∗∗∗Indicates p < 0.001 (see methods).

FIGURE 5

E�ect of training set size on P. demasoni detection accuracy. The

E�cientDet-Lite0 post-quantization mAP@[.5 : .95] for P. demasoni

detection generally increases with the number of training samples,

but there is a clear diminishing return on annotation investment.

negligible. As shown in Figure 6A, P. demasoni true-positives (top)

have a significantly higher prediction confidence (p < 0.001)

than either dither-related (middle) or background-related (bottom)

false-positives. As such, even a conservative confidence threshold

of 0.5 results in relatively few false-positives (10 total in our

validation set), as illustrated in Figure 6B. We also observed that

dither-related false positives had statistically significantly higher

confidence scores (p < 0.001) than background-related false

positives, but this has minimal impact on the results as only outliers

within these groups exceed the cutoff threshold of 0.5. Of the ten

false-positives, four matched closely with the location of a dither

fish, while the other six were likely due to background objects.

For the remaining 209 dither annotations, the model does not

return a prediction (which, since the model is trained to ignore

dither fish, is the correct outcome). Of the 191 total P. demasoni

predictions (left column of the confusion matrix), 181 were in

fact P. demasoni (i.e., precision = 0.948). Of the 190 P. demasoni

annotations (top row of the confusion matrix), 181 were correctly

detected (i.e., recall=0.953). Based on this, we can conclude (1)

that the network performs effectively in detecting P. demasoni,

as indicated by the high recall score, and (2) that while dither

fish may be causing some high-confidence false positives, the

high precision score suggests that false positives in general are

relatively rare.

3.2 Behavior classification performance

In the second stage of the behavior detection pipeline, ROI

occupancy data (generated from the object detection phase) is

used to infer whether courtship is occurring. This is done by

taking a short series of the most recent ROI occupancy measures,

determining the fraction of frames in which the ROI occupancy

was 2 (double-occupancy fraction) and comparing the result to a

pre-computed threshold. If the double-occupancy fraction is above

the threshold, the system sends an email notification with a video

of the potential behavioral event. After human confirmation of the

automated conclusion (via both video review and confirmation of

the presence of fertilized eggs), we quickly collect and cryopreserve

brain tissue samples for single-nucleus transcriptomic profiling and

chromatin accessibility analyzes.

3.2.1 A logistic regression classifier consistently
detects courtship behavior

In applying our behavior detection approach to a set of 32

manually-selected video clips (16 with courtship, and 16 without)

we found that the double-occupancy fraction separates clearly

between the two categories, such that any double-occupancy

threshold in the range (0.02, 0.27) correctly classifies all 32 clips.

To choose a threshold empirically, and to ensure our methods

can be applied to less clear-cut cases, we used a binary logistic

regression classifier (Figure 7A). This yields a double-occupancy

fraction of 0.207 (vertical red dotted line) as a reasonable threshold

for classifying courtship clips, though the classifier could be made

more (or less) sensitive by reducing (or increasing) the probability

target (horizontal red dotted line).

3.2.2 Inference framerate has minimal impact on
behavior classification accuracy

In the previous section, we calculated double-occupancy

fraction for each test clip using every available frame (i.e., 1,800

frames per 1-min clip). To achieve this during real-time operation

would require a per-frame processing time below 33.3 ms, whereas

our EfficientDet-Lite0 inference times ranged from 128 to 131 ms.

Our observed inference speeds suggest a theoretical maximum

frame rate around 7.5 FPS, but in practice we ran our systems

at or below 5 FPS to leave headroom for other processes (e.g.
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FIGURE 6

Impact of dither fish on P. demasoni detection accuracy. (A) Confidence scores for demasoni predictions, separated by the actual ground-truth label.

Overall, the model correctly assigns high-confidence scores to correct predictions (top), and low confidences to potential false positives (middle and

bottom). Among the false positives predictions, those associated with dither fish (middle) were higher confidence than those associated with

background objects (bottom). ∗∗∗Indicates p < 0.001 (see methods). (B) Confusion matrix for a confidence threshold of 0.5 and IOU threshold of 0.6.

Note that, in a standard 2-class confusion matrix, the box marked “true negative” (TN) would be considered false negative (FN). However, because

dither annotations appear in our ground truth data, but not our training data, the model ignoring the dither fish is in fact the correct behavior, and

therefore marked TN. Outcomes that are not possible within our analysis paradigm are marked with a diagonal slash.

