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Dissociation between area TE and 
rhinal cortex in accuracy vs. 
speed of visual categorization in 
rhesus monkeys
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In real-world vision, objects may appear for a short period, such as in conjunction 
with visual search. Presumably, this puts a premium on rapid categorization. 
We designed a visual categorization task cued by briefly presented images to 
study how visual categorization is processed in an ethologically relevant context. 
We compared the performance of monkeys with bilateral area TE lesions, and 
those with bilateral rhinal cortex lesions, to control animals. TE lesions impaired 
the accuracy but not the speed of visual categorization. In contrast, rhinal cortex 
lesions did not affect the accuracy but reduced the speed of visual categorization. 
A generalized drift-diffusion model (GDDM) with collapsing bounds was fitted to 
the data. The drift rate was equivalent across all groups, but the decision bounds 
collapsed more slowly in the rhinal group than in the other two groups. This 
suggests that, although evidence is accumulated at the same rate in all groups, 
the rhinal lesion results in slower decision-making.
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1 Introduction

In the real world, visual objects often appear only briefly as they pass through our field of 
view. Rapid categorization of those objects is essential to guide the correct response, e.g., run 
from a source of danger or approach a rewarding object. Visual categorization requires 
integrating complex features, generating a template for each category and/or perceptual 
boundary between different categories, and assigning an object to one of those categories. The 
inferotemporal cortex (IT), comprising areas TEO and TE, plays a crucial role in object 
recognition and visual categorization (Kobatake and Tanaka, 1994; Tanaka, 1996; Grill-Spector 
and Weiner, 2014; Conway, 2018). A brain area adjacent to IT, the rhinal cortex, is known to 
support the valuation of visual objects (Liu et al., 2000; Mogami and Tanaka, 2006; Ohyama 
et al., 2012), object recognition memory (Meunier et al., 1993; Buckley et al., 2001; Bussey 
et al., 2003), and association among visual objects (Murray et al., 1993; Higuchi and Miyashita, 
1996; Fujimichi et al., 2010).

In the present study, we designed a visual categorization task cued by briefly presented 
images of visual objects to study the roles of area TE and rhinal cortex in rapid visual 
categorization. Three groups of monkeys—unoperated controls, those with bilateral area TE 
lesions, and those with bilateral rhinal cortex lesions—categorized morphed images of cats 
and dogs presented for 25, 50, 100, 250, or 500 ms, in an interleaved fashion. Accuracy and 
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processing time were taken as dependent measures. A generalized 
drift-diffusion model was used to model the animals’ decision-
making process.

2 Methods

2.1 Subjects

Nine male monkeys (Macaca mulatta) participated in this study. 
Three (5–6 years old, weighing 6.9–9.0 kg) received bilateral aspiration 
removals of area TE 2 years before the experiments in the present 
study (Matsumoto et al., 2016; Eldridge et al., 2018). Three (7 years 
old, weighing 7.0–14.5 kg) received bilateral aspiration removals of the 
rhinal cortex 3 years before the experiments in the present study 
(Eldridge et al., 2018). Three (8–11 years old, weighing 7.8–9.5 kg) 
were unoperated controls. The training histories of the groups were 
very similar; in particular, they had all undergone the same order of 
training in object recognition and categorization tasks immediately 
prior to this study (Eldridge et al., 2018). All experimental procedures 
followed the guidelines of the Institute of Medicine Guide for the Care 
and Use of Laboratory Animals and the regulations from the ILAR 
Guide for the Care and Use of Laboratory Animals and were 
performed under an Animal Study Proposal approved by the Animal 
Care and Use Committee of the National Institute of Mental Health.

2.2 Two-interval forced choice task

A trial began when a monkey held the touch bar (Figure 1A). A 
red dot appeared on the center of the screen. 500 ms to 1,500 ms later, 
a cue image, morphed to be either more cat-like or more dog-like 
(Figure 1B), was presented for a limited period of time (randomly 
selected from 25, 50, 100, 250, or 500 ms). The red dot turned green 
2000 to 3,000 ms after the cue image was removed. The green dot 
disappeared after 1,000 ms. The monkey needed to release the touch 
bar in one of two intervals depending on the category of the cue 
image, i.e., release during the red-dot interval for more cat-like 
images and release during the green-dot interval for more dog-like 
images. The monkey obtained a liquid reward for releasing the bar 
during the correct interval, and a 4 s timeout for releasing the bar 
during the incorrect interval. The reward size for release during 
red-dot and green-dot intervals was 1 and 4 drops, respectively, to 
compensate for the temporal discounting effect caused by different 
waiting times. The cue image (10° × 10° visual angle) for each trial 
was pseudo-randomly selected from a set of 440 morphed images 
(Figure 1B). The monkey was randomly rewarded in trials with 50% 
morphed cue images. A black and white noise background prevented 
afterimages (Figure 1A) when cue images were turned off.

