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Animacy perception, the ability to discern living from non-living entities, is crucial 
for survival and social interaction, as it includes recognizing abstract concepts 
such as movement, purpose, and intentions. This process involves interpreting 
cues that may suggest the intentions or actions of others. It engages the 
temporal cortex (TC), particularly the superior temporal sulcus (STS) and the 
adjacent region of the inferior temporal cortex (ITC), as well as the dorsomedial 
prefrontal cortex (dmPFC). However, it remains unclear how animacy is dynamically 
encoded over time in these brain areas and whether its processing is distributed 
or localized. In this study, we addressed these questions by employing a symbolic 
categorization task involving animate and inanimate objects using natural movie 
stimuli. Simultaneously, electrocorticography were conducted in both the TC and 
dmPFC. Time-frequency analysis revealed region-specific frequency representations 
throughout the observation of the movies. Spatial searchlight decoding analysis 
demonstrated that animacy processing is represented in a distributed manner. 
Regions encoding animacy information were found to be dispersed across the 
fundus and lip of the STS, as well as in the ITC. Next, we examined whether these 
dispersed regions form functional networks. Independent component analysis 
revealed that the spatial distribution of the component with the most significant 
animacy information corresponded with the dispersed regions identified by the 
spatial decoding analysis. Furthermore, Granger causality analysis indicated that 
these regions exhibit frequency-specific directional functional connectivity, with 
a general trend of causal influence from the ITC to STS across multiple frequency 
bands. Notably, a prominent feedback flow in the alpha band from the ITC to both 
the ventral bank and fundus of the STS was identified. These findings suggest a 
distributed and functionally interconnected neural substrate for animacy processing 
across the STS and ITC.
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1 Introduction

Animacy perception refers to the ability to distinguish between 
living and non-living entities based on their behavior and appearance. 
This cognitive ability is crucial because it enables organisms to 
prioritize and respond appropriately to biologically relevant stimuli, 
such as potential predators or conspecifics, which is essential for 
survival and social interaction. This ability is suggested to exist not 
only in humans but also in non-human primates, including monkeys 
(Fabre-Thorpe et al., 1998; Hauser, 1998; Tsutsumi et al., 2012; Yetter 
et al., 2021).

Functional magnetic resonance imaging (fMRI) studies in both 
humans and monkeys have identified the ventral temporal cortex 
(VTC) as a key region for processing animacy information, 
contributing to various aspects of perception, including visual 
categorizability (Bell et al., 2009; Chao et al., 1999; Kriegeskorte et al., 
2008; Naselaris et al., 2012; Pinsk et al., 2005) and agency (Thorat 
et al., 2019). Single units and intrisic optical imaging (IOI) studies in 
monkeys suggest that columnar/patch and domain like functional 
structures for encoding shape information, including animacy 
attribution such as face and body parts in the gyri, the inferior 
temporal cortex (ITC) (Desimone et  al., 1984; Kiani et  al., 2007; 
Kriegeskorte et al., 2008; Sato et al., 2013; Tanaka, 1996; Tsao, 2014), 
while biological motion processing appears to be handled by regions 
in the superior temporal sulcus (STS) (Jastorff et al., 2012; Nelissen 
et al., 2006; Oram and Perrett, 1994, 1996; Vangeneugden et al., 2011).

Additionally, the prefrontal cortex is also critical for animacy 
perception. In particular, the dorsomedial prefrontal cortex (dmPFC) 
is involved in cognitive processing for understanding one’s own and 
others’ intentions and agency, and it plays important roles in animacy 
perception within social contexts through human fMRI studies 
(Amodio and Frith, 2006; Wheatley et al., 2007).

However, due to the limited temporal resolution of MRI and IOI, 
as well as the sparse sampling and restricted spatial coverage of single-
cell recording methods, it remains unclear how animacy perception is 
dynamically encoded over time in these two brain regions, the 
temporal cortex (TC), and the dmPFC, and how this encoding is 
distributed or localized within these areas. More specifically, whether 
the encoding is spread across the TC and dmPFC, within specific areas 
like the ITC and STS within the TC, or confined to particular 
subregions. Furthermore, the physiological substrates underlying 
these spatial encodings have yet to be elucidated.

To address these questions, we employed a symbolic categorization 
task while conducting high-density ECoG recordings across the TC 
including both the ITC and STS as well as the dmPFC. The task 
involved natural movie stimuli depicting animate and inanimate 
agents, rich in shape and motion elements. This approach, unlike 
previous studies that used static images (Chao et al., 1999; Kiani et al., 
2007; Kriegeskorte et al., 2008) or point-light displays (Oram and 
Perrett, 1994), allowed us to examine the integration of shape and 
motion and the processing of agency.

Using linear decoding, we  analyzed the time-frequency 
dynamics of animacy information encoding within each brain 
region. Spatial searchlight decoding analysis allowed us to assess 
how distributed the animacy information was encoded, identifying 
distributed representations in both the ITC and STS. To determine 
whether these distributed representations formed functional 
subnetworks, we applied independent component analysis (ICA). 

Granger causality analysis further revealed frequency-specific 
directional patterns of functional connectivity within 
the subnetwork.

2 Materials and methods

2.1 Animal care and use

Two Japanese monkeys (Macaca fuscata), referred to as monkey 
P (male, 6.5 kg) and monkey J (female, 4.7 kg), were used in this study. 
The monkeys were provided by National BioResource Project (NBRP) 
“Japanese Monkeys,” Japan. They were housed in standardized primate 
cages and adequately given primate food supplemented with fruits and 
vegetables. All experimental procedures involving animals were 
carried out in accordance with the Guide for the Care and Use of 
Nonhuman primates in Neuroscience Research (The Japan 
Neuroscience Society; https://www.jnss.org/en/animal_primates). The 
experimental protocol was approved by the Institutional Animal Care 
and Use Committee of Niigata University (Permission 
number SA00218).

2.2 General surgical procedures

The ECoG grids were implanted under aseptic conditions as 
described previously (Matsuo et  al., 2011). After premedication 
with ketamine (50 mg/kg) and medetomidine (0.03 mg/kg), each 
animal was intubated with an endotracheal tube subsequently was 
anesthetized with isoflurane (1.5–3.0%) under mechanical 
ventilation (A.D.S. 1000, Engler Engineering Corp., FL, 
United States) throughout the surgery. The venous line was secured 
using lactated Ringer’s solution, and ceftriaxone sodium hydrate 
(100 mg/kg) was administered as a prophylactic antibiotic. Their 
body temperature was maintained at 37°C during the surgery by 
using an electric heating mat. A vacuum fixing bed (Vacuform, 
B.u.W.Schmidt GmbH, Garbsen, Germany) was used to maintain 
the position of the body. Vital signs (hearth rate and rhythm, 
respiratory rate, non-invasive blood pressure, haemoglobin 
saturation) were continuously monitored (Surgi Vet, Smiths 
Medical PM Inc., London, UK) during anesthesia. Postoperatively, 
the monkeys were given postsurgical analgesic (ketoprofen, 1 mg/
kg/day) for at least 3 days and the antibiotic was continued for 
1 week after the surgery.

