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Introduction: According to reinforcement learning, humans adjust their 
behavior based on the difference between actual and anticipated outcomes 
(i.e., prediction error) with the main goal of maximizing rewards through their 
actions. Despite offering a strong theoretical framework to understand how we 
acquire motor skills, very few studies have investigated reinforcement learning 
predictions and its underlying mechanisms in motor skill acquisition.

Methods: In the present study, we explored a 134-person dataset consisting 
of learners’ feedback-evoked brain activity (reward positivity; RewP) and motor 
accuracy during the practice phase and delayed retention test to investigate whether 
these variables interacted according to reinforcement learning predictions.

Results: Results showed a non-linear relationship between RewP and trial 
accuracy, which was moderated by the learners’ performance level. Specifically, 
high-performing learners were more sensitive to violations in reward expectations 
compared to low-performing learners, likely because they developed a stronger 
representation of the skill and were able to rely on more stable outcome predictions. 
Furthermore, contrary to our prediction, the average RewP during acquisition did 
not predict performance on the delayed retention test.

Discussion: Together, these findings support the use of reinforcement learning 
models to understand short-term behavior adaptation and highlight the 
complexity of the motor skill consolidation process, which would benefit from a 
multi-mechanistic approach to further our understanding of this phenomenon.

KEYWORDS

motor learning, reward-prediction errors, graded feedback, EEG, mixed-effects 
modeling

Introduction

The process of acquiring motor skills is typically marked by rapid improvements in 
performance observed early in practice followed by smaller adjustments when the learner 
achieves a higher skill level (e.g., power law of practice; Newell and Rosenbloom, 1981). Given 
the complexity of the elements involved in this process, different modes of learning have been 
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jointly used to explain how we acquire motor skills (Lohse et al., 2019; 
Seidler et al., 2013; Wolpert et al., 2011). For instance, error-based 
learning asserts that trial-to-trial adjustments in performance are 
guided by the discrepancy between the expected and actual sensory 
consequences of a motor command (i.e., a sensory-prediction error). 
This type of learning is thought to engage cerebellar-cortical pathways 
(McNamee and Wolpert, 2019; Wolpert et  al., 1998) and rely on 
forward models (Diedrichsen et  al., 2010) to generate behavioral 
adjustments. Specifically, based on the current state of the motor 
system and the action to be executed, the internal forward model 
anticipates the sensory feedback, which is contrasted against the 
actual sensory feedback (Haith and Krakauer, 2013a). Early in 
practice, this discrepancy is large, likely due to the lack of a reliable 
and accurate forward model of the skill (Wolpert et al., 1998). Thus, 
larger motor command adjustments are implemented in an attempt 
to reduce the sensory-prediction error. As performance improves, the 
internal representation of the skill becomes more accurate and the 
discrepancy between planned and actual sensorimotor outcome 
diminishes, which culminates in smaller motor 
command adjustments.

Whereas error-based learning explains movement refinement on 
the account of sensory-reward prediction errors, reinforcement 
learning, another important model to understand skill acquisition, 
explains performance adjustments based on reward-prediction errors, 
the difference between actual and anticipated rewards (Rescorla, 1972; 
Schultz, 2017; Sutton and Barto, 1998). Behaviors that lead to better- 
or worse-than-expected outcomes result in positive and negative 
reward-prediction errors, respectively. At the neural level, reward-
prediction errors convey information that is used to guide future 
adaptations (Seidler et al., 2013). More specifically, within the brain, 
positive reward-prediction errors increase the value of behaviors that 
resulted in better-than-expected outcomes, making the re-occurrence 
of these behaviors more likely in the future. Conversely, negative 
reward-prediction errors decrease the value of behaviors that resulted 
in worse-than-expected outcomes, making the re-occurrence of these 
behaviors less likely in the future. Consider the practical example of a 
novice trying to learn how to putt. Early on, her lack of familiarity 
with the task and ability to detect and correct errors may lead to 
frequent, large negative reward-prediction errors due to her badly 
missed putts. Thus, to find the movement pattern that will get her 
closer to sinking a putt, she needs to explore different movement 
strategies (i.e., implement large performance adjustments). Her lack 
of practice and experience also makes successful performance (i.e., 
sinking the putt) less likely to occur, so her expectations for future 
rewards are low. Thus, when she unexpectedly sinks her first putt, this 
leads to an outcome that is far better than anticipated or in other 
words, a large positive reward-prediction error. As previously 
mentioned, positive reward-prediction errors facilitate movement 
repetition so the behavior that precipitated success is likely to 
be repeated, leading to rapid improvements. Toward the later stages of 
learning, she may have already found the movement strategy that 
more closely aligns with the optimal movement pattern. At this point, 
she begins to exploit that movement strategy to find her optimal 
movement pattern by implementing smaller adjustments. Also, as she 
becomes more skillful and knowledgeable about the task, her actual 
performance starts to match her expected performance, leading to 
smaller reward-prediction errors, which would explain the smaller 
performance adjustments seen at that stage.