2.3 Session selection and trial exclusion

In a prior study Eldridge et  al. (2018), all monkeys had been 
trained to categorize cat/dog images presented for the duration of the 
trial. In the present study, some monkeys required a period of 
acclimation to the short-duration presentations before stable 
performance was obtained. Unless otherwise stated, the analyses 
presented below included only data collected from sessions after 

performance reached a stable level, i.e., three successive days above 
threshold performance. For each monkey, the performance threshold 
was set to 80% of the highest correct rate, with a floor of 50%.

The reaction time of bar release during the first interval, cued by 
a red dot (“release-on- red” choice) is defined as the time elapsed from 
the cue image onset to the bar release, which includes time for visual 
processing and for motor execution. We observed a long tail in the 
reaction time distribution (Supplementary Figures S1A–C). For the 
trials with longer reaction times, we infer that the monkey may not 
be attending to the task. To separate the reaction times under the 
“inattentive” condition from those in which the monkey was attending 
to the task, the reaction times were fitted with a bimodal distribution 
function, which is a weighted sum of a generalized extreme value 
(GEV) distribution and a normal distribution (Li et al., 2021). The 
crossing point of the two distributions was used as the threshold and 
trials with reaction times longer than the threshold were excluded 
from subsequent analysis. The threshold, proportion of excluded 
trials, and the mean and standard deviation of reaction time for each 
monkey are summarized in Supplementary Table S1.

2.4 Data analysis

The categorization performance data was fitted with the function 
(Equation 1):

 1 cx d
by a
e += +

+  
(1)

where x is the morph level (% dog) of the images, y is the 
proportion of dog choices, and a, b, c, and d are free parameters. The 
maximum gradient of fit was represented by c.

The processing time was calculated for each monkey in each 
session as follows (Equation 2):

 ij ijPT RT on red RT on green= −  (2)

where PT is the processing time, RT is the reaction time, i is the 
ambiguity level index (inversed morph level for RT on green), and j is 
the image duration index.

A generalized linear mixed-effects model (GLMM) implemented 
in R, lme4 (version 1.1–35.5) (Bates et al., 2015), was used to analyze 
the effect of the treatment group (the control, the TE lesion, or the 
rhinal lesion) and image duration on the accuracy, reaction time, and 
processing time of visual categorization. When the analysis focused 
on the effect of the treatment group, the fixed effects were morph level 
and the treatment group (with interaction terms), and the random 
effects were monkey identity and session index. The R formula is as 
follows (Equation 3):

 

( ) ( ) ( )
( ) ( )

~ 1| 1|
0 | 0 |

data morph factor group monkey session
morph monkey morph session

∗ + +
+ + + +  

(3)

When the effect of image duration was considered, the fixed 
effects were the treatment group, morph level, image duration, and 
their interactions, and the random effects were monkey identity and 
session index. The R formula is as follows (Equation 4):
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monkey session morph monkey

duration monkey morph session
duration session

∗ ∗ +
+ + + +
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(4)

The data for accuracy analysis were fitted with a binomial 
distribution. The reaction time and processing time were assumed to 
follow a Gamma distribution.

2.5 Fitting of a generalized drift-diffusion 
model

To study the decision-making process among different treatment 
groups, we fitted monkeys’ performance (accuracy and reaction time) 
with a generalized drift-diffusion model (GDDM) (Shinn et al., 2020):

 ( ) ( ), , , ,dx x t dt x t dWµ σ= … + …

where “…” represents task conditions and fittable parameters. The 
decision variable x initiates from a starting position, which has a 
distribution X0, and reaches decision boundary B to terminate the 
process. A non-decision time, tnd, is also included in the model.