2.3 Electrode array

We custom-designed and fabricated a sheet-type, minimally 
invasive electrode grids to measure ECoG signals from the TC and 
dmPFC of monkeys. The arrays were fabricated on a 20 μm-thick 
flexible Parylene-C film using micro-electro-mechanical systems 
technology. The basic structures and fabrication processes of the probe 
have been previously described elsewhere (Matsuo et al., 2011; Toda 
et  al., 2011; Kaiju et  al., 2017). The probe arrays included 8 × 16 
electrodes, which covered 18.5 mm x 38.5 mm for recording surface 
potentials from the ITC, and 8 × 8 electrodes, which covered 18.5 mm 
x 18.5 mm for recording surface potentials from the dmPFC. Each 
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square contact had a gold surface measuring 1 mm x 1 mm. The 
center-to-center distances between adjacent contacts were 2.5 mm. 
Electrode impedances typically ranged from 3–5 kΩ at 1 kHz.

2.4 Electrode implantation

To determine the implanted areas, we used preoperative magnetic 
resonance imaging for stereotactic guidance. The detailed procedures 
for microscopic neurosurgery for ECoG grid implantation under 
aseptic conditions have been described elsewhere (Matsuo et  al., 
2011). Briefly, the skull was fixed with a three-point fastening device 
(Integra Co., NJ, United States) with a custom-downsized attachment 
for macaques. The implantation started with removing skin, galea 
aponeurotica, and muscle over the implanted areas. Craniotomy and 
durotomy were performed using microscope (Ophthalmo-Stativ S22, 
Carl Zeiss Inc., Oberkochen, Germany) with a CMOS color camera 
(TS-CA-130MIII, MeCan Imaging Inc., Saitama, Japan). We placed 
the grids on the cortical surface of the TC and dmPFC with a number 
of electrodes placed into sulci and fissure as shown in Figure 1C and 
Supplementary Figure S2. A reference electrode was placed close to 
the grids in the subdural space facing the dura. After the grids were 
implanted, the dura was closed with watertight suturing to prevent 
cerebrospinal fluid leakage. The electrode lead, micro connectors 
(Omnetics, MN, United  States), and a custom-made connector 
chamber made of polyetherimide (Vivo, Hokkaido, Japan) were fixed 
onto the bone with dental acrylic. Electrode locations in the animals’ 
brains were confirmed postmortem.

2.5 Behavioral tasks

We trained the monkeys to perform an animate/inanimate 
categorization task (Figures 1A,B). In contrast to the go/no-go task 
used in the previous studies (Fabre-Thorpe et  al., 1998; Yetter 
et al., 2021), our task dissociated behavioral responses from the 
category depicted in the movie, therefore requiring the monkeys 
to engage cognitive processes, such category abstraction, during 
category choice selection. The stimuli were presented on a 15-inch 
cathode ray tube (CRT) monitor (NEC, Tokyo, Japan) and a 13.5-
inch- infrared touch panel were attached on the front side of the 
monitor (Caroll Touch, CA, United States). The distance between 
touch screen panel to monkeys’ eyes was around 14.5 cm. To 
capture eye movement, we  monitored eye position using an 
infrared pupil-position monitoring system (iRecHS2, Matsuda 
et al., 2017) at sampling rate of 60 Hz. Each trial began when the 
monkey held down a lever after an auditory ‘start’ tone was 
sounded. A fixation point (0.1° x 0.1° in visual angle, square) 
appeared at the center of monitor, and the animal was required to 
maintain its gaze within ±1.5° of the fixation point until a movie 
started (500 ms); whenever the monkeys aborted fixation, the trial 
terminated without a reward. After the fixation, a 2-s-long movie 
clip depicting moving animals (animate), or movements of 
non-living objects (inanimate) was played. Immediately after the 
movie ended, two symbols indicating each category were presented 
at a random location after a one-frame delay (16.6 ms) and 
monkeys were rewarded if they released the lever and selected the 
correct symbol by touching the monitor. In correct trials, following 

the reward juice delivery, a sound indicating a correct answer was 
played. In error trials, without the juice delivery, a sound indicating 
an incorrect answer was played. An aborted trial was defined as 
either a lever release before the movie ended, fixation breaks, or 
when the estimated gaze exceeded the monitor’s range during 
movie presentation. An inter-trial interval of 2 s was inserted 
before the next ‘start’ tone. Only the data from completed trials 
were included in the analysis.

The stimuli were presented with an x86 PC running a custom-
written OpenGL-based stimulation program under Windows 
XP. Behavioral control for the experiments was maintained by a 
network of interconnected PCs running QNX-real-time operating 
system (QSSL, ON, Canada), which controlled the timing and 
synchronization. Data was monitored online and stored on a 
PC-based system (NSCS, Niigata, Japan) or on System 3 real-time 
signal processing systems (Tucker Davis Technologies, FL, 
United States).

2.6 Stimulus movie

The stimulus movies were used either from movies uploaded on 
a video platform, Youtube, or movies recorded by our laboratory 
members. The videos were then edited into 2-s clips using MoviePy.1 
Finally, we selected clips in which only moving animals or non-living 
objects were clearly shown.

2.7 Learning procedures

The monkeys were initially trained using a dataset consisting of 
six movies (three movies for each category). We  measured the 
correct response rate for each block of 30 trials for each movie. Once 
the monkeys achieved the learning criterion of maintaining an 
accuracy rate of over 80% for five consecutive blocks, a new set of six 
movies was added as test stimuli. This new set included both the six 
trained stimuli and six entirely new stimuli. To test whether the 
monkeys learned the symbolized animate/inanimate category, 
we computed monkey responses to the first encountered stimuli. 
Following the first encounter test, training continued, and once the 
accuracy criterion of 80% was achieved for these 12 stimuli, another 
set of six new test stimuli was introduced. The stimuli consisted of a 
total of 18 stimuli (12 trained movies +6 novel movies). Similarly, 
after each set of training, a new set of six stimuli was introduced for 
testing. In total, monkey P completed learning and testing over 10 
sets, while monkey J completed 7 sets. Sets 1 to 7 were shared 
between them, with identical learning and testing procedures. 
Additionally, only monkey P underwent further testing and training 
using trial-unique stimulus sets. In each trial-unique set, there were 
84–150 novel stimuli per category, with each movie stimulus 
presented only once during the training/test phase. We assumed that 
if the monkey was relying on associative features to perform the task 
with high accuracy, presenting the unique-trial dataset should cause 
a decrease in categorization performance to chance. The recording 

1 https://zulko.github.io/moviepy/
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session began after the training/test phase was completed. In the 
recording sessions, we used the learned 768 movies, including the 
trial-unique datasets, for monkey P and 42 movies for monkey J. The 
recall and precision rates were calculated using animate stimuli as 
relevant stimuli.