Under an error-based learning framework, once motor errors 
are on average reduced to zero, further improvements are limited. 
Due to motor control redundancy (i.e., different combinations of 
movement adjustments can lead to the same end result; Haith and 
Krakauer, 2013b), the exploration of the motor solution space to 
find the optimal movement requires the involvement of other 
learning mechanisms, such as reinforcement learning (Wolpert 
et al., 2011). Thus, investigating how these systems use different 
learning signals (sensory errors vs. outcome success/failure) and 
work together to promote behavior adaptation is crucial to enhance 
our understanding of the motor skill acquisition process. Although 
both error-based learning and reinforcement learning have been 
well studied across different paradigms, most of these investigations 
have focused on motor adaptation (e.g., Diedrichsen et al., 2010; 
Izawa and Shadmehr, 2011; Pélisson et al., 2010). Thus, it is still 
unclear how reinforcement learning mechanisms contribute to 
what behavioral researchers define as motor skill learning; i.e., a 
relatively permanent change in the capability for behavior, not 
merely an adjustment made on the next attempt (Kantak and 
Winstein, 2012; Schmidt and Lee, 2019). To expand our 
understanding of this relationship, in the present study, we focus 
on the application of reinforcement learning to explain motor skill 
acquisition by adopting a mechanistic approach to investigate one 
of its main drivers, reward-prediction errors.

In human research, reward-prediction errors have been studied 
through the measure of the reward positivity (RewP), an event-
related potential (ERP) component derived from the 
electroencephalogram (EEG). Methodologically, the RewP is 
characterized as a positive deflection in the ERP waveform that 
peaks between 230 and 350 ms after augmented feedback onset and 
exhibits a frontal-central scalp topography, typically maximal at 
electrode FCz (Krigolson, 2018). While support for the association 
between RewP and behavior exists (Holroyd and Krigolson, 2007; 
Williams et al., 2018), studies investigating this relationship often 
do not use learnable tasks, relying instead on those where 
performance and feedback are based on chance (e.g., reward 
gambling tasks). In these paradigms the task is typically simple, 
and feedback is usually binary (i.e., squeeze a dynamometer and 
receive correct versus incorrect feedback response; Meadows et al., 
2016). Moreover, the frequency and/or probability of receiving 
correct/incorrect feedback is controlled by the experimenter (e.g., 
probability of making a correct response and receiving positive 
feedback is set at 50%). However, real-world skill acquisition 
involves more complex, learnable tasks wherein feedback 
probability varies as a function of performance. Additionally, 
sensory information is available to error-based learning systems 
and is supplemented by graded outcome-based feedback (e.g., 
coach: “you overshot the target by 35 cm”). Augmented feedback 
as defined by information that is fed back to the learner via 
artificial means (e.g., a coach providing verbal feedback; Schmidt 
and Lee, 2019) plays a major role in performance improvement 
(Schmidt and Lee, 2019), especially at the earlier stages of learning 
(Newell, 1976), and from a motor learning perspective, graded 
feedback is more advantageous as it provides learners with more 
information that can be  used to flexibly make performance  
adjustments.

Very few studies have investigated the relationship between RewP 
and graded feedback processing (e.g., Ulrich and Hewig, 2014), and 
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fewer have done so using a motor learning paradigm. One exception 
is the study by Frömer et al. (2016) in which participants performed a 
virtual throwing task and received visual graded feedback about where 
each throw landed relative to the target’s bullseye. Results from this 
study showed that more accurate throws resulted in larger RewP 
amplitudes, which is in line with the reinforcement learning prediction 
that larger rewards (i.e., more accurate performances) lead to larger 
positive reward-prediction errors. Notably, this effect was shown 
among successful trials, as only trials that landed on the target were 
analyzed. Additionally, RewP amplitude decreased as participants’ hit 
frequency increased, which is expected under a reinforcement 
learning framework. This follows because participants with higher 
accuracy expect to receive rewards more frequently, decreasing the 
size of their positive reward-prediction errors for successful  
performances.

Although the study by Frömer et  al. (2016) makes important 
contributions to our understanding of how reinforcement learning 
principles map onto feedback processing in a more realistic setting 
and under different task demands (i.e., complex motor skill), the study 
did not explore the relationship between RewP and delayed retention 
(i.e., learning, as defined as a relatively permanent change in the 
capability for behavior; Kantak and Winstein, 2012; Schmidt and Lee, 
2019). This limitation is consistent with most of the past research, 
which has focused on performance changes over short timescales 
(Bellebaum and Daum, 2008; Reinhart and Woodman, 2014), leaving 
a gap in the literature and making it unclear how reward-prediction 
errors relate to learning. From a reinforcement learning perspective, 
reward-prediction errors experienced during a training session drive 
acute behavior adaptation, leading to better practice performance and, 
consequently, better learning. However, motor learning studies have 
shown that performance during a training session does not necessarily 
correlate and, in some cases, may be  inversely correlated with 
performance on delayed post-tests (Kantak and Winstein, 2012). For 
instance, the study by Lohse et al. (2020) showed that RewP explained 
some of the short-term dynamic changes in behavior but was not 
correlated with learning as indexed by performance on one-week 
retention and transfer tests. Notably, this study adopted a visual 
category learning task wherein participants received binary feedback 
(i.e., correct vs. incorrect) about their performance. Thus, it is still 
unclear whether reward-prediction errors measured via RewP are 
associated with learning of a complex motor skill in a more realistic 
setting (i.e., graded feedback that varies according to learners’ 
performance).