FIGURE 7

Validation of the logistic regression courtship behavior classifier. (A) Visualization of the logistic regression classifier used to identify courtship

behavior based on double-occupancy fraction. Note that the classification threshold (vertical dotted red line) correctly separates all courtship clips

(pink) and non-courtship clips (green). (B) Analysis of the robustness of the double-occupancy metric to variations in the P. demasoni detection

framerate. While the double-occupancy metric was less accurate at lower framerates, the error was never large enough to cause an incorrect

classification in our testing data.

writing the video to disk at a 30 FPS framerate). Based on our

analysis, however, we expect similar behavior detection accuracy

at 5 FPS as we would see at 30 FPS. To determine this, we first

repeated our logistic regression analysis from the previous section,

but this time calculated the double-occupancy fraction for each clip

using only every 6th frame (equivalent to uniformly sampling 30

FPS video at 5 FPS). The result is visually indistinguishable from

Figure 7A, with the classification threshold shifted by<0.004. Next,

we quantified how reducing the framerate affected the double-

occupancy metric that underlies the classification (Figure 7B). We

assumed that the double-occupancy fraction calculated using every

frame (i.e., at 30 FPS) represented our most accurate value for

each clip. We then recalculated the double-occupancy fractions

using every other frame (15 FPS), every third frame (10 FPS),

and so on, all the way up to every 30th frame (1 FPS). For

each FPS value, we then calculated the double-occupancy fraction

RMSE (compared to 30 FPS) across all 32 clips. At 5 FPS, this

corresponds to a double-occupancy fraction RMSE of <0.008. In

general, the RMSE tends to increase (and become increasingly

stochastic) as the FPS decreases. But even at very low FPS, the

error is still too small to cause any incorrect classifications in our

testing data.
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4 Discussion

Here, we have presented SARTAB, a novel system for real-time

detection of specific courtship behaviors in a species of LakeMalawi

African cichlid fish. We demonstrate how this system achieves

high ROI and animal detection accuracies (mAP@[.5 : .95] of 0.969

and 0.718, respectively) as well as 100% classification accuracy

on a set of 32 manually selected behavioral clips. Our system

uses inexpensive consumer-grade hardware, including Raspberry

Pi SBCs and Coral Edge TPUs, to achieve CV-assisted behavior

analysis. Unlike in most ML-capable behavior analysis workflows,

SARTAB centers around modular, self-contained recording and

analysis units deployed at the point of data collection. For small

projects, this reduces total cost significantly by better matching

hardware capabilities to actual computational requirements. For

larger projects it has the advantage of simple scalability; units

can be added and removed as needed without worrying about

bandwidth optimization, GPU multi-instancing, packet collision

avoidance, and other such barriers to scaling within traditional or

cloud-based computing architectures. In the context of laboratory

computational ethology, this scalability is particularly valuable for

studying infrequent behaviors under naturalistic conditions, as

running numerous experimental replicates in parallel maximizes

the overall frequency with which the behavior occurs. This makes

our system a valuable tool in behavioral neuroscience for exploring

the neuronal repertoire responsible for regulating behavioral

plasticity in response to novel and or infrequent stimuli.

While we developed SARTAB for a specific use case, the

approach we present here can be adapted to a wide variety of

experimental paradigms. With minimal modification, our system

could be applied to detect any behavior with a strong location-

dependency, but due to the intrinsic flexibility of ML and CV

analysis the possibilities are even broader. For example, while

we focus on object detection networks in our application, the

Google Coral platform is capable of numerous behaviorally

relevant CV tasks, including semantic segmentation (Gabdullin

and Raskovalov, 2023), pose estimation (Dos Santos Melício et al.,

2021), facial expression recognition (Mohammadi et al., 2023), and

image classification (Routis et al., 2024). And with the wide range

of accessories available for the Raspberry Pi, our "video in, email

notification out" design is just one of many possible input-output

configurations. Sensors such as microphones, thermometers,

accelerometers, RFID readers, andmotion sensors can be combined

to collect complex multi-modal behavioral data for real-time ML

analysis (see Couzin and Heins, 2023 for details on these and

other behavioral data modalities). The results can then be used to

intelligently control peripherals (e.g., servo motors, LED displays,

microfluidic pumps, etc.) to create true closed-loop behavioral

experiments (see Nourizonoz et al., 2020; Kane et al., 2020 for

examples using GPU-based systems).