After preprocessing procedure (see ECoG recordings), the 
analyzed dataset included 538 stimuli (271 animate movies and 267 
inanimate movies) across 1,667 trials in monkey P’s dataset and 42 

stimuli (21 movies in each category) across 2,109  in monkey 
J’s dataset.

2.8 ECoG recordings

ECoG recordings were conducted in an electrically shielded, 
sound-attenuated chamber. The signals were amplified and a 

FIGURE 1

Behavioral task and ECoG recordings. (A) Task trial sequence. Following central fixation, a 2-s movie was presented, followed by the appearance of two 
symbols, during which monkeys needed to choose a symbol representing the movie category by touching the screen. In this trial sequence example, 
the animate and animate symbols appeared on the left and right sides, respectively. If monkeys chose the correct symbol, juice reward was 
immediately delivered. (B) Examples of movie stimuli depicting moving living (animate) or non-living objects (inanimate). See method for further 
details. (C) ECoG electrode array locations. Upper: schematic drawings of a macaque brain showing location of implanted electrodes in monkey P. 
Lower: detailed location of electrodes relative to sulci and fissure (STS, superior temporal sulcus; AMTS, anterior middle temporal sulcus; IOS, inferior 
occipital sulcus; PMTS, posterior middle temporal sulcus; RS, rhinal sulcus; PS, principal sulcus; ASu, upper limb arcuate sulcus; CIS, cingulate sulcus; 
LF, longitudinal fissure). Blue and purple squares represent electrodes implanted on cortical surfaces and within a sulcus/fissure, respectively. Scale 
bars, 10 mm. Location of channels presented in Figure 2 are marked with yellow border.
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band-pass filtered (Butterworth, 0.7–300 Hz) using PZ2 PreAmp 
(Tucker Davis Technologies, FL, United States), sampled digitally, and 
stored on hard-disk drives at a sampling rate of 2034.5 kHz.

Data processing was performed using custom MATLAB codes 
(MathWorks, MA) with EEGLAB toolbox (https://eeglab.org/, 
Delorme and Makeig, 2004). ECoG signals were segmented, from 0.7 s 
before to 4 s after the onset of movie stimuli. To prevent aliasing effect 
during resampling, a low-pass filter at 220 Hz was initially applied, 
followed by downsampling the signal to 500 Hz with the cutoff 
frequency at 400 Hz and the transition bandwidth at 200 Hz, and 
subsequently applying a high-pass filter at 1 Hz. We employed the 
‘Zapline-plus’ plugin, available within EEGLAB, to remove 50-Hz line 
noise from the ECoG signals (de Cheveigné, 2020; Klug and 
Kloosterman, 2022). Trials containing artifacts in the signals were 
manually identified and rejected.

Signals from each channel were re-referenced by subtracting the 
average values of electrodes in the same array. Noise components were 
eliminated using independent component analysis. Detailed 
procedures for noise components identification are shown in the 
independent component analysis section. Time-frequency analyses 
were calculated and visualized by using the Chronux 2.12 toolbox 
(http://chronux.org/, Bokil et  al., 2010), implemented in 

MATLAB. Event-related spectral perturbation (ERSP) was calculated 
using a multitaper power spectral density estimation. For the high-
resolution ERSP, the power spectra in the frequency range of 
1.5–150 Hz were computed individually for each channel and trial, 
using 6 Slepian tapers and a time-bandwidth product of 4. We used a 
moving window size of 400 ms and a step size of 50 ms, giving a 
frequency resolution of 2 Hz (totally, there were 87 time points and 76 
frequency points). For the low-resolution ERSP, time-frequency 
analyses were calculated by using FieldTrip toolbox (http://
fieldtriptoolbox.org/, Oostenveld et al., 2011). The power spectra for 
six frequencies (3, 8, 12, 16, 58, and 89 Hz) were computed using a 
multitaper with a 500 ms moving window and a 250 ms step size 
(resulting in 6 frequency points and 17 time points). The ERSP was 
normalized using single-trial baseline normalization. Baseline period 
was from of −700 ms to 0 before stimulus onset. The normalization 
involved dividing each time-frequency point by the average spectral 
power in the pre-stimulus baseline period at the same frequency, then 
we  computed the trial average spectral power (Grandchamp and 
Delorme, 2011). We  transformed absolute ERSP measure into a 
decibel (dB) scale.

Once all the recording experiments were completed, the animals 
were administered an overdose of sodium pentobarbital and 

FIGURE 2

ECoG responses during animacy category task in the TC and dmPFC. Event-related potential (ERP; upper panel) and event-related spectral 
perturbation (ERSP; middle and lower panels) from single electrodes in the TC and dmPFC of monkey P, aligned to the onset of the movie stimuli 
during the symbolic animate/inanimate task, with each response averaged over 1,667 trials. In the upper panels, green and grey-color lines indicate 
LFPs during animate and inanimate trials, respectively. Black dashed lines indicate the end of the movie presentation, immediately followed by the 
onset of symbols. Magenta dash lines and horizontal lines above the lines indicate median RT and the range of RT across 1,667 trials (median 910 ms, 
range: 806 ms – 1,450 ms), respectively. Color scale bars indicate log-transformed spectral power ratio normalized by the pre-stimulation power (See 
Methods for details). RT, reaction time.
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transcardially perfused with 4% paraformaldehyde in 0.1 M phosphate 
buffer (pH 7.4). Electrode locations in the animals’ brains were 
determined postmortem.

2.9 Decoding analysis

In the neuronal population decoding (for both resolutions), 
channels were grouped into two populations, i.e., ITC and dmPFC, 
based on the cortical area. Non-normalized power spectral (or 
spectrum) at the same time-frequency point were pooled and 
concatenated across trials to build the feature vectors for each area. 
The feature matrix of each time-frequency point was number of trials 
x 128 for the ITC and number of trials x 64 for the dmPFC. We then 
calculated decoding accuracy for each time-frequency point. 
We assessed the decoding accuracy using a 5-fold cross-validation 
procedure to avoid overfitting in the classifier model. Specifically, the 
trials were split into five subsets, and we used four subsets (training 
dataset) to train a linear support vector machine (SVM) classifier to 
discriminate category based on the power spectral. In doing so, 
we  used the default hyperparameters as defined in the function. 
Finally, we quantified the classifier’s accuracy to predict the category 
present in the remaining subset of trials (test dataset). This procedure 
was repeated five times, using a different split for the training and 
testing datasets. The average classifier’s performance across all 
repetitions was considered to be  the decoding accuracy of the 
classifier. Because the classification was binary, and the two alternatives 

were equally probable, the chance performance was 0.5. A bootstrap 
procedure was performed to estimate the statistical significance of the 
low-resolution neuronal population decoding. The procedure splits 
the decoding feature vector into two datasets, training dataset (80% 
trials) and test dataset (20% trials). From the training set, 
we  constructed a new dataset by randomly resampling the same 
number of trials as the dataset with replacement, trained a classifier 
with 5-fold cross validation on that dataset, and tested the classifier’s 
performance on the test dataset. This procedure was repeated 1,000 
times to create a bootstrap distribution of decoding accuracy, and its 
median and 95% confidence interval (CI) were estimated. The 
proportion of values in that distribution that was smaller than the 
chance level was calculated as the p value for the null hypothesis that 
decoding accuracy does not differ from the chance level. Corrections 
for multiple comparisons were performed using Benjamini and 
Hochberg’s false discovery rate method (Benjamini and Hochberg, 
1995). We set our threshold for significance across all tests at p < 0.05.