Model #1 is parameterized by (Equation 5):

 
( )

0

,
, ,

,
dM t D

x t
d M t D

µ
≤

… =  >

 ( ), , 1x tσ … =

 

( )0

1 ,
, 2 1

0,

z z
z
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X x S

otherwise

 − ≤ ≤… = +
  

(5)

 ( ) 0, tB t B e τ−… =

FIGURE 1

Behavior task and intended lesion areas. (A) Two-interval forced-choice task. Cue images appeared briefly, 25, 50, 100, 250, or 500  ms, in each trial. 
Monkey was required to release the bar during the red-dot interval for a more cat-like image and during the green-dot interval for a more dog-like 
image. (B) Cue image set. Each row shows one series of cue images which were morphed between one cat and one dog image with different ratios—a 
higher proportion of dog images from the left to the right. (C) Intended lesion areas. The shaded area on the left column shows the intended lesion 
area in area TE—bilaterally, from anterior to posterior, on the sagittal view of left and right hemispheres (top row) and coronal sections (lower rows). 
The shaded area on the right column shows the intended lesion area in the rhinal cortex—bilaterally, from anterior to posterior, on the ventral view of 
the left and right hemispheres (top row) and coronal sections (lower rows).
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( ) ( ) ( )2, ~ ,i i nd nd j tp t p t t t N t S∗ = −

where B0 equals 1, M is the morph level, D is the duration of image 
presentation, and N is a normal distribution. The six fittable parameters 
are drift rates d and d0, the parameter for starting position distribution 
Sz, bound collapse rate τ, and mean (tj) and standard deviation (St) of 
non-decision time. The probability distribution functions can 
be viewed as a discrete proxy of the continuous probability density.

To test the importance of each parameter, we  compared the 
performance of Model #1 with four other models by computing the 
Bayesian information criterion (BIC) and log-likelihood (LL). The 
BIC and LL values of Models #2–5 were normalized to those of Model 
#1 before statistical testing to control for variation among monkeys, 
which is caused by different sample sizes.

Model #2 does not include the starting position parameter 
(Equation 6):

 ( )0
1, 0

,
0,

x
X x

otherwise
=

… = 
  

(6)

Model #3 does not separate the drift rate between the image-on 
and image-off epochs (Equation 7):

 ( ), ,x t dMµ … =  (7)

Model #4 employed fixed decision bounds instead of collapsing 
bounds (Equation 8):

 ( ) 0,B t B… =  (8)

Model #5 does not include the starting position parameter, does 
not separate the drift rate between the image-on and image-off epochs, 
and employs fixed decision bounds, which leaves three fittable 
parameters, d, tj, and St (Equation 9):

 ( ), ,x t dMµ … =

 ( ), , 1x tσ … =

 
( )0

1, 0
,

0,
x

X x
otherwise

=
… = 

  
(9)

 ( ) 0,B t B… =

 
( ) ( ) ( )2, ~ ,i i nd nd j tp t p t t t N t S∗ = −

In the two-interval choice task design used here, the decision 
process should be reflected only in the reaction time of bar release 
during the first interval (red-dot interval). Thus, we  generated a 
reaction time distribution for correct trials on more dog-like images 
(bar release during the green-dot interval) by random sampling with 

replacement from correct trials on more cat-like images (bar release 
during the red-dot interval) and sample size equal to the original trial 
number. A reaction time distribution of incorrect trials on more 
cat-like images (bar release during green-dot interval) was generated 
by the same method from incorrect trials on more dog-like images 
(bar release during red-dot interval). This sampling method matches 
the accuracy of visual categorization and approximates the reaction 
time distribution of correct and incorrect trials for use in fitting the 
drift-diffusion model. There is a potential confound in the estimation 
of reaction time because this method assumes there would be no 
difference between the distribution of reaction times on more cat-like 
and more dog-like images. However, this estimation of reaction times 
is required for fitting the GDDM.

3 Results

Three groups of monkeys—an unoperated control group, a group 
with bilateral TE removals, and a group with bilateral rhinal cortex 
removals (Figure 1C)—were tested in a two-interval forced-choice 
categorization task cued by briefly presented images (Figure 1A).

3.1 TE lesion impaired the accuracy of 
visual categorization, whereas rhinal lesion 
did not

The average categorization performance across all image durations 
(Figure 2A) of the rhinal lesion group (maximum gradient = 11.68, 
point of subjective equality (PSE) = 48.09% dog) was comparable to 
that of the control group (maximum gradient = 12.46, PSE = 48.49% 
dog, GLMM, p = 0.78, z = 0.29). In contrast, the psychometric curve of 
the TE lesion group was flattened (maximum gradient = 8.74), 
indicating that the accuracy of visual categorization was impaired 
(GLMM, p = 6.05 × 10−7, z = 4.99). The curve was also left-shifted 
(PSE = 40.25% dog), indicating a choice bias. Accuracy of visual 
categorization was significantly correlated with image duration for all 
three groups (Figures 2B–D, GLMM, p < 2.0 × 10−16, z = −16.68).

