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Changes in memory performance are one of the main symptoms of normal aging. 
The storage of similar experiences as different memories (ie. behavioral pattern 
separation), becomes less efficient as aging progresses. Studies have focused on 
hippocampus dependent spatial memories and their role in the aging related deficits 
in behavioral pattern separation (BPS) by targeting high similarity interference 
conditions. However, parahippocampal cortices such as the perirhinal cortex are 
also particularly vulnerable to aging. Middle age is thought to be the stage where 
mild mnemonic deficits begin to emerge. Therefore, a better understanding of 
the timing of the spatial and object domain memory impairment could shed 
light over how plasticity changes in the parahipocampal-hippocampal system 
affects mnemonic function in early aging. In the present work, we compared the 
performance of young and middle-aged rats in both spatial (spontaneous location 
recognition) and non-spatial (spontaneous object recognition) behavioral pattern 
separation tasks to understand the comparative progression of these deficits 
from early stages of aging. Moreover, we explored the impact of environmental 
enrichment (EE) as an intervention with important translational value. Although a 
bulk of studies have examined the contribution of EE for preventing age related 
memory decline in diverse cognitive domains, there is limited knowledge of 
how this intervention could specifically impact on BPS function in middle-aged 
animals. Here we evaluate the effects of EE as modulator of BPS, and its ability to 
revert the deficits caused by normal aging at early stages. We reveal a domain-
dependent impairment in behavioral pattern separation in middle-aged rats, with 
spatial memories affected independently of the similarity of the experiences and 
object memories only affected when the stimuli are similar, an effect that could 
be linked to the higher interference seen in this group. Moreover, we found that 
EE significantly enhanced behavioral performance in middle-aged rats in the 
spatial and object domain, and this improvement is specific of the high similarity 
load condition. In conclusion, these results suggest that memory is differentially 
affected by aging in the object and spatial domains, but that BPS function is 
responsive to an EE intervention in a multidomain manner.
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Introduction

Memory impairment is part of the aging process both in animals 
(Barnes et al., 1980; Barnes, 1988; Rapp and Amaral, 1992; Gage et al., 
1988; Rapp and Heindel, 1994; Gallagher and Colombo, 1995; Lester 
et al., 2017) and humans (Rapp and Heindel, 1994; Lester et al., 2017; 
Craik, 1990; Gabrieli, 1996; Alexander et al., 2012). Aging has been 
associated with a disproportionate decrease in performance in 
particular cognitive domains, such as episodic and spatial memory 
(Lester et al., 2017; Barnes, 1979; Bohbot et al., 2012; Techentin et al., 
2014; Isingrini and Taconnat, 2008; Spencer and Raz, 1995; Moffat, 
2009; Bach et al., 1999; Ces et al., 2018; Creer et al., 2010; Rapp et al., 
1997; Lacreuse et al., 2014; Moffat et al., 2006; Oler and Markus, 1998; 
Gallagher and Pelleymounter, 1988; Dunnett et al., 1988; Markowska 
et  al., 1989; Cansino, 2009; O'Callaghan et  al., 2009). The deficits 
found go from a reduced ability to maintain contextual details of an 
experience (Cansino, 2009; McDonough et al., 2014) to an increase in 
the susceptibility to interference (Talamini and Gorree, 2012) and a 
tendency to treat novel stimuli as familiar (ie. false recognition 
memory) (Yeung et al., 2014; Pidgeon and Morcom, 2014; Burke et al., 
2010). All these deficits combine during aging, leading to retention 
impairments that start to emerge in middle-aged animals (Bizon et al., 
2009; Driscoll et al., 2006; Foster et al., 2003; Kumar et al., 2012).

Recently, aging has begun to be considered a nonlinear process, 
with middle age signaled as the key point of acceleration in this 
progression (Dohm-Hansen et al., 2024). Human research suggests 
that one of the earliest behavioral expressions of this decline could 
be the reduced ability to discriminate similar stimuli in order to avoid 
interference, also referred as behavioral pattern separation (BPS) (Leal 
and Yassa, 2015). In fact, performance of memory discrimination 
tasks in humans was shown to be more sensitive to cognitive decline 
than standardized neuropsychological screening tools like the delayed 
recall RAVLT test (Stark et al., 2013). In rodents, the dentate gyrus 
(DG) region of the HP, is crucial for discrimination of overlapping 
spatial and non-spatial memory, having a key function in avoiding 
memory interference (Gilbert et al., 2001; Bekinschtein et al., 2013; 
Miranda et al., 2018; Miranda et al., 2017; Sahay et al., 2011).

Clear signs of memory decline are highly documented on rodents 
at a late aging stage (>20 months) (Barnes et al., 1980; Creer et al., 
2010; Gallagher and Pelleymounter, 1988; Burke et al., 2012; Gage 
et al., 1984; Gallagher and Burwell, 1989; Holmes et al., 2010; Rapp 
et al., 1987; Johnson et al., 2017). However, it is currently believed that 
is actually during middle age that cognitive decline, and in particular 
spatial memory deficits, begin to emerge (Bizon et al., 2009; Begega 
et al., 2012; Frick et al., 1995). In contrast with this, there is a higher 
level of discrepancies in the impairments reported for non-spatial 
tasks, with reports of impairment in middle age (Bouet et al., 2011) 
that contrast with others showing no impairment in object recognition 
tasks until very late stages (>30 months) (Siette et al., 2013; Teglas 
et al., 2019). This could be the result of a mild level of mnemonic 
compromise in middle-aged animals (10 to 16 months old) (Calhoun 
et al., 1998; Das and Magnusson, 2008; Magnusson, 2001; Magnusson, 
1998; Means and Kennard, 1991; Gros and Wang, 2018), that could 
only be  evidenced in particular conditions, such as the high 
interference conditions present in BPS tasks.