To compute frequency-wise decoding in the population activity 
(Figure 3B), first, we decomposed LFP using the multitaper method 
with a slightly longer window (500 ms) and step size (350 ms). These 
parameters yielded time-frequency dimensions with 13 time points 
and 76 frequency points (frequency resolution of 2 Hz). We calculated 
the decoding accuracy of each frequency point at two time points, i.e., 
between −98 – 602 ms and 1,652–2,352 ms, representing transient 
and sustained activities, respectively. Decoding accuracy for each 
frequency band were estimated as the median accuracy across 
frequency points within each frequency band: delta (2–4 Hz), theta 

FIGURE 3

Decoding of animate/inanimate category from population neural activity in the TC and dmPFC. (A) Representative time course of animacy using ECoG 
signals recorded from the TC (upper) and dmPFC (lower) of monkey P. A linear SVM with 5-fold cross validation was trained to decode category 
information using the power spectra of the high-resolution ERSP as input features (see methods for further details). In monkey P’s dataset, there were 
538 stimuli across 1,667 trials (271 animate stimuli across 838 trials). Dashed line indicates onset of the movie stimuli. Color scale bars indicate 
decoding accuracy. (B) Decoding accuracy with transient (upper) and sustained (lower) components of frequency-specific ECoG powers in the TC and 
dmPFC of monkey P (left) and monkey J (right). The median decoding accuracies obtained from 1,000 iterations were plotted. Error bars indicate 95% 
CI of bootstrap distribution. Dashed lines indicate the chance level. Colors indicate frequency bands. See Method for details.
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(5–8 Hz), alpha (9–13), beta (14–30), low gamma (31–70 Hz), and 
high gamma (71–200 Hz) (Brovelli et  al., 2004; Whittingstall and 
Logothetis, 2009). We employed the bootstrap procedure to estimate 
statistical significance and to estimate the variance of the classifiers 
presented as 95% CI in Figure 3B.

In searchlight analysis, for each ROI (radius 2.5 mm x 2.5 mm, 2 
× 2 electrodes), the feature vector contained LFP data from −100 ms 
– 2000 ms across all trials resulting in a feature matrix of 1,667 × 4,204 
for monkey P and 2,109 × 4,204 for monkey J. We computed the 
decoding accuracy using a linear SVM with a 5-fold cross-validation 
and mapped it onto the centre of the ROI. We then repeated this 
procedure for entire ROI to create a decoding accuracy map, as shown 
in Figure 4. The statistical significance of the classifier’s performance 
was tested using the bootstrap procedure.

In the independent component (IC) decoding, IC activities for 
each epoch were transformed into low- and high-resolution time-
frequency data matrices using the multitaper method, as previously 
described (see ECoG recordings). A linear SVM with 5-fold cross-
validation was employed to calculate the decoding accuracy for each 
time-frequency point. Informative ICs were identified using a 
permutation procedure in the low-resolution decoding analysis. The 
procedure involved shuffling the category labels before training the 
linear SVM. The IC decoding value was defined as the average 
decoding performance from 300 ms – 2050 ms across six frequencies. 
We  repeated the procedure 1,000 times to create a permutation 
distribution. Statistical significance was determined by comparing the 
unshuffled-label decoding accuracy against the permutation 

distribution. Statistical values were corrected using the Bonferroni 
test. ICs with adjusted p < 0.05 was considered as an informative IC.

2.10 Independent component analysis

Prior to applying ICA, segmented LFP data was concatenated to 
create a matrix of continuous LFP data, ( ) ( ) ( ){ 1 ,,..,, }iX t x t x t= , 
which rows indicate number of channels and columns represent the 
time course. After centering and whitening, the continuous LFP 
matrix was inputted as predictors in the CUDAICA-extended Infomax 
algorithm (Raimondo et  al., 2012) to extract independent source 
signals (or ICs activity), ( )S t . The ICA algorithm assumes that ( )X t  
is a linear combination of a mixing matrix, M , and ( )S t . Additionally, 
the number of ICs and the number of channels is assumed to be same, 
therefore the matrix M must be  square and full rank (linearly 
independent). The output of ICA is an estimated unmixing (weight) 
matrix, U , where mathematical inverse of the weight matrix, ( )1U − , 
equals the matrix M. Finally, ( )S t  was produced when the matrix U  
multiplied by ( )X t . By visually inspecting the time-locked activity, 
ERSP, intertrial coherence of the ICs, we  identified a few noise 
components containing signal artifacts, such as irregular high voltage 
or trials artifacts, and marked those components for removal.

Based on presumptions underlying ICA decomposition, this 
procedure also provided us with additional information about the 
location of the sources. To visualize the location of the ICs activity, the 
matrix, ( )1U − , was calculated and plotted as topographic maps. This 

FIGURE 4

Spatial distribution of category information in the TC and dmPFC. Decoding accuracy maps with searchlight classifiers for animacy information based 
on LFP in monkeys P (upper) and J (lower). Squares represent ROIs indicating the center of a searchlight area with a 2 × 2 electrode radius. Colors 
indicate median of searchlight decoding accuracy at each region of interest (ROI) obtained from 1,000 iterations. Dark blue color indicates decoding 
accuracy not significantly higher than the chance level (bootstrap test; p > 0.05; false discovery rate [FDR] correction for 154 ROIs). Black borders 
indicate the ROIs with decoding performance greater than the 95th percentile of the 105 ROIs in the TC and the 49 ROIs in the dmPFC. Asterisk 
symbols indicate the informative subregions that show spatial correspondence with the channels to which the most informative IC strongly projects. 
Grey lines indicate the lip of sulci (similar as previously described in Figure 1C and Supplementary Figure S2).
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map represents back-projection of single IC onto the electrodes, with 
values indicating relative contributions of each electrode to the 
projected IC.