While TPU-based systems have many advantages over

traditional GPU-based systems, it is important to understand

their limitations when designing a computational behavior analysis

approach. Notably, Edge TPUs are much less powerful than

modern GPUs. This is unsurprising considering the price difference

between an Edge TPU system like ours (MSRP $153) and

an entry-level desktop with a current-generation Nvidia GPU

(MSRP $2000+). In practice, this manifests as increased inference

latency and incompatibility with larger, more complex network

architectures. In our application, for example, we recorded a

minimum per-frame inference time of 128 ms, which was

significantly higher than the actual time (33.3 ms) between

frame captures. To overcome this, we only processed every

6th frame captured (∼5 frames per second) and based our

behavioral classification on rolling-window metrics calculated

over multiple frames. While the rolling-window width can be

reduced to minimize the lag between behavior occurrence and

behavior detection (at the cost of reduced resiliency to false

positives/negative detections), the inference latency sets a hard

lower limit on speed at which behavioral data becomes available to

the system. Because we were interested in a behavior that occurs on

the scale of seconds to minutes, this limitation was acceptable, and

we show that our approach classifies courtship vs. non-courtship

clips just as accurately when running at 5 FPS as it would running at

30 FPS. We further believe that this limitation would be acceptable,

and therefore that our system would be applicable with minimal

modification, to many classes of commonly studied behaviors, such

as feeding, nesting, shelter-seeking, and exploration.

If, however, the behavior of interest spans only a few frames,

or the system needs to respond to behavioral occurrences near-

instantaneously, more powerful hardware will be required to

achieve higher inference speed. Similarly, real-time detection of

behaviors characterized by fine-scale motion (rather than bulk

position) will likely necessitate hardware capable of rapid pose

estimation and simultaneous processing of the resulting output (see

Kane et al., 2020 for an example). As such, we encourage other

researchers to carefully consider their experimental needs, and how

those needs may evolve over time, before committing to a hardware

platform.We further recommend that, due to the added complexity

of real-time analysis, it should be treated as a tool in addition to

(rather than a replacement for) bulk offline analysis. That is why

we designed our system to not only to detect behavior in real-time,

but also to capture and archive behavioral video for more nuanced

analysis at a later date.

For applications requiring more powerful hardware there exist

a number of TPU-based and GPU-based options. The range of

available TPU-based systems is currently limited, but the Coral

Dev Board5 (MSRP $129.99) is likely better optimized for TPU

inference the Raspberry Pi as its operating system was built

specifically for TPU support and the TPU itself is integrated at

the board level. Alternatively, it is possible to accelerate inference

by connecting multiple Coral USB Accelerators (the same TPU

peripheral used throughout this manuscript, MSRP $59.99 each) to

a single computer,6 though this configuration would likely exceed

the capabilities of a Raspberry Pi. While we did not test either

of these TPU-based hardware solutions, we expect our software

would adapt to them easily due to pre-existing TPU compatibility.

In scenarios where a TPU-based device is insufficient, but a fully-

fledge GPU-enabled workstation or server is excessive, a system

from the developer kits from the Nvidia Jetson product line7 might

5 https://coral.ai/products/dev-board

6 https://coral.ai/docs/edgetpu/pipeline/

7 https://www.nvidia.com/en-us/autonomous-machines/embedded-

systems/
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provide a reasonable middle-ground. These devices are GPU-

based (and therefore capable of running higher-accuracy non-

quantized networks) but still achieve a small form factor and

reasonable price-point (MSRP $499 for the Jetson Orin Nano

Developer Kit). Ultimately, however, GPU-enabled workstations

and servers remain the most powerful and flexible solution, and

despite their price are likely the best solution for applications

requiring maximal accuracy and minimal latency. Adapting our

system to run on GPU-enabled devices would require modification

of the object detection script (which currently leverages the TPU-

specific pycoral API) and likely the data collection script (which

currently assumes the input device is a Pi Camera), but due to the

modular structure of our code-base should be achievable by any

experienced python programmer.

Going forward, broad commercial interest in Edge-AI will

continue to drive the development of inexpensive, compact

devices with impressive ML capabilities (Singh and Gill, 2023).

As we have shown in this paper, these devices have significant

potential applications within the fields of computational ethology

and behavioral neuroscience, and are particularly well-suited to

building systems for real-time behavior analysis. In a laboratory

setting, they can form the basis of cheap and highly flexible systems

for facilitating large-scale, long-term studies under challenging

naturalistic conditions. Beyond the lab, these devices have rich

potential applications in field settings, where their low power-

draw and small form-factor would make them ideal for intelligent

animal and environmental monitoring systems. Finally, the same

technologies found in devices like the Coral are increasingly finding

their way into smartphones and other consumer technologies,

presenting exciting possibilities for ML-driven citizen science and

STEM education.
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