Building off past research (Frömer et al., 2016; Lohse et al., 2020), 
we tested reinforcement learning predictions and their underlying 
mechanisms in short- and long-term behavior adaptation by modeling 
data from an EEG experiment that included a complex motor task, 
graded feedback, and a delayed retention test. Specifically, 
we  investigated the effect of single-trial performance accuracy on 
single-trial RewP during acquisition. According to reinforcement 
learning, more accurate performance is associated with more positive 
reward-prediction errors (Frömer et al., 2016). Thus, we predicted 
that, at the within-subject level, single-trial RewP would be more 
positive for more accurate compared to less accurate trials. 
Additionally, we examined the effect of participants’ average accuracy 
(at the between-subject level) on the RewP since Frömer et al. (2016) 
found that participants’ cumulative accuracy influenced RewP 
amplitude. Finally, we investigated whether aggregate RewP predicted 

learning as indexed by average performance on a 24-h retention test. 
A corollary prediction from reinforcement learning is that accrual of 
larger RewPs (more positive reward-prediction errors) during practice 
should result in a larger aggregate RewP and better learning. Thus, 
controlling for pretest, we predicted a positive correlation between 
aggregate RewP amplitude and average performance on the 
retention test.

Methods

Participants

Data from 134 participants (females = 100, Mage = 20.72, 
SD = 1.64 years) were used in the present study. All participants 
were right-handed (Mhandedness score = 77.30, SD = 27.24; Oldfield, 
1971) or reported having a strong preference for using their right 
hand to throw, and reported not having any neuromuscular 
impairment that would affect performance of the experimental 
task. This dataset was collected during a larger, university-approved 
(Auburn University research protocol # 19–046 EP 1902) motor 
learning study (Bacelar et al., 2022). All participants gave written 
consent prior to Day 1 of data collection and verbal consent prior 
to Day 2 of data collection. Given the exploratory nature of the 
present study, there was no a-priori power calculation for these 
secondary analyses.1

Task

Participants performed a non-dominant arm bean bag tossing 
task. The goal of the task was to make the bean bag land as close to the 
center of the target as possible (i.e., D4, Figure 1). The target consisted 
of a grid comprising 49 equal-sized squares, each one assigned a letter 
and a number indicating the square position (e.g., D4: square located 
in the center of the target). Participants sat in front of a table located 
three meters away from the center of the target. The table 
accommodated 10 bean bags and a computer monitor used to deliver 
feedback in addition to serving as a support for a pasteboard used to 
occlude participants’ vision of the target (Figure 1). Another small 
table was placed next to participants’ right arm to serve as a support 
for a keyboard used to initiate feedback presentation. From a sitting 
position, participants were instructed to grasp a bean bag with their 
left hand pronated and toss it over the occlusion board by elevating 
their arm and flicking their wrist. (For more details about the task see 
Bacelar et al., 2022).

1 An a-priori power analysis was conducted to estimate the sample size 

needed to test the main hypothesis of the behavioral study (detailed parameters 

to replicate this power analysis can be found in Bacelar et al., 2022). Based on 

this formal power analysis, we  first aimed to collect EEG data from 200 

participants. However, due to the COVID-19 global pandemic, EEG data 

collection was stopped to reduce the duration of the experiment and minimize 

participants’ exposure to the virus. Thus, our final 134-participant dataset 

reflects the much-needed adjustments implemented in response to the 

pandemic.
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Procedures

Acquisition phase
To determine baseline skill level, a 10-trial pretest without 

feedback was carried out before the acquisition phase. (Participants 
were allowed to see the target for 10s before initiating the pretest). 
Next, male and female participants were stratified and then randomly 
assigned based on sex to one of four experimental groups that varied 
according to whether feedback schedule was self-selected by the 
participant (self-control) or determined by a counterpart (i.e., another 
participant; yoked) and whether performance estimation (i.e., 
estimating where the bean bag landed after each trial) was required 
(error estimation) or not (traditional).2 Participants then underwent 
the acquisition phase, which consisted of 10 blocks of 10 trials with a 
1-min break between blocks. As in the pretest, participants were 
allowed to see the target for 10s before initiating the acquisition phase. 
Feedback was presented in 5 of 10 trials per block (i.e., 50% of the 
time) for all participants based on their assigned experimental 
condition. Specifically, for feedback trials, feedback was initiated as 
soon as the participant pressed the “enter” key on the keyboard after 
being prompted by the word “ready” on the computer screen. First, 
participants saw an image of target on the screen for 2,000 ms and 
then the square where the bean bag landed changed to being 
highlighted in yellow, as shown in Figure 2; the latter image remained 
on the screen for 1,000 ms. For trials that landed off target, participants 
saw an image of the target on the screen for 2,000 ms followed by a red 
X presented for 1,000 ms.