3.2 Rhinal lesion lengthened processing 
time of categorization, whereas TE lesion 
did not

In the two-interval task design, the reaction time of bar release 
during the green-dot interval (“release-on-green”) can be interpreted 
as the time needed for basic visual-motor processing because the 
categorization decision has been made before the green dot appears. 
Indeed, it was not significantly modulated by the task difficulty, i.e., 
morph level of cue images and image duration 
(Supplementary Figure S1D, GLMM: morph level, p = 0.40, image 
duration, p = 0.62). The visual categorization and decision process is 
only reflected in the reaction time of “release-on-red” choices. 
However, the effect of task difficulty and the treatment group on the 
reaction time for “release-on-red” may not reach the statistically 
significant level due to the intra-monkey variance in basic visuo-
motor processing (Supplementary Figure S1D, GLMM: morph level, 
p = 0.08, image duration, p = 0.57, Rhinal lesion, p = 0.56, TE lesion, 
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p = 0.47). Here, we employed a measure termed “processing time” to 
reflect the visual categorization and decision process. Processing time 
was calculated by subtracting the mean reaction time of “release-on-
green” choices (representing the basic visuomotor response time) 
from the reaction time of “release-on-red” choices under each morph 
level and duration of images (see Methods). Thus, the intra-monkey 
variance of visuomotor response was removed.

In general, the processing time increased with the increased 
ambiguity of visual information, i.e., as the morph level of cue images 
approached 50%, in all the three groups (Figure 2E). Compared to the 
control group, the averaged processing time across all image durations 
was significantly lengthened for the rhinal lesion group (GLMM, 
p = 5.62 × 10−5, d.f. = 2, t = −4.03) (Figure 2E), but that of the TE lesion 
group was not significantly different from controls (GLMM, p = 0.58, 
d.f. = 2, t = −0.55). This suggests that visual categorization/decision-
making slowed after the rhinal cortex lesion but not after the TE 
lesion. Image duration had no consistent effect on the processing time 
among the three treatment groups (Figures 2F–H, GLMM, p = 0.08, 
d.f. = 4, t = 1.73).

3.3 GDDM performed better with 
collapsing decision bounds

To study the decision process in more detail, we  fitted a 
generalized drift-diffusion model (GDDM) to the accuracy and 
reaction time data. We compared the performance between the full 

model (model #1) and four other models which were constructed by 
fixing the value of one or more parameters in the full model. All 
parameters significantly affected the performance of models, but 
fixing the decision bounds (model #4 and model #5) resulted in 
poorer fitting than fixing starting position (model #2) or using one 
drift rate parameter (model #3) (Supplementary Figure S2A, Bayesian 
information criterion (BIC): model # 1 vs. model #4, p = 5.41 × 10−5; 
model # 1 vs. model #5, p = 5.41 × 10−5; model #1 vs. model #2, 
p = 5.41 × 10−5; model #1 vs. model #3, p = 3.50 × 10−3; log-likelihood 
(LL): model # 1 vs. model #4, p = 5.41 × 10−5, model # 1 vs. model #5, 
p = 5.41 × 10−5; model #1 vs. model #2, p = 5.41 × 10−5; model #1 vs. 
model #3, p = 4.92 × 10−4, Kolmogorov–Smirnov test). Model #1 
(Figure 3A) is used for comparing fittable parameters among the three 
treatment groups as it had the best performance and fully reflected the 
task design. It also captured the distributions of reaction times in both 
correct and incorrect trials for the monkeys in all three treatment 
groups (Supplementary Figure S2B).

3.4 Rhinal lesion changed decision bounds 
and TE lesion changed starting position

Compared to the control group, the bounds collapsed more slowly 
in the rhinal lesion group but collapsed at a similar rate in the TE 
lesion group (Figure  3B). The collapse rate τ was significantly 
decreased in the rhinal lesion group compared to controls but was not 
distinguishable between the TE lesion and the control groups 

FIGURE 2

Behavior performance in the control, the TE lesion, and the rhinal lesion groups. (A) Accuracy averaged among all image durations in the control (blue 
line), the TE lesion (green), and the rhinal lesion (red) groups. (B–D) Accuracy under different durations of cue image presentation in the control (B), the 
TE lesion (C), and the rhinal lesion groups (D). Lines in darker to lighter colors represent 25, 50,100, 250, and 500  ms image duration, respectively. 
(E) Processing time averaged among all image durations in the control (blue line), the TE lesion (green), and the rhinal lesion (red) groups. (F–H) 
Processing time under different durations of cue image presentation in the control (F), the TE lesion (G), and the rhinal lesion groups (H). Lines in 
darker to lighter colors represent 25, 50, 100, 250, and 500  ms image duration, respectively. n  =  3 monkeys for each group. Error bars represent S.E.M.
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(Figure 3C, control vs. rhinal lesion: p = 0.03; control vs. TE lesion: 
p = 0.32; Kolmogorov–Smirnov test). These observations suggest that 
the decision strategy was changed after the rhinal cortex lesion but not 
after the TE lesion.