A bulk of studies have suggested the use of a simple behavioral 
treatment, environmental enrichment (EE) (a multicomponent 
approach that provides sensory, motor, social and cognitive 

stimulation), could be  effective in alleviating age-related memory 
dysfunction (Winocur, 1998; Harati et al., 2011; Sampedro-Piquero 
et al., 2013; Harburger et al., 2007; Harburger et al., 2007; Frick and 
Fernandez, 2003; Pham et al., 1999; Kempermann et al., 1998; Bennett 
et al., 2006; Lores-Arnaiz et al., 2006; Mirochnic et al., 2009; Mora 
et al., 2007; Soffie et al., 1999). In particular, EE has been shown to 
improve spatial cognitive decline (Kumar et  al., 2012; Sampedro-
Piquero et al., 2013; Harburger et al., 2007; Frick and Fernandez, 2003; 
Kempermann et al., 1998; Bennett et al., 2006; Speisman et al., 2013). 
On the other hand, EE has also proven to improve non-spatial object 
recognition learning abilities in aged animals (Gresack et al., 2007; 
Leal-Galicia et al., 2008; Cortese et al., 2018). Moreover, the emergence 
of studies that indicate that this beneficial effect of enrichment can 
be initiated at any point in the lifespan increases the therapeutic and 
translational utility of this approach (Sampedro-Piquero et al., 2013; 
Harburger et al., 2007; Bennett et al., 2006; Frick and Benoit, 2010; 
Rosenzweig and Bennett, 1996), with clinical trials showing benefits 
of enriching activities starting at old age (Ballesteros et al., 2015; Train 
the Brain Consortium et al., 2017; Cintoli et al., 2021; Ngandu et al., 
2015). However, studies have shown that the magnitude of the effect 
may depend on the time of exposure being higher for middle-aged 
than aged animals (Kobayashi et al., 2002). In this sense, EE in middle-
aged animals emerges as model of cognitive enrichment strategies in 
humans that, with the right timing, could help mitigate age-related 
cognitive impairments. Considering that BPS is one of the first 
functions to be  affected by aging, understanding the differential 
contribution of EE to this function is crucial for the translational value 
of EE. However, little is known of how EE could differentially impact 
BPS in different memory domains.

In this work, we used middle-aged population to evaluate their 
cross-domain memory discrimination abilities under low and high 
interference memory conditions. For this purpose, we used variants 
of an incidental memory tasks (ie. object recognition/location tasks) 
where we  quantitatively varied the load of similarity between the 
to-be-remembered objects in order to reveal subtle differences in 
memory discrimination performance both in the spatial and 
non-spatial domain. Here we describe a domain-specific impairment 
in BPS in middle-aged rats, with spatial memories affected 
independently of the similarity of the experiences and object 
memories affected as a function of the similarity load of the 
experience. Moreover, we studied the ability of EE as a therapeutic 
strategy to improve memory discrimination abilities in middle-aged 
rats and discovered that EE has beneficial effects on BPS performance 
both in the spatial and the object domain.

Methods

Subjects

The subjects were 81 Long-Evans male and female rats from our 
breeding colony. Young animals were 2–3 months old while middle-
aged animals were 11–13 months old.

The rats were housed on a reversed 12-h light/12-h dark cycle 
(lights on 1900–0700), in groups of two to four. All behavioral testing 
was conducted during the dark phase of the cycle. Rats were food 
deprived to no less than 90% of their free feeding weight to increase 
spontaneous exploration. Water remained available ad libitum 
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throughout the study. All experimentation was conducted in 
accordance with the National Animal Care and Use Committee 
(CICUAL).

Environmental enrichment
Animals were housed in subsequently different environments, as 

follows: (i) the control condition (SE), correspond to the time when 
animals were housed in standard laboratory cages (33.5*45*21.5 cm) 
with two animals per cage; (ii) the environmental enrichment 
condition (EE), corresponds to the condition where 4–6 animals were 
housed at a time in a big cage with several stages (33.5*45*64.5 cm) 
and many bottles of water and food hoppers, tubes, and ramps that 
were repositioned twice a week and changed weekly, as previously 
described (Dorfman et al., 2013). Rats were caged in these conditions 
for 4 weeks (Frick and Fernandez, 2003; van Praag et  al., 2000; 
Nithianantharajah and Hannan, 2006). As part of the EE experiment, 
animals were tested immediately before entering the cage (SE 
condition) and after 4 weeks in the cage (EE condition). All animals 
were tested for the s- and d-SOR, as well as the s- and d-SLR on each 
of these two opportunities, using different and novel objects on each 
of these sessions. The EE experiment began when animals were 
11–12 months old. For the duration of the behavioral testing, animals 
remained in their housing conditions (ie. EE or SE), as depicted in 
Supplementary Figure S1A.

The “cognitive training” exposure protocol (CT) consisted of 5 
trials of repeated exposure to similar objects (ie, objects that shared 
one feature AB and BC). Before the CT protocol, there was a 3-day 
5 min habituation to the triangular environment for the SOR. After 
the habituation, animals were tested for the s-SOR task. The CT 
sessions started following the test of the s-SOR. The CT sessions were 
separated by 24 h, and lasted 5 min. Animals were placed in the 
triangular context and were exposed to a couple of objects that shared 
one feature. The objects were designed by joining two small junk 
object elements. On each exposure session, the objects were formed 
by different features that were never repeated during CT protocol of 
during training or test sessions of the SOR. Immediately after the CT 
exposure, animals were tested for the s-SOR.