2 These experimental conditions were created to test predictions made by 

a motor learning theory (OPTIMAL theory; Wulf and Lewthwaite, 2016) and 

the results of these manipulations have been presented in another publication 

(Bacelar et al., 2022). We account for these manipulations in our statistical 

models even though they are not of primary interest in the present study.

Retention test
Approximately 24 h after the acquisition phase, participants 

returned to the laboratory to perform a retention and a transfer test. 
For the retention test, participants performed the same bean bag 
tossing task practiced on day 1, whereas for the transfer, participants 
were positioned farther away from the target (i.e., four instead of 
three meters away). Post-tests consisted of one block of 10 trials each 
and were carried out in counterbalanced order. Participants were 
allowed to see the target for 10s before initiating each post-test, but 
no feedback was presented during the post-test. In the present study, 
we focused on the results from the retention test only as this test 
more closely aligns with our targeted mechanism. Specifically, 
positive reward-prediction errors are associated with the release of 
dopamine (Schultz, 2017), which has been shown to modulate 
memory consolidation (Iemolo et al., 2015). Thus, we reasoned that 
results from the retention test would better represent the 
consolidation of the exact version of the previously acquired 
motor memory.

EEG recording

EEG was recorded during the acquisition phase from 14 scalp 
electrodes using a 64-channel BrainVision actiCAP system (Brain 
Products GmbH, Munich, Germany) labeled in accord with an 
extended 10–20 international system (Oostenveld and Praamstra, 
2001). The left earlobe served as the online reference and the FPz 
electrode site served as the common ground. Electrode impedances 
were maintained below 25kΩ throughout the experiment. A high-pass 
filter set at 0.016 Hz was applied and the sampling rate was set at 
250 Hz. A BrainAmp DC amplifier (Brain Products GmbH) linked to 
BrainVision Recorder software (Brain Products GmbH) was used to 
amplify and digitize the EEG signal. To minimize possible EEG noise 
that might differ between participants, we  provided EEG-specific 
instructions prior to initiating the recording during data collection. 

FIGURE 1

Experimental set-up. The left side of the figure shows the pasteboard which was used to occlude participants’ vision of the target. The right side of the figure 
illustrates how feedback was delivered throughout the experiment. This figure is a slightly modified version of Figure 1 presented in Bacelar et al. (2022). Permission to 
reproduce this figure has been obtained by the authors.
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The instructions highlighted the need to remain still and fixate on the 
computer monitor when receiving augmented feedback.

EEG processing

EEG data processing was conducted with BrainVision Analyzer 
2.2 software (Brain Products GmhB). First, raw data was visually 
inspected and malfunctioning electrodes were interpolated. Next, data 
were re-referenced to the average of both left and right ears. A 1–40 Hz 
band-pass filter with 4th order roll-offs and a 60 Hz notch filter was 
applied to the re-referenced data in preparation for the independent 
component analysis (ICA) step. Non-stereotypical artifacts were then 
marked throughout blocks 4 and 5, excluding the rest period between 
these blocks. This interval was chosen as it minimizes the presence of 
non-stereotypical artifacts that are either due to the participant’s 
adjustment to the task (i.e., earlier blocks) or tiredness (i.e., toward the 
end of practice). After this step, an ICA was conducted to identify 
components representing stereotypical artifacts (e.g., saccades and 
blinks), which were subsequently removed from the unfiltered data. 
Finally, the cleaned data were filtered using an infinite impulse 
response band-pass filter between 0.1 and 30 Hz with 4th order roll-
offs and a 60 Hz notch filter.

Measures

Psychophysiological measures

Single-trial RewP
First, filtered EEG data were segmented into epochs beginning 

200 ms before and ending 800 ms after feedback stimulus onset (square 
highlighted in yellow or red X). To determine each participant’s RewP 
time-window, during the segmentation step, approximately 20 of a 
participants’ best trials were selected (i.e., 20 trials closest to the center 
of the target; Marco-Pallares et al., 2011). Some participants ended up 
with more than 20 trials as trials that ended in the same square of the 
grid counted as equally accurate, given the way that feedback was 
provided to participants. We  also carried out trial selection in a 

stepwise manner. For example, trials that landed on the innermost 
square, D4, were included first. If the number of trials included did not 
add up to a minimum of 20, all trials that landed on the second group 
of squares surrounding the center of the target (i.e., trials landing on 
C3, C4, C5, D3, D5, E3, E4, and E5) were included next. This process 
continued until at least 20 trials were selected. After segmentation, 
epochs were baseline corrected from −200 ms to 0 ms. Next, consistent 
with the artifact rejection approach used in past studies (e.g., Meadows 
et al., 2016; Parma et al., 2023), epochs were automatically rejected if 
they contained a change of more than 50 μV from one data point to 
the next, a change of 100 μV or greater within a moving 200-ms 
window, or a change of less than 0.5 μV within a moving 200-ms 
window in any of the midline electrodes (Fz, FCz, Cz, and Pz). Then, 
to determine the time window for RewP quantification, epochs were 
averaged. Considering that RewP peak latency may vary across 
individuals, each participant’s RewP time window was adapted based 
on the participant’s RewP peak latency at the electrode FCz (Clayson 
et al., 2013). The most positive deflection within the 230–350 ms time 
window that exhibited a frontocentral scalp distribution was recorded 
(Krigolson, 2018). If no component exhibited a frontocentral scalp 
distribution, the most positive deflection within the 230–350 ms time 
window was recorded. After determining the RewP peak for each 
participant, data were re-segmented to include all feedback trials (i.e., 
50 feedback trials). The next steps included baseline correction and 
epoch automatic artifact rejection following the specifications 
described above. The first author also visually inspected all 50 epochs 
and manually removed one trial that exhibited marked artifacts but 
was not removed in the automatic rejection step. Next, a 40-ms time 
window was centered on each participant’s previously recorded peak 
amplitude at FCz, Fz, and Cz on each epoch, and then mean amplitude 
in this time window for these electrodes was computed. The adaptive 
mean amplitude extraction method was used as area-based extraction 
methods are less sensitive to noise compared to peak-based methods 
(Clayson et al., 2013; Luck, 2014). Finally, we averaged across FCz, Fz, 
and Cz to obtain the single-trial RewP for each feedback trial.