2.11 Connectivity analysis

Connectivity analysis was performed using the FieldTrip toolbox. 
Before the analysis, electrodes were selected by locating peak values 
across the topographical map grid, resulting in the selection of four 
electrodes (indicated by numbers in Figure 5). To eliminate noise 
contamination from common recording references, we  then 
performed bipolar derivation to the selected electrodes by taking the 
difference with their immediately adjacent electrodes on the same lane 
of the ECoG grids (vertical bipolar derivation). For the selected 
electrodes located at the dorsal end of a lane, bipolar signals were 
computed by subtracting the signal of the immediately ventral 
electrodes. In this analysis, we computed power spectra from our 
time-series data using the multitapered Fourier transform. Data 
epochs ranging from 0 ms to 1,000 ms were multitapered using 15 
Slepian tapers and then power spectra were computed based on fast 
Fourier transformation. We specified frequencies of interest in the 
range from 0 to 150 Hz. We then used the power spectra for calculating 

conditional nonparametric GC influences. The conditional Granger 
causality measure causality between two time series, ( )A t  and ( )B t , 
conditional on a third (or more) time series, ( )C t . Suppose that a 
pairwise GC analysis reveals a causal influence from ( )A t  to ( )B t . 
Conditional Granger causality determines whether this influence has 
a direct causality or is mediated by ( )C t . For the computation of the 
conditional GCs, we used multivariate nonparametric spectral matrix 
factorization (mNPSF). The input to the mNPSF algorithm consisted 
of the cross-spectral density matrix obtained from the Fourier 
transformation (Dhamala et al., 2008; Bastos et al., 2015). In both 
monkeys, pairing four sites formed five inter-subregional pairs and 
one intra-subregional pair (monkey P: a pair or sites 3 and 4; monkey 
J: a pair of sites 1 and 4). We then averaged GC influence spectra over 
pairs including STSf sites (site 3 and 4) in monkey P and ITC sites (site 
1 and 4) in monkey J, resulting in six inter-subregional pairs 
(Figure  6B). GCs values were tested for significance by using a 
permutation procedure (Brovelli et  al., 2004). In the permutation 
procedure, we created an artificial dataset in which epoch index for 
each site was randomly permuted. GC spectra were calculated and the 
largest value along with their corresponding were taken. We repeated 
this procedure one thousand times to yield the null hypothesis 
distribution of GC spectra for each pair time series. Then, 
we compared actual GC obtained from the actual dataset against the 

FIGURE 5

Animate/inanimate category-selective subnetwork identified by Independent Component (IC) Analysis. Topography of ICs with highest decoding 
performance showing functional subnetwork related to animacy category in monkeys P (upper) and J (lower). This topographical map represents back 
projection of the IC to each channel. Formats are as in Figure 1C. Black-border squares indicate electrode located within the sulcus/fissure. Channel(s) 
within the magenta-bordered subregions exhibit the component projection (inverse weight value) exceeding the 95th percentile of 192 channels. 
Numbers indicate the channels selected for the connectivity analysis. Asterisk symbols indicate channels with strong component projections that 
exhibit spatial correspondence with the informative subregions in the searchlight maps (see Figure 4). Black lines indicate the lip of sulcus (similar as 
previously described in Figure 1C and Supplementary Figure S2). Color indicates the absolute value of inverse weight of the IC.
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99th percentile value of the null hypothesis to estimate statistical 
significance. Statistical values were corrected using the Bonferroni 
test. To examine the directionality of GC influence, we evaluated the 
differences in GC influence spectra (dGC) across each frequency 
band, from the theta, alpha, beta, and gamma bands. For each 
significant GC within these bands, we subtracted the GC value in the 
opposite direction from the dominant direction. When GC exhibited 
peaks, we  calculated the difference at the peak frequency in the 
dominant direction. In cases where no peaks were present, 
we quantified the difference by averaging values across the frequency 
range. If the opposite direction showed no significant influence, 
we used the GC value from the significant direction.

3 Results

3.1 A symbolic animacy categorization task 
and performance

We trained two Japanese macaques (monkey P and monkey J) to 
perform a symbolic animate/inanimate categorization task where 2-s 
natural movie clips depicting the movement of either living or 
non-living objects were presented (Figures 1A,B). Each movie clip 
appeared after the monkeys maintained their gaze on a fixation point 
at the centre of the monitor for 500 ms. Following the movie stimuli, 
two symbols appeared randomly at different locations on the screen 

FIGURE 6

Directional functional connectivity within the animacy network across theta, alpha, beta and gamma frequency bands. (A) The positions of the four 
selected sites for the functional connectivity analysis based on the projection of the informative IC in monkeys P (left) and J (right). See Methods for 
details. Based on anatomical landmarks, these sites (circles) were classified into three groups, ITC (white), ventral bank of STS (STSv, grey), and fundus 
of STS (STSf, black). Grey lines indicate the lip and fundus of major sulci. Gray shaded area represents the brain area within the STS. Scale bars, 2 mm. 
(B) Conditional Granger causality (GC) from inter-subregional site-pairs (as indicated by the locations above) in both directions (magenta and blue 
lines), plotted against frequency (Hz). Blue, green, yellow and magenta shaded areas indicate theta-, alpha-, beta-, and gamma-band frequency 
ranges, respectively. Dashed lines indicate the significance threshold (1,000-iteration permutation test, p < 0.05, with Bonferroni correction for 24 
frequency-wise connections). (C) Directional GC influence in each frequency band. These diagrams summarize the conditional GC results of monkey 
P (upper), and J (lower) for each frequency band based on the dGC values. Arrow thickness indicates the dGC value relative to the maximum dGC 
value across the frequency bands.
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during each trial. The monkeys then had to select the symbol 
representing the category of the movie clip they had just watched by 
touching a touchscreen, earning a fluid reward for correct choices. 
Both monkeys successfully learned the symbolic animate/inanimate 
task and performed significantly above chance levels before the 
recording sessions began (monkey P: 98.8%, monkey J: 89.6%), with 
high recall and precision rates (monkey P: 99.2 and 98.2%; monkey J: 
92.0 and 86.7%, respectively).

In the categorical generalization test, the monkeys demonstrated 
the ability to transfer their learning to new stimuli, showing high 
discrimination performance even when encountering the stimuli for the 
first time (monkey P: 83%, monkey J: 67%; one-tailed exact binomial 
test, p < 0.01 and p = 0.04, respectively, Supplementary Figure S1A). 
Additionally, as illustrated in Supplementary Figure S1B, their 
performance remained consistently high (~82% correct; one-tailed 
exact binomial test, p < 0.01) during trial-unique tests, which included 
a dataset with a large number of novel movie stimuli (168–300 clips per 
session) (Methods). These results confirm that the monkeys effectively 
classified different stimuli based on their animacy features. The reaction 
time (RT) measurements indicated both monkeys chose the symbol 
faster for inanimate movies (median RT, monkey P: 904 ms, monkey J 
896 ms) compared to animate movies (monkey P: 916 ms; monkey J: 
942 ms). The median difference in reaction times was 12 ms for monkey 
P and 46 ms for monkey J (p < 0.001, Mann–Whitney U test; 
Supplementary Figure S1C).