Apparatus
For the spontaneous object recognition task (SOR), the triangular 

open field made of white foam board was used. Each wall was 60 cm 
long by 60 cm high. The circular open field (90 cm diameter, 45 cm 
high) used for the spontaneous location recognition task (SLR) was 
made of black plastic. Both open fields were situated in the middle of 
a dimly lit room. The walls of the triangular open field were higher to 
minimize the visual access to the distal cues in the room. The circular 
open field was surrounded by six spatial cues. The open field floor was 
always covered with wood shavings. A video camera was positioned 
over the arena, and sample and choice phases were recorded for later 
analysis. The objects for the SOR task were made of two different 
smaller objects, except for the extra-similar condition, in which they 
were made by three smaller objects [for examples of the objects used, 
see (Miranda et al., 2018; Miranda et al., 2017)]. Composite objects 
were made by attaching together two or three of the smaller items in 
the conditions described in the Results section. We  always used 
different junk objects for our within-subject design (Miranda et al., 
2018; Miranda et al., 2017). Junk object features offer different textures 
and curvy shapes that are not present in LEGO-based objects. For the 

SLR, the objects used were either soda cans or beer bottles from which 
the label had been removed. All objects were fixed to the floor of the 
open field with Blu-tack and cleaned with a 50% ethanol solution 
between sample and choice trials. For the SOR task, all three 
composite objects were aligned close to one of the walls of the arena, 
and positions within this line were pseudorandomly assigned.

Behavioral procedures
Before every experiment, all rats were handled for 2 days and 

habituated to each empty context during either 5 min over 3 days 
(SOR) or 10 min over 5 days (SLR). The SOR and SLR task were 
performed as previously reported (Miranda et al., 2018; Miranda et al., 
2017; Miranda et al., 2021). Briefly, for the SOR task, after habituation, 
the rats were exposed during a 5-min duration sample phase to three 
objects made of either two or three features depending on the 
condition. For the similar condition, two of the objects shared one 
feature (AB and BC) and the third object was made of two other 
different features (EF). For the dissimilar condition, all three objects 
were made of different features (AB, CD, and EF). The choice phase 
lasted 3 min and was conducted 24 h after the finalization of the 
sample phase. In this case, the animals were exposed to two objects, 
one novel and one familiar, that varied in composition according to 
the condition evaluated. For the similar condition, the novel object 
was made of the two nonshared features of the objects presented in 
the sample phase (AC), and the familiar object was a copy of the third 
object (EF). For the dissimilar condition, the novel object was made 
of two novel features (GH), and the familiar object was a copy of one 
of the objects presented during the sample phase (AB, CD, or EF) (see 
schemas in Figure 1A). We always used different objects and features 
for the different trials. This means that letters do not indicate the use 
of shared object or features across trials but only within trials (ie. they 
are a representation of the features that compose each object during 
each trial). Different features (A, B, C, etc) were used to reproduce the 
same task conditions in the consecutive trials of the within subject 
design. The rationale behind the task was that if the rats were able to 
separate the two similar objects, their representations should 
be distinct and resistant to confusion; therefore, the rats should show 
preference for the novel object during the retrieval phase. However, if 
the representations of the two similar objects were not sufficiently 
separated, presentation of the new object would activate a familiar 
representation in memory and would thus not be distinguishable. The 
result would be  that rats should behave as if the new object 
was familiar.

For the SLR task, after habituation, rats were exposed to three 
identical objects, A1, A2, and A3, during a sample phase that lasted 
for 10 min. For the similar SLR (s-SLR), objects A2 and A3 were 
placed 50° apart (20.5 cm between them) and object A3 at an equal 
distance from the other two. For the dissimilar SLR (d-SLR), objects 
A1, A2, and A3 were equidistant, 120° (49 cm between them) apart 
from each other. Twenty-four hours after the sample phase, rats were 
exposed to two new identical copies of the objects, A4 and A5, for 
5 min. New identical copies were used to prevent the use of olfactory 
cues. During this choice phase, object A4 was placed in a familiar 
location (same position as in the sample phase) and object A5 was 
placed in a novel location. For the s-SLR task, the novel location was 
defined as a position exactly in between the ones in which objects A2 
and A3 were located during the sample phase (see schemes in 
Figure 1B). For the d-SLR task, object A4 was placed in a familiar 

https://doi.org/10.3389/fnbeh.2024.1478656
https://www.frontiersin.org/journals/behavioral-neuroscience
https://www.frontiersin.org


Miranda et al. 10.3389/fnbeh.2024.1478656

Frontiers in Behavioral Neuroscience 04 frontiersin.org

location and object A5  in a position equidistant to the previous 
locations of A2 and A3 (see schemas in Figure 1B).

For the experiments shown in Figure 1, either young or middle 
age animals were tested two times. In the case of the SLR task 
(Figures  1D–F), independent groups of young and middle-aged 
animals were tested for both the similar and dissimilar version of the 
SLR task. For the SOR task (Figures 1C–E), independent groups of 
young and middle-aged animals were tested for both the similar and 
dissimilar version of the SOR task.

For the experiment of Figure 2, an independent set of animals 
was used. Animals were first trained in the similar version of the 
task. There was a reminder session 24 h after, where animals were 
presented with a familiar object (EF) and a similar novel object 
(AC), as during a normal choice test session. However, after this 
reminder, animals were retested twice, once for probing AB 
memory against a novel object and another for AC memory 
against a novel object. These two tests were given in a 
counterbalanced manner.

FIGURE 1

Early age-related impairment in object and spatial memory discrimination in high and low interference conditions. (A) Schematic illustration of the 
dissimilar (Down) and similar (Up) configurations of the spontaneous object recognition (SOR) task. Bold characters represent novel objects during 
choice session. (B) Schematic illustration of the two configurations of the SLR task, the dissimilar version (Down) and the similar version (Up), with black 
circles representing the novel position during the choice session. (C) Percentage of time animals spent exploring each object in the high similarity 
(s-SOR, orange) and low similarity (d-SOR, violet) conditions of the SOR task both in young (left) and middle-aged (right) animals. (D) Percentage of 
time animals spent exploring each object in the high similarity (s-SLR, orange) and low similarity (d-SLR, violet) conditions of the SLR task both in young 
(left) and middle-aged (right) animals. n =  19–24. (E) Performance of young and middle-aged rats in the s-SOR and d-SOR task. (F) Performance of 
young and middle-aged rats in the s-SLR and d-SLR task. n =  12–14. Data expressed as the mean ±  SEM; *p <  0.05, ** p <  0.01, # represents p <  0.05 
against 0. Light colors represent the values for young animals and darks colors those of aged animals.
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For the experiments shown in Figure 3, animals were tested 4 
times (d-SOR, s-SOR, d-SLR, s-SLR) both before (SE condition) or 
after (EE condition) exposure to EE. In all the cases, the order of the 
tasks was counterbalanced.