Aggregate RewP
Aggregate RewP was obtained by averaging across all single-trial 

RewP trials for each participant.

FIGURE 2

Feedback delivery sequence of events. This figure depicts how feedback was presented during the acquisition phase. On feedback trials, after throwing 
the bean bag and estimating their performance if applicable, participants first saw the word “Ready” on the computer screen. Next, as soon as they 
pressed the enter key on the keyboard, they saw an image of the target for 2,000  ms. Finally, for trials that landed on board, the square where the bean 
bag landed changed to being highlighted in yellow. This image remained on the screen for 1,000  ms. For trials that landed off board, participants saw 
an image of the target on the screen for 2.,000  ms followed by a red X presented for 1,000  ms. Feedback delivery was consistent across all 
experimental conditions with participants seeing the same sequence of events.
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Behavioral measures

Single-trial and average radial error
Radial error (RE) is a measure of accuracy for two-dimensional 

performance tasks (Hancock et al., 1995). The formula to obtain RE is 
as follows: (x2 + y2)1/2, where X and Y correspond to the magnitude of 
the error along the x- and y-axis, respectively. In the present study, 
we computed RE on a trial-by-trial basis for the acquisition phase 
(here referred to as single-trial RE) and as an aggregate measure for 
pretest, acquisition phase, and retention test (here referred to as 
average RE).

Data analysis

Of the total number of single-trial RewPs (N = 6,700), 2.36% 
(n = 158) were lost due to either data collection issues (e.g., problems 
with the EEG system during data collection) and/or artifact rejection 
during data processing. Additionally, 215 single-trial RewPs were lost 
after extreme value removal (details to follow), so the final single-trial 
RewP count consisted of 6,327 observations. All participants included 
in the main analyses had at least 20 single-trial RewPs (Marco-
Pallares et al., 2011). Prior to statistical analyses, we visually inspected 
the distribution of errors along the x- and y-axis, which led to the 
identification of extreme values in the y-axis. To mitigate the 
influence of these extreme cases on other subsequent variables (e.g., 
RE is computed from x- and y-axis values) and the models, 
we excluded errors equal to or greater than 140 cm in both directions 
since errors of that magnitude imply that the participant missed the 
center of the target by more than the length/width of the target 
(140 cm x 140 cm). Exclusion of extreme values in both x- and y-axis 
led to the loss of 577 data points (4.31% of the data; 577 of 13,400 
data points).

All analyses were conducted in R (cran.r-project.org, version 
4.4.0) using the following packages: tidyverse (version 2.0.0; Wickham 
et al., 2019), car (version 3.1.2; Fox and Weisberg, 2019), lme4 (version 
1.1.35.3; Bates et al., 2015), lmerTest (version 3.1.3; Kuznetsova et al., 
2017), and influence.ME (version 0.9.9; Nieuwenhuis et al., 2012). 
Data visualization was carried out using the following packages: 
ggplot2 (version 3.5.1, Wickham, 2016), gridExtra (version 2.3; Auguie 
and Antonov, 2017), png (version 0.1.8; Urbanek, 2022), and cowplot 
(version 1.1.3; Wilke et al., 2024). Alpha level was set at 0.05. For each 
model, residual plots were created, and residual diagnostics were 
computed to assess model assumptions. Data and code used to run the 
analyses are freely available on the project’s OSF repository.