The starting position Sz of the decision variable was significantly 
biased to the dog choice in the TE lesion group compared to the 
control group (Figure  3D, p = 0.03, Kolmogorov–Smirnov test), 
whereas it was comparable between the rhinal lesion and control 
groups (p = 0.98, Kolmogorov–Smirnov test). There was no significant 
difference between the drift rate during image presentation (d) and 
the rate after the image disappeared (d0) in all three treatment groups 
(Figure 3E, control: p = 0.32; TE lesion: p = 0.32; rhinal lesion: p = 0.98, 
Kolmogorov–Smirnov test). The drift rate did not change in the TE 
lesion or rhinal lesion group compared to the control group, neither 
during image presentation nor after the image disappeared (TE lesion: 
p = 0.32 for d and p = 0.32 for d0; rhinal lesion: p = 0.98 for d and 
p = 0.98 for d0, Kolmogorov–Smirnov test).

4 Discussion

We observed a dissociation between the deficits after bilateral TE 
removal and those after rhinal removal on accuracy and processing 
time of visual categorization; TE lesions impaired accuracy but not 

processing time whereas rhinal lesions did not affect accuracy but 
lengthened processing time. A generalized drift-diffusion model, 
fitted to the data, revealed that rhinal lesions slowed the collapse of the 
decision boundary, whereas TE removal biased the starting position 
of the decision variable.

4.1 Categorization relied on visual input

In the present task, the large number of images (440) and the 
variety across images (40 different series) make it hard for the monkey 
to memorize the association with the action, i.e., release on which 
interval, for each individual image. Monkeys’ performance accuracy 
decreased as task difficulty increased (Figure 2), which suggests that 
the monkeys were doing the task by categorization rather 
than association.

We speculated that following stimuli presented for very short 
durations, short-term memory may provide category information to the 
decision-making process after the image disappears. According to this 
hypothesis, the decision-making time would be lengthened at shorter 
image durations because category information stored in short-term 
memory will be weaker than that obtained from visual input, and hence, 
evidence accumulation will be slowed. However, the processing time of 
visual categorization in the present task (lower than 300 ms) was much 

FIGURE 3

Fitting results of generalized drift-diffusion model (GDDM). (A) GDDM: the decision variable starts at a flexible starting point, accumulates in a time-
varying drift rate, which is driven by the different strengths of evidence, and reaches a time-varying decision bound to trigger decision. (B) Decision 
bounds collapsed over time in the control (blue), the TE lesion (green), and the rhinal lesion (red) groups. The shaded area represents a 95% confidence 
interval. (C) The collapse rate τ of the decision bounds in the three groups. (D) The starting position parameter Sz in the three groups. (E) Drift rate 
during image presentation, d (darker colors), and after image turned off, d0 (lighter colors), in the three groups.
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shorter than it was in the continuously cued visual categorization task 
(500–600 ms) (Eldridge et al., 2018); both tests were performed in the 
same group of monkeys. Counter to our initial hypothesis, shorter 
presentation times resulted in shorter processing times (Figures 2G,H). 
This suggests that the subjects relied primarily on visual input, not 
short-term memory, to make categorization decisions.

4.2 Expediting decisions to maximize 
reward

We studied the decision-making process by fitting a generalized 
drift-diffusion model. The introduction of collapsing decision bounds 
significantly improved the goodness of fit (Supplementary Figure S2A). 
This indicates that the cumulative evidence required to trigger a 
decision decreased over time; i.e., choices were taken on the basis of 
less evidence if evidence accumulation was too slow. Previous studies 
suggest that collapsing decision bounds may be favored when task 
difficulty/uncertainty is high (Malhotra et al., 2018), and/or when the 
subjects are very experienced in the task (Hawkins et  al., 2015). 
Expediting decisions maximize total reward in these conditions 
(Tajima et al., 2016). In the present task, the shortened image durations 
increased task difficulty and the interleaved image durations introduced 
uncertainty. These manipulations may explain why monkeys sped up 
their decisions relative to our previous, continuously cued, study.