Exploration was recorded and scored manually for both the 
sample and choice phases. For all experiments, exploration of a 
particular object was defined as the rat having its nose directed at the 
object at a distance of 2 cm or less, or touching the object with its 
nose. Rearing with the head oriented upward did not count as 
exploration. Climbing over or sitting on the objects was not included. 
Two people scored the videos; one was blind to the novel and 
familiar objects.

Statistical analysis

For all the experiments, the results were expressed as a 
discrimination ratio that was calculated as the time exploring the 
novel object (SOR) or the object in the novel location (SLR) minus the 
time exploring the familiar object (SOR) or the object in the familiar 
location (SLR) divided by total exploration time [(tnovel-tfamiliar)/ttotal]. 
One sample t tests were used to compare discrimination ratio from 
the similar and dissimilar conditions against zero. For the sample 
phase, the percentage of time exploring each object was compared 
between groups using a repeated measures two-way ANOVA, with age 
and object as the repeated measures. For the choice phase, 
discrimination ratios were compared within subject using a paired t 
test (s-SLR vs. d-SLR, s-SOR vs. d-SOR). In case of non-normal data, 
non-parametric analysis was used.

Results

Middle-aged animals are impaired on high 
similarity load object memory 
discrimination and both high and low 
similarity load spatial memory 
discrimination

To evaluate behavioral pattern separation in the object domain, a 
modified version of the spontaneous object recognition task was used 
(SOR), as in previous reports. The task was modified to evaluate the 
ability to discriminate objects with different degrees of similarity and 
is highly dependent on the PRC (Miranda et al., 2017; Miranda et al., 
2021). In the object domain, this was achieved by controlling the load 
of object similarity using shared object elements, that were present in 
the similar version of the task (s-SOR, high load) but absent in the 
dissimilar version (d-SOR, low load) (see Methods) (Figure 1A).

During the choice session, we found that young animals performed 
correctly the object version of the task at both high and low load of 
similarity, as they showed positive discrimination indexes in both (One 
sample t test against 0; Young d-SOR t(19) = 8.016, p < 0.0001; Young 
s-SOR t(19) = 4.216, p = 0.0005) (Figure 1E). These results are in line 
with our previous work showing an ability in young rats to differentiate 
between similar object memories (Miranda et al., 2018; Miranda et al., 
2017; Miranda et al., 2021). On the other side, middle-aged animals 
exhibited an impaired performance on the similar version of the SOR 
without an effect over the dissimilar version, as evidenced by its 
positive discrimination ratio [One sample t test against 0; s-SOR 
t(24) = 0.248, p = 0.806; d-SOR t(24) = 5.116 p < 0.0001] (Figure 1E). The 

FIGURE 2

Early impairment in object memory discrimination is linked to memory interference in the aged group. (A) (Up) Timeline of the experiment. After 
animals went through a “reminder” choice session, memory for the AB and AC objects was tested against novel objects. (Down, left) Discrimination 
ratio of young and middle-aged animals during the “reminder” choice session. One sample t test against zero, Young t =  4.400 p =  0.005 Aged 
t =  0.693 p =  0.510. (Down, right) Discrimination ratio during the second test session 48  h after the original sample session. One sample t test AB young 
t =  1.401 p =  0.211, AC young t =  0.224 p =  0.830, AB aged t =  3.895, p =  0.006, AC aged t =  3.057 p =  0.018. Data expressed as the mean ±  SEM. Light 
colors represent the values for young animals and darks colors those of aged animals. n =  7–8, ** p <  0.01, # represents p <  0.05 against 0.
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FIGURE 3

Effect of environmental enrichment over memory discrimination performance in low and high similarity conditions of the object and spatial domain. 
(A) Schematic representation of the task depicting the timeline of the experiment. One year old animals living in a standard environment were tested 
for the similar and dissimilar versions of both the SLR and SOR (SE condition, light) and after this they went through a 4-week continuous EE 
intervention. At the end of this month, they were re-tested under the same similar and dissimilar versions of the task (EE condition, dark). (B) Percentage 
of object exploration time in animals that went through the SOR task (Left) or SLR task (right) before (SE condition) or after (EE condition). 
(C) Performance of animals in the SE condition or EE condition for both the high similarity and low similarity versions of the SOR task. One sample t 
test against zero, s-SOR SE t =  0.726 p =  0.488, s-SOR EE t =  3.214 p =  0.012, d-SOR SE t =  0.194 p =  0.088, d-SOR EE t =  0.855 p =  0.418. 
(D) Performance of animals in the SE condition or EE condition for both the high similarity and low similarity versions of the SLR task. One sample t test 
against zero, s-SLR SE t =  0.046 p =  0.964, s-SLR EE t =  3.812 p =  0.005, d-SLR SE t =  0.312 p =  0.763, d-SLR EE t =  1.983 p =  0.082. (E) Linear regression 
between the discrimination ratios in the high similarity condition of the object task (s-SOR) and the high similarity condition of the spatial (s-SLR) task. 
Data expressed as the mean ±  SEM. Light colors represent the values for SE condition and darks colors those of EE condition. n =  9, *p <  0.05, # 
p <  0.05 against 0, (*) p <  0.07.
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performance on the s-SOR was significantly reduced when compared 
with the one of the d-SOR (Figure 1E). Further analysis revealed an 
interaction between age and condition, with significant differences 
between aged and young in the similar version of the task but not in 
the dissimilar [Two Way RM ANOVA, Ftask (1,41) = 4.177 p = 0.047, Fage 

(1,41) = 5.707, p = 0.022, Finteraction (1,41) = 9.001, p = 0.005] (Figure 1E). 
Moreover, we found no differences in the total time aged animals spent 
exploring the objects on each version of the task during the sample 
sessions [Paired t test, t(23) = 1.303 p = 0.202] or choice sessions [Paired 
t test, t(22) = 0.733 p = 0.471] (Supplementary Table S1, S1.1). All in all, 
these results indicate a specific deficit in the discrimination of similar 
object memories in middle-aged rats.