3.2 ECoG responses to animate and 
inanimate movies in the TC and dmPFC

While the monkeys performed the tasks, we recorded surface 
LFPs using a 128-channel and 64-channel ECoG electrode arrays 
implanted subdurally over the monkeys’ right TC and dmPFC, 
respectively, with a number of channels inserted in the STS (monkey 
P: 31 channels, monkey J: 18 channels) or longitudinal fissure 
(monkey P: 20 channels, monkey J: 17 channels; Figure  1C and 
Supplementary Figure S2). Both areas exhibited visually evoked 
potential responses to movie stimuli during the task. An event-related 
potential (ERP) characterized by a multiphasic waveform was strongly 
elicited by animate/inanimate stimuli upon initial presentation 
(~600 ms), followed by weaker responses returning to baseline level. 
ERP components then reappeared during symbol selection 
(Figure 2, upper).

Time-frequency representation revealed selective time course of 
mean log power changes from pre-stimulus baseline in response to 
animate\inanimate stimuli in the TC and dmPFC. As depicted in 
Figure  2 (middle and lower), in the ITC, animate stimuli elicited 
greater average power in low (2–16 Hz) and high (30–148 Hz) 
frequency bands during the initial presentation, followed by a 
sustained increase in the high frequency bands and sustained 
suppression in the low frequency bands. The most pronounced 
increases were observed in the high gamma frequencies during the 
initial presentation and in the sustained activities.

In the dmPFC, we observed greater power in the low frequency 
band during the inanimate stimuli presentation. A concurrent but 
weaker high frequency power was observed during early stimuli 
presentation. In subsequent sections, we analyzed responses during 

the movie presentation period to exclude direct effects of motor and 
reward-related events.

3.3 Population activity patterns efficiently 
decoded the category

We further attempted to evaluate the statistical significance of the 
category selectivity of neuronal activity at population level. A support 
vector machine (SVM) classifier was trained to decode category from 
the time-frequency representation of the neuronal population 
(Methods). A substantial amount of category information was 
decoded in both areas. Category information was carried in the low 
and high frequency band powers, yet each area exhibited different 
patterns. Category information in the TC was carried by the transition 
the low frequency band to high frequency band, while category 
information remained in the low frequency bands in the dmPFC.

Figure 3A shows representative high-resolution time-frequency 
plots showing the accuracy levels of decoding animacy category from 
ECoG signals recorded from multiple electrodes in the TC and 
dmPFC of monkey P. Peaks in decoding performance were observed 
between 0–600 ms (transient period) and 1,500–2,000 ms (sustained 
period). Statistical tests were then performed for time-frequency 
decoding within these peak intervals (300 ms each) as depicted in 
Figure 3B, demonstrated significance category information decoded 
with frequency bands at the transient and sustained performance 
(Methods).

In the TC, we found both frequency bands contained category 
information above the chance level throughout the stimulus period 
(Supplementary Figure S3, bootstrap test, p < 0.05 with FDR 
correction for multiple comparison). During the initial presentation 
of movie, when time-locked response occurred, highest decoding 
performance was observed with the low frequency band (theta) 
signals (Figure 3B, 0.81, 95% CI ± 0.07 × 10−2; bootstrap test, adjusted 
p < 0.05). However, during the sustained response period, the highest 
category classification rate (0.63, 95% CI ± 0.03 × 10−2, bootstrap test, 
adjusted p < 0.05) was decoded with the high frequency band (low 
gamma) signals. This indicates a transition of category information 
from the low frequency band during the transient phase to the high 
frequency band during the sustained phase in the TC. Results from 
monkey J, as shown in Supplementary Figure S4, shared similar 
tendencies with those from monkey P. Category information was 
decoded above the chance level with both high and low frequency 
signals in the TC throughout the stimulus period 
(Supplementary Figure S3, bootstrap test, p < 0.05 with FDR 
correction for multiple comparison). Although the performance with 
low frequency band signals was relatively higher during the sustained 
period, decoding accuracy with the high frequency band signals (low 
gamma) was also significant (0.53, 95% CI ± 0.03 × 10−2, bootstrap 
test, adjusted p < 0.05), which peaked just before the stimulus end, 
nearly at the same time as in monkey P.

For the dmPFC, the high-resolution time-frequency plot indicated 
that category information was mainly decoded from the low frequency 
band signals. Decoding performance with the high frequency band 
signals was slightly above the chance level in the monkey P, but for 
monkey J, it did not exceed the chance level as shown in 
Figure 3B. Thus, decoding accuracy with the low frequency band 
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signals in the dmPFC remained significant throughout the stimulus 
period across the two monkeys.

3.4 Spatial distribution of category 
information revealed by searchlight 
analysis

Given the selectivity in both areas, we conducted the searchlight 
analysis to identify spatial specificity in encoding animacy categories 
(Figure 4). While a majority of local region of interest (ROI) covered 
by 2 × 2 electrodes, each of which covering a 2.5 mm by 2.5 mm area 
(Methods), exhibited selectivity for animacy category with decoding 
performance above the chance level (monkey P: 105 ROIs in the TC 
and 38 ROIs in the dmPFC, monkey J: 104 ROIs in the TC and 16 
ROIs in the dmPFC; evaluated at p < 0.05, bootstrap test with FDR 
correction for the number of the ROIs), the ROI with the highest 
decoding accuracy in the TC was located in the ventral bank of the 
STS, anterodorsal to the posterior middle temporal sulcus (PMTS). 
Additionally, high category selectivity was observed in regions 
anterior to the PMTS and dorsal to the anterior middle temporal 
sulcus (AMTS).

Searchlight analysis revealed that category information was 
distributed throughout the dmPFC with relatively lower decoding 
performances compared to the TC. Although the highest decoding 
performance was observed in different locations between the 
monkeys, dorsoposterior dmPFC for monkey P and the caudal part 
of the principal sulcus for monkey J, both monkeys exhibited 
significant category selectivity in these locations. These results suggest 
that the category information is encoded in distributed areas within 
the TC and dmPFC, in which interconnectivity between focal ROIs 
might reflect possible functional architecture for animacy 
categorization. Do these distributed pieces of information indicate 
independent parallel pathways of information processing, or do they 
suggest interdependent and cooperative pathways? We subsequently 
investigated this question.