Single-trial RewP, single-trial RE, and average RE 
models

As a first step prior to data modeling, we  computed and 
transformed variables of interest. Specifically, we first mean-centered 
each participant’s single-trial RE on their average radial error to 
transform this variable into a within-subject measure (in contrast to 
average RE which served as a between-subject variable). Next, all the 
categorical variables were contrast-coded (group membership: self-
control and error estimation) using orthogonal contrast coding with 
a one-unit difference (i.e., −0.5, +0.5) between levels, and average RE, 
treated as a continuous variable, was mean-centered. Finally, 
we  created the quadratic and cubic terms for single-trial RE 

(henceforth referred to as single-trial RE2 and single-trial RE3
, 

respectively).
Once all necessary variables were computed, we conducted model 

comparisons based on ANOVA ratio tests to determine whether the 
relationship between single-trial RE and single-trial RewP would 
be  better captured using linear, quadratic, or cubic predictors, 
controlling for average RE. Terms were added to the model in order 
of increasing polynomial complexity, with fixed effects added before 
random effects. Model fit was assessed using a combination of fit 
indices (Akaike Information Criterion, AIC, and Bayesian Information 
Criterion, BIC). After a series of model comparisons, the regression 
model with the best fit included average RE, single-trial RE, single-
trial RE2, and single-trial RE3 as fixed-effects and participant, single-
trial RE, and single-trial RE2 as random-effects. Specifically, this 
model showed a reduction in AIC (≥ 2 points) and a slight increase in 
the BIC (5 points) compared to a model without a cubic fixed effect. 
The addition of a cubic random effect for single-trial RE led to a small 
reduction in AIC (2 points), but a large increase in the BIC (26 points). 
Thus, we found some evidence for the inclusion of a cubic effect (it led 
to reductions in the AIC), but that evidence was mixed (it led to 
increases in the more conservative BIC). Given that previous research 
has also found cubic relationships between performance accuracy and 
RewP (Frömer et al., 2016), we ultimately decided in favor of the 
simpler cubic model, with only a cubic fixed effect.

Finally, to assess the relationship between single-trial RewP and 
single-trial RE and whether this relationship was moderated by 
participants’ average performance during acquisition (i.e., average 
RE), we ran a mixed-effects regression model with fixed effects of 
group membership (self-control, error estimation, and their 
interaction) plus an interaction between participant’s average RE and 
their single-trial RE to the best fitting model above. Single-trial RewP 
served as the dependent variable in the model.

Aggregate RewP and retention model
To assess whether aggregate RewP predicted average RE in the 

retention test, we ran a general linear regression model with average 
RE in retention serving as the dependent variable and aggregate RewP 
as the predictor, controlling for pretest and group membership. All 
continuous variables were mean-centered, and the categorical 
variables were contrast coded using orthogonal contrast coding with 
a one-unit difference (i.e., −0.5, +0.5) between levels.

Results

An overview of RewP grand average at electrode FCZ, RewP 
topography, and performance accuracy across study phases is 
presented in Figure 3.

Single-trial RewP, single-trial RE, and 
average RE

Results of the analysis investigating the relationship between 
single-trial RewP, single-trial RE, and average RE are presented in 
Table 1. The model revealed a main effect of single-trial RE2 (p < 0.001) 
and single-trial RE3 (p < 0.001), which were superseded by Average RE 
x Single-trial RE2 (p = 0.028) and Average RE x Single-trial RE3 
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(p = 0.039) interactions. Figure 4D depicts the model’s predictions for 
single-trial RewP as a function of single-trial RE and average 
RE. Overall, the cubic relationship between single-trial RewP and 
single-trial RE indicates that single-trial RewP was more responsive 
to errors that deviated considerably from the participants’ average 
error. Specifically, single-trial RewP amplitude was largest following 
participants’ best trials (i.e., smallest single-trial RE; see left part of the 
graph in Figures 4C,D) and smallest following participants’ worst 
trials (i.e., largest single-trial RE; see right part of the graph in 
Figures  4C,D). Moreover, the moderating effect of average RE 
indicates that the RewP-accuracy relationship depended on 
participants’ average performance. According to the model’s 
predictions, high-performing participants showed larger RewPs for 
trials that were considerably better than their average error and 
smaller RewPs for trials that were worse than the participant’s average 
error. On the other hand, for low-performing participants, the RewP 

responses to better-than-expected and worse-than-expected outcomes 
were not as distinct.

Aggregate RewP and retention

Results of the analysis of the relationship between aggregate RewP 
and retention showed no significant main effect of aggregate RewP 
(p = 0.273), after controlling for pretest performance and group 
membership. Thus, RewP did not predict learning.

Discussion

Different learning models are used to explain the process by which 
humans acquire motor skills. Error-based learning explains motor 