Aging, as well as affecting memory functions, could also impair 
visual attention and perception (Jones et al., 1995; Muir et al., 1999; 
McGaughy and Sarter, 1995; Sarter and Turchi, 2002). The sample 
session phase of the SOR task has been designed as an additional high-
demand perceptual/attentional task (ie. a variant of the perceptual 
oddity task), in which a reduction in the time exploring the similar 
objects (ie. AB and BC in s-SOR) can reveal a perceptual/attentional 
deficit that could prevent them to be identified as different objects 
(Bartko et al., 2007a; Bartko et al., 2007b). However, we found no 
significant differences between the amount of time the animals spent 
exploring each of the objects during sample phase in the s-SOR [Two 
way RM ANOVA, Fage(1,41)  = 0.748 p  = 0.392 Fobj(1.82, 74.41)  = 0.168 
p = 0.825, Finteraction(2,82) = 0.832 p = 0.439] nor the d-SOR [Two way RM 
ANOVA, Fage(1.72, 70.32)  = 1.930 p  = 0.158 Fobj(1,41)  =  2.249 p  = 0.141, 
Finteraction(2,82) = 1.728 p = 0.184] for aged compared to young animals 
during sample session (Figure 1C). This result suggests that middle-
aged animals have no significant attentional/perceptual deficits in the 
object domain that could explain their impaired s-SOR performance.

In order to explore the effect of aging over memory discrimination 
in the spatial domain, we used an equivalent spatial version of the 
object task (the SLR task), in which the similarity relies on the distance 
between the positions of identical objects, leading to two conditions 
of high (small separation, s-SLR) and low (large separation d-SLR) 
spatial similarity (Bekinschtein et al., 2013; Miranda et al., 2018) (see 
Methods) (Figure 1B). During the choice session, we found that young 
animals could solve both the small and large versions of the task, as 
they show positive discrimination indexes in both [d-SLR t(13) = 6.941, 
p  < 0.0001; s-SLR t(13)  =  5.199, p  = 0.0002] that did not differ 
significantly between d-SOR and s-SOR (Figure 1F). This confirms 
that young animals can distinguish between similar object positions, 
as previously reported (Bekinschtein et al., 2013; Miranda et al., 2018). 
In contrast, middle-aged animals showed a discrimination ratio not 
different from zero on both the similar and dissimilar versions of the 
SLR [d-SLR t(11)  =  0.310, p  = 0.763; s-SLR t(11)  =  0.399, p  = 0.697] 
(Figure 1F). Aged animals performed significantly worse than young 
animals independently of the similarity condition of the task [Two 
Way RM ANOVA, Ftask(1,24)  =  0.250 p  = 0.622, Fage(1,24)  =  12.16, 
p = 0.0019, Finteraction (1,24) = 0.515, p = 0.480] (Figure 1F). There were also 
no significant differences in the time spent exploring during sample 
session [Paired t test t(11) = 1.722, p = 0.113] or choice session [Paired 
t test t(11) = 0.559, p = 0.588] (Supplementary Table S1, S1.1). Moreover, 
there were also no differences in the amount of time spent exploring 
each object between the young and aged group on each task [RM Two 
Way ANOVA, s-SLR Fage(1,25)  =  1.602 p  = 0.217, Fobj(2,60)  =  0.495 
p  = 0.613, Finteraction(2,50)  =  0.100 p  = 0.905, d-SLR Fage(1,25)  =  2.122 
p  = 0.158, Fobj(2,50)  =  p  = 0.011, Finteraction(2,50)  =  0.214 p  = 0.808] 

(Figure  1D). This result shows a highly impaired spatial memory 
discrimination performance (ie. both high and low similarity load), 
evident already at early stages of aging.

On whole, these results show that middle-aged rats have an 
affected spatial memory (independent of the load of similarity), while 
they exhibit a preserved object memory in which the deficits only 
manifest under a high load of object similarity.

Previous work has shown that, in conditions of high interference, 
memory impairment after medial temporal lobe damage can result 
not from the loss or inaccessibility of information but from novel 
information appearing as familiar (McTighe et al., 2010; Yeung et al., 
2013). Taking this into account, we decided to explore whether the 
effect of aging on the object domain, which is dependent on the 
similarity, could be due to middle-aged animals falsely identifying the 
AC object as familiar. To explore this possibility, a new set of young 
and aged animals went through the s-SOR sample session and, 24 h 
after, they were subjected to a “reminder” choice session. The 
“reminder” choice session consisted of a short 3 min presentation to a 
novel yet similar AC object and a familiar EF object (as during the test 
in Figure 1E). Finally, 24 h after the “reminder” session, the memory 
of AC and AB was assessed against a novel object (Figure 2). The 
rationale of this experiment is that, if middle-aged animals identify 
the AC object as familiar, the test session could act as a practice of the 
AB memory and reinforce it when compared with young animals. In 
a similar manner, this false identification could lead to an apparently 
better memory of the AC object than young animals (for whom a 
3 min choice session is normally not enough to create a long term 
memory (Stefanko et al., 2009)). When we compared the memory of 
AB and AC 48 h after the sample, we found that aged animals showed 
significantly higher memory of both AB and AC than young animals 
at 48 h [Two Way RM ANOVA Fage(1,13)  = 8.028 p  = 0.014, FAB-

AC(1,13) = 0.643, p = 0.437, Finteraction(1,13) = 0.055, p = 0.818] (Figure 2A). 
This suggests that the failure of middle-aged animals to perform the 
similar version of the task is not due to forgetting but to an inability 
to differentiate AC from the prior AB mnemonic representation.