3.5 Identification of distributed functional 
networks using independent component 
analysis in the TC and dmPFC

ICA is a well-known approach for identifying functionally 
connected networks from signals recorded by fMRI (McKeown et al., 
1998; Moeller et  al., 2009) or LFP signals (Orellana et  al., 2024). 
We applied ICA to decompose our LFP signals into 192 statistically 
independent source signals, along with their spatial distribution maps. 
Time-frequency decoding analysis were then conducted to identify 
informative component for the category discrimination (Methods). 
The decoding analysis revealed that a subset of independent 
components (IC) was informative for animate/inanimate 
categorization with high decoding performance observed in the high 
and low frequency bands (Supplementary Figure S5; monkey P: 101 
ICs, monkey J: 28 ICs; p < 0.05, the permutation test with FDR 
correction for 192 ICs).

A topographical map of the most informative component is 
shown in Figure 5. The map depicts the IC projected across multiple 
regions within the TC, indicating its cooperative activity in these 

regions. In monkey P, the component exhibited strong projections to 
electrodes in the ventral bank of the STS and in a gyral part of the TC 
posterior to the AMTS. Additionally, the component also projected to 
electrodes in the fundus of the STS dorsal to the PMTS. In monkey J, 
strong projections were observed in the ventral bank of the STS, a 
gyral region dorsal to the PMTS, with additional projections in 
distributed regions anterior to the PMTS and in the fundus of the STS.

We observed that the subregions to which the informative IC 
strongly projected––specifically, the ventral bank of the STS and the 
gyral part of the TC––spatially corresponded with the ROIs exhibiting 
high decoding performance in the TC (as indicated by asterisk in 
Figures  4, 5). Previous studies have demonstrated that motion 
processing is coordinated in the STS region (Oram and Perrett, 1994, 
1996; Nelissen et al., 2006; Vangeneugden et al., 2011; Jastorff et al., 
2012), while shape processing is coordinated in the gyrus part of the 
TC (Tanaka, 1996; Desimone et al., 1984; Tsao, 2014). Our results 
suggest the existence of an integrated subnetwork combining these 
circuits associated with animacy categorization. Furthermore, 
we investigated the direction of the functional connectivity within this 
integrated subnetwork.

3.6 Directed functional connectivity within 
the animacy subnetwork

Based on the above findings, where a functional subnetwork was 
identified through the cortical projection of the most informative 
component (Figure 5), we further evaluated conditional GC influences 
to determine the presence and direction of category information flow 
within this network. Our analysis focused on four locations exhibiting 
strong projections from the most informative IC (Figures  5, 6A), 
which were grouped into three main regions: the gyrus of the TC 
(ITC), the ventral bank of the STS (STSv), and the fundus of the STS 
(STSf). GC values were calculated using non-parametric methods, 
with bidirectional conditional GC spectra computed for all pairwise 
combinations (Figure 6B). To assess the directionality of the significant 
connections, we calculated the difference in GC influences (dGC) for 
each frequency band.

We identified significant frequency-specific directional influences 
among the ITC, STSv, and STSf, indicating functional connectivity 
within the animacy-responsible network (20 out of 24 frequency-wise 
connections for P, 21 out of 24 frequency-wise connections for J, 
Figure 6B and Table 1). Unidirectional significant flow and the dGC 
analysis revealed a general directional functional flow from the ITC 
to the STS in both monkeys (Figure 6C; Supplementary Figure S6). 
Consistently across both monkeys, signalling in the subnetwork was 
prominently unidirectional from the ITC to STS (ITC → STSv, STSv 
→ STSf, and ITC → STSf) in the alpha and gamma bands, as well as 
in the theta and beta bands (ITC → STSv, STSv → STSf) (Figure 6C). 
GC influence spectra in 4 out of 6 pairs peaked within the alpha band 
range forming unidirectional connections from the ITC to STS, while 
substantial amounts of GC peaks within theta band range were 
observed from the STSf to ITC (Figure 6B).

In monkey P, all six inter-subregional pairs showed significant 
bidirectional causal influences, confirming a functional network 
integrating the gyrus and the sulcus parts of the TC (adjusted p < 0.05, 
permutation test with Bonferroni correction; Table 1). GC spectra 
analysis in the pairs of the ITC and both STS subregions exhibited 
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significant bidirectional influences in the theta, alpha, and beta bands, 
while bidirectional influences in the gamma band were only observed 
in the ITC – STSf pair (Supplementary Figure S6, upper panel). 
Additionally, between the STS subregions, we observed the STSv → 
STSf direction consistently had significant influences across the 
frequency bands, whereas significant GC values in the reverse 
direction were observed solely in the beta band.

In monkey J, all inter-subregional pairs exhibited significant 
causal influences in both directions (Table  1). Generally, the GC 
spectra demonstrated a pattern resembling the subnetwork 
characteristics observed in monkey P. For instance, pairs of the ITC 
and both STS subregions had significant bidirectional influences in 
theta, alpha, and beta band (Supplementary Figure S6, lower panel). 
In consistent with monkey P, results of the monkey J showed 
unidirectional connections in alpha and gamma band, which suggests 
a hierarchical organization within the animacy subnetwork (Figure 6C 

and see Discussion). Unlike the monkey P, the GC influence spectra 
in the theta and beta bands were stronger in the ITC → STSf direction 
than in the reverse direction, indicating unidirectional signalling from 
the ITC to STS.

4 Discussion

Introducing a symbolic animate/inanimate categorization task 
using natural movie clips, we showed that monkeys achieved high 
performance levels and demonstrated robust generalization to novel 
stimuli. Concurrently, the wide areal ECoG recordings from the TC 
and dmPFC revealed sufficient information for animacy categorization 
not only at the onset of the movie but throughout the entire 
presentation period in both areas. Spatial analysis highlighted specific 
regions within the TC and dmPFC, particularly in the ITC (inferior 
gyrus of the temporal cortex), the ventral bank of the STS, and the 
fundus of the STS, which exhibited high category selectivity. ICA 
analysis identified functionally connected networks across these 
regions, suggesting integrated pathways for animacy categorization. 
Granger causality analysis confirmed the functional connectivity and 
further indicated directional information flow, emphasizing the 
pronounced alpha band influences within the identified network. 
These findings suggest a distributed but functionally interconnected 
neural substrate for animacy processing across the TC and underscore 
the subnetwork integrating the gyrus (ITC) and the sulcus parts of the 
TC (STS) involved in natural animacy categorization in macaque 
monkeys. The results were comparable to previous ECoG studies in 
humans (Matsuo et al., 2015; Rupp et al., 2017; Rogers et al., 2021) 
which have shown that animacy information is encoded in the VTC, 
potentially corresponding functionally to the ITC and STS 
in monkeys.