FIGURE 3

Psychophysiological and behavior data. (A) Grand average waveform for the RewP time-locked to the onset of augmented feedback (time 0) at 
electrode FCz. Shaded area represents the RewP time window (230  ms-350  ms). (B) Topography of the RewP averaged across trials and training 
conditions. (C) Radial error in cm (lower numbers indicate better performance) as a function of group and study phase (pretest, acquisition, and 
retention). Error bars represent 95% CIs. For reference, the behavioral analyses presented in Bacelar et al. (2022) showed non-significant effects of 
self-control, error estimation, and Self-control x Error Estimation (ps  ≥  0.805) for the dependent variable average radial error during acquisition at the 
group level. Similar results were found for average radial error during retention with non-significant effects of self-control, error estimation, and Self-
control x Error Estimation (ps  ≥  0.255).
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adaptation on the account of sensory-prediction errors, where the 
learner relies on a forward model of the action to predict the sensory 
consequences of said action. Based on the discrepancy between 
anticipated and actual sensory outcome, the learner computes a 
sensory-prediction error that is used to update the internal 
representation of the skill and implement future motor adjustments 
(Haith and Krakauer, 2013b). Use-dependent learning, on the other 
hand, does not seem to depend on the existence of an internal model; 
instead, movement refinement is explained through mere motor 
action repetition (Classen et  al., 1998; Diedrichsen et  al., 2010). 
Finally, reinforcement learning explains skill acquisition as the result 
of successful actions being reinforced via reward-prediction errors. 
According to this model, learners use outcome-based information to 
compute the difference between expected and actual reward and, 
based on the difference, implement behavioral adjustments to increase 
the likelihood of receiving rewards in the future. Importantly, the 
concept of rewards in reinforcement learning models is broad, ranging 
from financial incentives (e.g., Abe et  al., 2011) to experiences of 
success in a task (e.g., Wulf and Lewthwaite, 2016). Thus, anything 
that has some utility can function as a reward (Lohse et al., 2019). 
Although motor skill acquisition likely depends on the interaction 
between different learning models, in the present study we tailored 
our research questions, predictions, and analyses to focus on 
reinforcement learning, which has been proposed as one of the 
dominant learning processes when it comes to skill tasks (Haith and 
Krakauer, 2013b; Lohse et al., 2019). Specifically, we implemented 

mixed-effects and linear regression models to explore a 134-participant 
dataset consisting of learners’ feedback-evoked EEG activity (i.e., 
RewP) as well as their short- and long-term motor performance to 
investigate reinforcement learning predictions and mechanisms in a 
motor learning context. As primary goals, we investigated the effect of 
trial accuracy on reward-prediction errors as indexed by the RewP 
and whether this relationship was moderated by participants’ average 
performance. We also examined whether aggregate RewP predicted 
motor learning as indexed by performance in a delayed (~24 h) 
retention test.

Results revealed that the relationship between single-trial RewP 
and single-trial RE is more complicated than originally predicted. 
Specifically, performance on the current trial affected the RewP in a 
non-linear manner, and this relationship was moderated by 
participants’ average performance during acquisition. As illustrated in 
Figure  4, for a high performer (lower average RE), single-trial 
performances that were better than the average error for that 
participant resulted in very large RewPs, whereas single-trial 
performances that were worse than the average error resulted in 
smaller RewPs, with these effects being larger for extreme values (i.e., 
farther away from the average performance). Following reinforcement 
learning and the changes observed during the motor skill acquisition 
process (Lohse et al., 2019), high-performing participants may have 
leveraged the outcome-based feedback to supplement the sensory-
feedback available and develop a stronger representation of the skill 
throughout the practice phase, which resulted in more stable 

TABLE 1 Random and fixed effects for the analysis of the relationship between single-trial RewP, single-trial RE, and average RE.

Random Effects

Group Effect Variance SD Corr

Participant

Intercept 65.20 8.08

Single-trial RE 40.80 6.39 0.08

Single-trial RE2 190.60 13.81 0.04 0.34

Residual 141.40 11.89

Fixed Effects

Effects β 95% CI t-value p-value

Intercept 18.21 [16.78; 19.64] 24.96 <0.001***

Self-control −2.00 [−4.83; 0.82] −1.39 0.167

Error estimation −2.00 [−4.82; 0.82] −1.39 0.168

Average RE −3.08 [−12.63; 6.47] −0.63 0.528

Single-trial RE −0.12 [−2.46; 2.21] −0.10 0.917

Single-trial RE2 9.73 [5.13; 14.33] 4.15 <0.001***

Single-trial RE3 −16.89 [−26.45; −7.34] −3.47 <0.001***

Self-control x error estimation 1.28 [−4.36; 6.92] 0.44 0.658

Average RE x single-trial RE −7.39 [−22.38; 7.61] −0.97 0.335

Average RE x single-trial RE2 −33.43 [−62.95; −3.91] −2.22 0.028*

Average RE x single-trial RE3 53.49 [2.79; 104.18] 2.07 0.039*

Number of observations: 6327, groups: Participants: 134 (One of the participants included in this analysis ended up losing 50 out of 100 radial error trials due to an iPad malfunction. To 
determine whether this participant showed any sign of substantial influence on the model that would justify their exclusion from the analysis, we computed Cook’s distance statistics and 
DFBETAS. Upon analysis of these measures, it was determined that this participant did not significantly influence the model, so they were kept in the analysis. For the interested reader, the R 
code allows a sensitivity analysis without this participant to be conducted. In sum, the results do not change after the participant’s exclusion from the dataset). Self-control was coded as: Self-
control = −0.5; yoked = 0.5. Error Estimation was coded as: Error estimation = −0.5; traditional = 0.5. The marginal R2 value was 0.02 and the conditional R2 value was 0.35. These R2 values were 
computed using the MuMIn package (Bartoń, 2023), which uses the formulas presented in Nakagawa and Schielzeth (2013).
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predictions about their outcomes (i.e., they were able to make 
predictions based on their global performance). Thus, when their 
expectations were violated by a much better-than-average or much 
worse-than-average outcome, this resulted in a larger positive/negative 
reward-prediction error (i.e., larger/smaller RewP, respectively). In 
contrast, a low-performing participant was less sensitive to these 
violations in prediction errors, probably because their average 
performance was more variable (i.e., noisier). Descriptively, the 
variance of single-trial RE for participants whose average RE was one 
standard deviation above the mean was 0.29 m as opposed to a 
variance of 0.05 m observed for participants one standard deviation 
below the mean. Thus, a low-performing participant, likely influenced 
by their variable performance, had yet to develop a reliable 
representation of the skill, which resulted in performance expectations 
that were very uncertain (e.g., the participant was not able to 
accurately distinguish a good from a bad performance based on their 
average performance). This is illustrated by the slope of the curve 
representing the relationship between single-trial RewP and single-
trial RE in Figure 4, where the amplitude of single-trial RewPs for 
better-than-average and worse-than-average performances is 
attenuated for low-performing participants.