Environmental enrichment improves both 
spatial and object memory discrimination 
in a similarity dependent manner

Next, we decided to investigate the capacity of an environmental 
enrichment (EE) protocol to improve both object and spatial domain 
mnemonic functions. For this purpose, a group of middle-aged rats in 
a standard environment (SE) was tested for both the spatial and object 
versions of the task. After this, animals were placed in EE for 4 weeks, 
and following this time animals were re-evaluated with new object sets 
for the same two tasks (Figure 2A). This longitudinal approach was 
chosen because of its enhanced sensitivity and power when compared 
with cross-sectional studies (Caprioli et al., 1991; Dellu et al., 1997) 
that better accounts for the high individual variability present in aging 
animals (Frick et al., 1995; Fischer et al., 1992).

In the object SOR task, during the sample session, the EE group 
showed a reduced total object exploration time independently of the 
task condition [Ftask(1,8) = 0.014 p = 0.910, FEE(1,8) = 31.65 p = 0.0005, 
Finteraction(1,8)  = 1.099 p  = 0.253] (Supplementary Table S1, S3.1). 
However, animals did not differ in the percentage of time they spent 
exploring each object before and after the EE intervention [s-SOR 
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Fobj(1,8) = 1.773 p = 0.202, FEE(2,16) = 1.992 p = 0.196, Finteraction(2,16) = 1.082 
p = 0.363; d-SOR FEE(1,8) = 3.960 p = 0.082, Fobj(2,16) = 3.101 p = 0.072, 
Finteraction(2,16) = 0.051 p = 0.950] (Figure 3B). There was no change in 
total exploration time during = the choice sessions when compared 
before and after the EE [Two Way RM ANOVA Ftask(1,8)  = 0.063 
p  = 0.808, FEE(1,8)  = 3.340 p  = 0.105, Finteraction(1,8)  = 0.260 p  = 0.624] 
(Supplementary Table S1, S3.2). During the choice session, we found 
that EE increased performance for the s-SOR version of the task, but 
not for the d-SOR version (Figure 3C) [Paired t test Similar t(8) = 4.226 
p = 0.003, Dissimilar t(8) = 0.312 p = 0.763]. On the contrary, a cognitive 
exposure training, where animals were exposed during 5 sessions to 
objects that share one feature, did not lead to an improvement in 
memory performance on the object recognition task (Fig. S1B).

In the spatial SLR task, during the sample session, total 
object exploration was reduced after EE compared to before EE 
while no differences in total object exploration were evidenced 
between task conditions [Two Way RM ANOVA Ftask(1,8)  = 0.174 
p  = 0.687, FEE(1,8)  = 7.462 p  = 0.026, Finteraction(1,8)  = 0.097 p  = 0.764] 
(Supplementary Table S1, S3.1). Despite this difference, animals did 
not differ in the percentage of time spent exploring each object before 
and after the EE [s-SLR FEE(1,8) = 1.441 p = 0.264, Fobj(1.47,11.83) = 0.583 
p  = 0.524, Finteraction(1.5,12.8)  = 0.462 p  = 0.588; d-SLR FEE(1,8)  = 0.301 
p = 0.598, Fobj(1.48,11.87) = 1.906 p = 0.194, Finteraction(1.41,11.28) = 2.694 p = 0.121] 
(Figure 3D). There was also a reduction in the exploration time after 
the EE intervention during the choice session [Two Way RM ANOVA 
Ftask(1,8) = 4.84 p = 0.059, FEE(1,8) = 12.57 p = 0.007, Finteraction(1,8) = 1.686 
p = 0.230] (Supplementary Table S1, S3.2). During the choice phase, EE 
significantly increased discrimination ratios in the similar version of 
the task while only trended to a significant increase in the dissimilar 
version (Figure 3D, Paired t test Similar t(8) = 3.018 p = 0.017, Dissimilar 
t(8) = 2.152 p = 0.064). When we compared the performance of animals 
before and after the EE intervention, we found no correlation between 
s-SOR and s-SLR scores before or after the intervention (Before 
R2 = 0.013 p = 0.766, After R2 = 0.106 p = 0.392) (Figure 3E). All in all, 
we  found EE intervention has the potential to increase memory 
function in a similarity specific manner, with differential effects over 
the spatial and the object memory domains.

Discussion

In this work, we compared the middle age progression of low and 
high similarity load memory deficits in the object and spatial domains. 
Contrary to the similarity-dependent susceptibility in the object 
domain, we describe a more generalized impairment in spatial domain 
at this early stage. Additionally, we  performed experiments that 
suggest that this similarity dependent impairment in object 
recognition could be  due to middle-aged animals incorrectly 
identifying a novel object as familiar. Moreover, we used EE as a model 
of experience-dependent plasticity to show that 1 month EE exposure 
can rescue the deficit of animals on tasks of high interference both in 
the object and in the spatial domain.