4.3 TE lesions impaired perceptual 
processing but did not alter decision 
strategy

The accuracy of visual categorization was significantly impaired 
after bilateral TE lesions (Figure  2A), and decisions were biased 
toward the “dog” choice (Figures 2A, 3D). The latter indicates that 
monkeys preferred the choice of offering a bigger reward at a longer 
delay when the visual evidence was unreliable. The impairment in 
visual processing after TE lesions is consistent with previous reports 
(Matsumoto et al., 2016; Eldridge et al., 2018; Setogawa et al., 2021). 
The effect of image duration on visual categorization accuracy was 
comparable between the TE lesion group and controls (Figures 2B,C), 
indicating that the visual categorization function was not entirely 
abolished after the TE lesion.

Processing time was unaffected by TE lesions (Figures 2E–G) as 
was the rate of decision-bound collapse (Figures 3B,C). These results 
suggest that the decision strategy was unchanged after the TE lesion.

4.4 Rhinal lesions slowed decision-making 
but did not impair perceptual processing

After bilateral rhinal lesions the accuracy of visual categorization 
was intact (Figures 2A,B,D). This suggests that the rhinal cortex did 
not contribute to the perceptual processing of these stimuli, which is 
consistent with our earlier study (Eldridge et  al., 2018). Previous 
studies have suggested that the rhinal cortex might play an important 
role in object recognition when short-term memory is required 
(Meunier et  al., 1993; Buffalo et  al., 1999). However, the visual 
categorization in this task placed demands primarily on visual input, 

not short-term memory (as discussed above in the section 
“Categorization relied on visual input”).

Processing time was significantly lengthened in the rhinal lesion 
group compared to the control group (Figures 2E,F,H). The fitting 
results showed that the decision bounds in the rhinal lesion group 
collapsed more slowly than those of the control group (Figures 3B,C). 
As mentioned above, the shortened image duration may be the driving 
force for faster decisions in the present task, i.e., the likelihood of 
gathering reliable category information decreases over time. Monkeys 
may develop a prediction of image duration—a “decision deadline”—
to optimize the collection of category information. Lesions of the 
rhinal cortex, including the entorhinal cortex (Figure 1C), may impair 
the prediction of image duration (Tsao et al., 2022; Dias et al., 2021; 
Heys et al., 2020; Bright et al., 2020; Montchal et al., 2019; Heys and 
Dombeck, 2018) and, hence, lengthen the processing time. Other 
possibilities are that efficient decision completion was impaired, rhinal 
lesion monkeys could have lost sensitivity to the uncertainty of the 
task—uncertainty may lead to faster decisions (Malhotra et  al., 
2018)—or motivation to maximize the reward rate was compromised. 
Such effects could be caused by lesions to the other component of the 
rhinal cortex, the perirhinal cortex (Figure 1C), which has connections 
with the orbitofrontal cortex, cingulate cortex, and amygdala (Suzuki 
and Naya, 2014; Suzuki and Amaral, 1994; Stefanacci et al., 1996; de 
Curtis and Paré, 2004; Suzuki, 2009). There is evidence from prior 
studies that attention may be impaired after perirhinal cortex lesions 
in humans (Barense Morgan et al., 2012). However, impairment in 
attention would be expected to slow evidence accumulation and lead 
to longer reaction times in the task we used, but the unchanged drift 
rate after the rhinal cortex lesion (Figure  3E) does not support 
this interpretation.

4.5 Different roles for area TE and rhinal 
cortex in visual categorization

We report a double dissociation of the effects of lesions of area TE 
and lesions of the rhinal cortex in a test of rapid visual categorization. 
The TE lesion group appeared to seek to maximize their reward rate 
by maintaining decision-making rates at the same level as controls, 
despite a significant reduction in categorization accuracy. Rhinal 
lesions slowed decision-making; possible explanations for this 
observation are as follows: impaired time prediction, e.g., cannot 
effectively implement a “decision deadline”; loss of sensitivity to the 
task difficulty; and reduction in motivation to maximize the reward 
rate. In conclusion, area TE processes the visual perceptual 
information that is fundamental for all forms of visual categorization 
(Cauchoix et al., 2016; Freedman et al., 2003; Meyers et al., 2008), 
whereas the rhinal cortex supports the type of rapid categorization 
likely to be  important for evaluating the dynamic visual input 
experienced during natural behavior.
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