Animacy recognition in monkeys has been studied using various 
tasks, such as gaze measurement and go/no-go tasks in the past 
(Fabre-Thorpe et al., 1998; Tsutsumi et al., 2012; Yetter et al., 2021). 
Unlike the go/no-go tasks, where a specific behavior must 
be  associated with a specific category (animate/inanimate), using 
explicit symbols as the response targets for monkeys allowed for an 
unbiased investigation of neural responses related to animacy 
recognition. This task paradigm was better suited for evaluating 
sustained activities occurring around the response time for the 
monkeys. We  observed clear differences in the frequency 
representation of sustained activity between the TC and dmPFC. In 
the TC, category information was observed in both high and low 
frequencies, while in the dmPFC, it was primarily observed in low 
frequencies. This suggests that information related to the same 
cognitive process might be represented in different frequency bands 
depending on the stage of processing.

The regions identified as informative in this study, particularly 
the ventral bank and fundus of the STS, are consistent with previous 
findings that suggest the involvement of STS cells in processing 
biological motion (Perrett et  al., 1989; Giese and Poggio, 2003; 
Nelissen et al., 2006; Vangeneugden et al., 2011; Jastorff et al., 2012). 
Traditionally, the STS has been viewed as a convergence point for 
the dorsal and ventral pathways, which are responsible for 
processing motion and shape information, respectively, based on 
anatomical location and fiber connections (Bruce et  al., 1981; 
Seltzer and Pandya, 1978, 1991; Farivar, 2009). In this study, 

TABLE 1 Conditional GC values between sub-regions in Monkeys P and J.

TO

Subregion ITC STSv STSf

Monkey P

FR
O

M

ITC

ϒ – 0.0141 0.0062

β – 0.0227* 0.0078

α – 0.0257* 0.0124*

θ – 0.0099 0.0029

STSv

ϒ n.s. – 0.0057

β 0.0019 – 0.0152

α 0.0106 – 0.0287*

θ 0.0049 – 0.0152

STSf

ϒ 0.0025 n.s. –

β 0.0153* 0.0066 –

α 0.0084 n.s. –

θ 0.0116* n.s. –

Monkey J

FR
O

M

ITC

ϒ – 0.0094 0.0061

β – 0.0234 0.0168

α – 0.0372* 0.0497*

θ – 0.0343* 0.0397*

STSv

ϒ 0.0004 – 0.0051

β 0.0047 – 0.0227

α 0.0081 – 0.0500*

θ 0.0046 – 0.0266

STSf

ϒ n.s. n.s. –

β 0.0027 n.s. –

α 0.0107 0.0025 –

θ 0.0168 0.0076 –

Direction of influence is from sites listed on the left to the site at the top. Unless otherwise 
indicated, averaged GC values for each frequency band are displayed in separate rows. Values 
are shown only for frequency bands with significant GC spectra (see Methods). ‘n.s.’ denotes 
not significant; ‘–’ indicates a self-pairing site. ‘*’ marks the peak of GC spectra in each pair. 
ITC, inferior temporal cortex; STSv, ventral bank of STS; STSf, fundus of STS.
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however, informative regions were also identified in the gyral part 
of the TC. This may be attributed to the rich shape attributes in the 
natural movies we used, in addition to the rich motion attributes. 
Importantly, as revealed by ICA and Granger causality analyses, the 
informative regions inside of the sulcus (the STS) and outside of it 
(ITC) demonstrated strong functional connectivity. This finding 
suggests that the distributed regions are not merely representing 
information related to motion and shape separately but are forming 
a subnetwork that collectively represents animacy information.

Recent research also suggests the presence of face and body patches 
within the STS, which process face and body movements exclusively and 
independently from the dorsal visual pathway (Hesse and Tsao, 2020; 
Yang and Freiwald, 2023). Furthermore, another study contrasting 
responses to animate and inanimate stimuli using face and body 
representations demonstrated a nuanced interaction between face and 
body processing in animacy perception (Bao et al., 2020). Although 
some of the animacy-related movies in this study included faces and 
bodies, the relationship between these patches and the observed activity 
remains unclear due to the lack of controlled stimuli specifically targeting 
these patches. Additionally, while our multi-channel ECoG grid is able 
to measure LFP from both surface and intrasulcal areas in the ITC, it is 
difficult to distinguish whether the recordings were obtained from the 
ventral or dorsal bank of the sulcus, making it challenging to clarify the 
exact correspondence of these regions (Freiwald et al., 2016).

In visual areas, it is known that the frequency bands involved in 
Granger causality and hierarchical processing follow a pattern in 
which feedforward information is carried in the theta and gamma 
bands, while feedback information is transmitted in the alpha and 
beta bands (Van Kerkoerle et al., 2014; Bastos et al., 2015). In the 
present study, our results suggest that signals propagate from the ITC 
to the STS in both feedforward (theta and gamma bands) and 
feedback (alpha and beta bands) representations. However, given that 
the GC peaks often occur in the alpha band, these connections may 
lean more toward feedback processing. This pattern may reflect a 
methodological difference from previous studies that focused only on 
peak frequencies, while our study considered the full range of 
frequency bands. It may also reflect the fact that the network 
we studied is confined to adjacent regions. The feedback pathway 
from shape to motion may share mechanisms with processes involved 
in detecting motion from static snapshots (Singer and Sheinberg, 
2010). In contrast, for feedforward pathways, the connection from 
the STSf to ITC exhibits the second-highest peak in monkey P, a 
point of interest shared across both monkeys. The feedforward 
pathway from motion to shape in animacy recognition underscores 
the importance of constructing shape information from motion, 
potentially sharing mechanisms with biological dot motion 
perception (Oram and Perrett, 1994; Giese and Poggio, 2003) and the 
detection of shape from motion when no distinct shape is present 
(Burk and Sheinberg, 2022). Further research with stimuli that 
systematically manipulate form and motion dimensions is needed to 
explore these neuronal dynamics. While GC analysis revealed the 
direction of information flow within the subnetworks, the specific 
content of the information underlying these functional connections 
remains an open question for future research.

In this study, the dmPFC also exhibited significant category 
information, in line with previous findings (Mitchell et  al., 2002). 
Although the most informative components did not peak in the dmPFC 
(Figure 5), some lower-tier informative components did, and others 
showed peaks in both regions (data not shown). Considering that general 

category responses are observed in more lateral regions of the PFC in 
monkeys (Freedman et al., 2002; Shima et al., 2007; Roy et al., 2010), 
expanding the recording areas in future studies will also be important.

Animacy perception involves a cognitive process of determining 
whether an object is alive or dead, or whether it possesses emotions 
or intentions (Rakison and Poulin-Dubois, 2001; Barrett and Behne, 
2005). Such perception can be  considered a part of conceptual 
cognition, as it involves recognizing abstract concepts and intentions. 
In other words, animacy perception goes beyond simple sensory 
information processing and includes elements that facilitate a 
conceptual understanding of objects and environments. This study’s 
results demonstrate the importance of the temporal cortical functional 
network in animacy visual processing when an individual is viewing 
natural scenes. By further identifying the processing between the TC 
and PFC regions, we can enhance our understanding of the process of 
abstraction in animacy recognition.
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