A bulk of studies have shown that spatial memory is particularly 
susceptible to the effects of aging (Barnes, 1979; Moffat et al., 2006; 
Harburger et al., 2007; Bennett et al., 2006; Gallagher and Nicolle, 
1993), and some authors attribute this impairment to a failure in 
binding contextual elements of an experience (Maguire et al., 1996; 
Rosenbaum et al., 2001). However, there are also reports of object 

recognition failure in aged rats (Bartolini et al., 1996; Wiig and Burwell, 
1998; de Lima et al., 2005; Pieta Dias et al., 2007; Platano et al., 2008). 
In particular, aging was related to an inability to detect more subtle 
changes in object position or features, an ability often referred to as 
behavioral pattern separation (BPS) (Marr, 1971; Rolls and Kesner, 
2006). In humans, studies have reported that older subjects have less 
efficient pattern separation on both spatial (Stark et al., 2010; Holden 
and Gilbert, 2012) and object domain tasks (Toner et al., 2009; Yassa 
et  al., 2011; Trelle et  al., 2017). Correspondingly, failure in 
discrimination of similar object positions (Ces et al., 2018; Creer et al., 
2010; Gracian et  al., 2013; Marrone et  al., 2011) and objects with 
overlapping features (Johnson et al., 2017; Burke et al., 2011) has also 
been described in aged rodents. Here, we explored in further detail the 
temporality of these changes. We found a deficit in spatial memory in 
middle-aged animals that was independent of the similarity load of the 
task, suggesting that spatial memory function per se was already altered 
at this early stage and that this deficit is not specific to the BPS function. 
Certainly, it remains possible that earlier time points or lower 
interference loads in the task would reveal a BPS specific impairment.

The spatial pattern separation function is linked to the presence 
of adult neurogenesis in the dentate gyrus (DG) of the hippocampus 
(HP) and adult born neuronal integration as part of its circuitry 
(Sahay et  al., 2011; Clelland et  al., 2009; Nakashiba et  al., 2012). 
Although both the DG (particularly neurogenesis in the DG) (Driscoll 
et al., 2006; Small et al., 2004; Patrylo and Williamson, 2007; Encinas 
et  al., 2011; Ben Abdallah et  al., 2010; Drapeau et  al., 2003) and 
perforant path (Yassa et al., 2011; Barnes and McNaughton, 1980; 
Geinisman et al., 1992; Smith et al., 2000) are crucially affected by the 
aging process, we did not see this translate into a differential similarity-
dependent deficit of aging since at the time point chosen the spatial 
memory function itself showed alterations that prevented to reveal 
this deficit. The presence of defective plasticity mechanisms in the 
middle-aged rat HP could explain the effect seen over spatial memory. 
In fact, rigidity in spatial representations could lead to an inability to 
differentiate between spatial locations (Barnes, 1994), and this 
inability could be more accentuated toward later time points.

Normal cognitive decline has been related to reduced synapse 
formation, expression of neuroprotectors like neurotrophins, altered 
neurogenesis and plasticity (Burke et al., 2010; Gallagher and Nicolle, 
1993; Encinas et al., 2011; Ben Abdallah et al., 2010; Lu et al., 2005; 
Mattson and Arumugam, 2018). Although several interventions were 
studied to prevent this decline, EE has shown a particular interest for 
its translational value as a model of cognitive stimulation in humans. 
Even though EE has reported benefits over spatial memory 
performance in aged rodents (Harati et al., 2011; Bennett et al., 2006), 
how these benefits are dependent on the similarity load of the task is 
not clear. Moreover, prior work highlights the possibility that earlier 
interventions (ie. middle age) could be necessary in order to achieve 
a reproducible effect. Recent work has shown that the effect of EE over 
memory discrimination abilities in young adult rodents is associated 
with an EE-dependent increase in adult hippocampal neurogenesis 
(Frick and Fernandez, 2003; Pham et al., 1999; Paylor et al., 1992; 
Kempermann et al., 1997; van Praag et al., 1999; Auvergne et al., 2002; 
Cao et al., 2004; Bruel-Jungerman et al., 2005; Trinchero et al., 2017). 
The work also shows that these changes favor the sparsity of the 
network and a higher level of remapping in the presence of small 
environmental changes (Ventura et  al., 2024). To add up to these 
findings, previous research indicated that the ability to encode small 
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environmental changes is also influenced by the presence of the brain 
derived neurotrophic factor (BDNF) (Bekinschtein et al., 2014), a 
plasticity related molecule that has proven to be increased in the HP 
of EE housed animals and associated with newborn neuronal survival 
(Choi et al., 2009; Meng et al., 2015). We could speculate that EE, 
through an increase in neurogenesis and/or BDNF, could also reduce 
the rigidity of the spatial representations in middle-aged rodents. In 
line with this idea, EE can prevent age-related decline in precursor cell 
activity in the DG (Kempermann et  al., 2002), and accelerate the 
neuronal development and integration of adult born granule cells in 
the DG in a BDNF-dependent manner (Trinchero et al., 2017). In this 
regard, previous work has shown that EE reverses the age-associated 
decrease in the expression of hippocampal tPA, a protease that 
controls the conversion from the precursor proBDNF to its mature 
form (Nagappan et al., 2009; Pang et al., 2004), that would ultimately 
change the balance between apoptotic and neurotrophic effects (ie. 
promoting neurogenesis) (Kempermann et al., 1997) and LTD/LTP 
(Lu et al., 2005; Nagappan et al., 2009; Pang et al., 2004; Figurov et al., 
1996; Ghosh et al., 1994; Teng et al., 2005; Woo et al., 2005). Moreover, 
aged rats with preserved spatial reference memory showed higher 
number of new neurons in comparison to rats with spatial memory 
impairments (Driscoll et al., 2006; Drapeau et al., 2003). Considering 
the extensiveness of the molecular mechanisms of action of EE, from 
synaptic plasticity and cellular atrophy (Duffy et al., 2001; Eckert and 
Abraham, 2013; Park and Bischof, 2013) to dendritic growth (Leggio 
et  al., 2005) and neurotransmitter systems (Segovia et  al., 2006; 
Nichols et al., 2007; Segovia et al., 2008; Segovia et al., 2008), it is not 
surprising that its cognitive effects are widespread across domains. 
However, the fact that we do not see an impact over the dissimilar 
condition speaks of a mechanism that specifically impact the ability of 
the brain to avoid interference.

On the other side, in the object recognition domain, previous 
work has shown a specific deficit in a high similarity object condition 
in advanced aged (24–25 months) (Johnson et al., 2017; Burke et al., 
2011). Here we extended these data by showing that this deficit could 
be present at earlier stages of aging (ie, middle-aged). Although the 
literature suggests there could be a decline in the ability to discriminate 
novel stimuli during aging (Burke et al., 2010; Bartolini et al., 1996; de 
Lima et al., 2005; Bastin and Van der Linden, 2003; Davidson and 
Glisky, 2002; Prull et al., 2006; Toth and Parks, 2006), likely due to a 
“false recognition” (Burke et al., 2010; Toner et al., 2009; Norman and 
Schacter, 1997; Jacoby et al., 2005), part of the memory field considers 
that recognition memory judgments are preserved and only 
recollection is affected by aging (Spencer and Raz, 1995; Driscoll et al., 
2006; Bastin and Van der Linden, 2003; Davidson and Glisky, 2002; 
Daselaar et al., 2006; Pitarque et al., 2016; Koen and Yonelinas, 2016; 
Koen and Yonelinas, 2014). According to the “false recognition” 
theory, aging object recognition impairment is related to a difficulty 
in differentiating a novel object when it shares features with familiar 
ones leading to interpret it as a familiar object (ie. reduced exploration 
of the novel object). This false recognition has been associated with a 
higher susceptibility to interference occurring during the delay period 
(Burke et al., 2010; Trelle et al., 2017; Burke et al., 2011). In accordance 
with this theory, we described a pattern of memory practice effects 
that paradoxically increase object recognition memory only in 
middle-aged animals. This result evidences that the lack of 
discrimination of similar objects in middle-aged animals is not due to 
a retrieval deficit, as memory the next day is even higher for the 

middle-aged group compared to controls. More likely, this deficit is 
due to an incorrect identification of the AC object as familiar, what 
leads to a “practice-driven” increase in recognition of AB a day later.

This work has chosen a longitudinal approach for evaluating the 
role of EE. This choice could lead to a potential confounding effect of 
practice over the results presented. However, we do not believe this 
effect could explain our results since we have shown that the repeated 
presentation (or “practice”) of objects of similar identities over 
extended periods of time does not lead to an increase in the 
performance in aged animals. This result reinforces the view that the 
effect of EE as a multidimensional cognitive enhancement strategy 
entails more than just the repeated exposure to novel sensory 
experience. Additionally, although there is evidence of visual 
attentional deficits in aged rodents (Harati et al., 2011; Jones et al., 
1995; Muir et al., 1999; McGaughy and Sarter, 1995; Sarter and Turchi, 
2002), our results during sample session suggest that the differences 
observed in the test cannot be attributed to perceptual or attentional 
deficits in the middle-aged animals but rather to an early object 
memory discrimination deficit in this group. This is consistent with 
work showing that implicit visual-perceptual memory appears to 
be unaffected by aging (Gabrieli, 1996).

Although both SOR and SLR task are known to rely on the medial 
temporal lobe, the SLR is proposed to be more heavily dependent on 
the hippocampus and the SOR on the perirhinal cortex (Miranda 
et al., 2017; Miranda et al., 2021; Aggleton et al., 2004). The lack of 
correlation between the improved SLR and SOR scores posterior to 
the intervention further suggest that these two tasks could rely on 
different neural substrates in middle-aged animals. The lack of 
neurogenesis in cortical regions key for object recognition memory 
points to a different EE dependent mechanism for s-SOR 
discrimination recovery than the one postulated for the HP-dependent 
spatial memory task. One possible mechanism for the object 
recognition memory recovery seen after EE exposure is the increase 
in cortical thickness, an effect of EE vastly reported in the literature 
(Diamond et al., 1972; Fares et al., 2013), and more recently shown in 
particular for the perirhinal/entorhinal cortex (Scholz et al., 2015). 
Additionally, previous reports indicate that cortical BDNF protein 
levels are correlated with exercise-induced improvements in 
non-spatial memory (Hopkins and Bucci, 2010). EE-induced long-
term increase in task-induced BDNF levels could lead to the 
improvements shown in the similar version of the task.

We found changes in object exploration levels in the EE condition 
either on the sample or choice session of the tasks. Previous 
publications have described decreased spontaneous activity and 
reductions in anxiety-related behaviors due to EE (Chapillon et al., 
1999; Fox et  al., 2006; Wolfer et  al., 2004) and attributed this to 
probable reductions in novelty seeking as a result of the abundance of 
sensory stimulations present in the EE (Brenes et al., 2009; Schrijver 
et al., 2002). However, the longitudinal nature of our EE experiment 
does not allow us to link this decrease to the continuous presence of 
objects inside the environmental enrichment context, since we cannot 
exclude the possibility of the decrease in exploration time being due 
to the prior exposure to objects as part of the protocol.

The importance of comparing the two streams of information 
capable of high cognitive stimulus discrimination (spatial and object 
domain) becomes critical given their translational value. Interestingly, 
recent studies in humans comparing both discrimination domains 
indicate that discrimination of similar object features is more sensitive 
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to aging compared to similar spatial locations (Reagh et al., 2016) and 
that only the performance of memory for objects and not scenes, is 
predictive of early cognitive decline (Fidalgo et al., 2016). Studies 
found that aging particularly compromises the binding of different 
elements of an episode (Chalfonte and Johnson, 1996; Naveh-
Benjamin, 2000; Old and Naveh-Benjamin, 2008). The present study 
provides key evidence to better understand the progression of BPS 
memory deficits in both spatial and object domain, as a part of early 
stages of the normal cognitive decline process. We evidence here that 
environmental factors contribute to shape BPS function in the object 
and spatial domain. Understanding how experience dependent 
plasticity (addressed here through the EE intervention) can contribute 
to a differential modulation of each of these cognitive domains could 
foster new theoretical developments and help in the design of 
non-invasive therapeutic strategies.
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