Parallels can be drawn between the present and past research 
findings. For instance, Frömer et  al. (2016) also found a cubic 
relationship between motor accuracy and RewP amplitude in response 
to graded feedback. Additionally, RewP amplitude was influenced by 
participants’ cumulative hit frequency rate such that a high-frequency 
rate during practice resulted in overall smaller RewP amplitudes, 
especially after a hit trial. This suggests that as learners got better at the 
task, their accumulated successful hits led them to predict successful 
outcomes more frequently, lowering their reward-prediction errors. 
Importantly, this RewP amplitude modulation by both accuracy and 
hit frequency rate was shown within successful trials as only trials that 
hit the target were analyzed. In the present study we extend these 
results by showing how trial accuracy and average accuracy affected 
the RewP across successful and unsuccessful trials as both on- and 
off-target trials were analyzed. This is important considering that 
negative feedback is also informative (Gershman, 2015), and can 
contribute to the update of outcome expectations and be used to guide 
future behavior adaptations (e.g., explore different actions that may 
lead to a different outcome). Along the same lines, an interesting 
avenue for future research is to investigate how graded feedback 
processing across the entire reward magnitude range (from successful 

FIGURE 4

Single-trial RewP as a function of single-trial RE and participants’ performance level. (A) Example of the relationship between the variables of interest 
for a high-performing participant. The vertical dashed line represents the participant’s average RE (0.31  m). (B) Example of the relationship between the 
variables of interest for a low-performing participant. The vertical dashed line represents the participant’s average RE (1.00  m). (C) Graph depicting the 
relationship between single-trial RewP and single-trial RE as a function of average RE. For visualization purposes only, we created a categorical variable 
called performance level based on the continuous variable average RE. Specifically, participants were classified into three distinct performance levels 
by dividing average RE into tertiles. Thus, the high-performing, average performing, and low-performing categories depicted in the graph (panels C,D) 
correspond to the bottom, middle, and top tertiles of the average RE distribution, respectively (High-performing: 0.3  m-0.51  m, n  =  45; Average-
performing: 0.52  m-0.62  m, n  =  45; and Low-performing: 0.63  m-1.23  m, n  =  44). Notably, Average RE was treated as a continuous variable in all 
statistical models. The horizontal dashed line represents the intercept predicted by the model (average RewP; 18.21  μV) and the vertical dashed line was 
centered on zero as it represents participants’ average trial accuracy. (D) Model predictions for the relationship between single-trial RewP and single-
trial RE as a function of average RE (in the graph represented by the variable performance level).
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to unsuccessful trials) affects future behavior adaptations. For 
instance, in their perceptual category learning experiment, Lohse et al. 
(2020) found that a larger RewP amplitude (possibly representing a 
violation of outcome expectation) was associated with a greater 
probability of changing the response the next time a stimulus from the 
same category was presented. These trial-by-trial adaptive dynamics 
are likely more complex in motor skill acquisition as there may not 
always be a correspondence between one’s capability to select the 
correct action and execute the appropriate motor response (Bacelar 
et  al., 2020; McDougle et  al., 2016), but any insights into these 
dynamics will lead to a better understanding of how graded feedback 
is used to guide performance adjustments during practice.

Another interesting finding from our study was the moderator 
effect of between-subject average performance on the RewP-accuracy 
relationship. Although RewP modulation by contextual factors has 
been shown in more controlled experiments (Holroyd et al., 2004), in 
the present study this modulation occurred in a more naturalistic 
setting where the contextual factor (average performance) was a 
direct consequence of participants’ behavior adjustments 
implemented during practice. Overall, we  found that high-
performing participants were more sensitive to violations in 
prediction errors. From a motor learning standpoint, understanding 
how learners at different skill levels process feedback can offer 
important insights into the optimal implementation of reinforcement 
learning to enhance skill acquisition. For instance, it is possible that 
learners’ average performance level might influence the degree to 
which they find the response-based feedback informative. For a high-
performing learner, providing graded outcome feedback may favor 
performance improvements as this learner’s stronger internal 
representation of the skill and better error detection capabilities 
might allow them to extract useful information from the type of 
feedback provided. On the other hand, a low-performing learner 
having to rely on less stable prediction errors may find it challenging 
to extract useful information from the same type of feedback. Thus, 
depending on the learner’s skill level, a practitioner or a coach might 
decide to rely on different error correction strategies to better support 
their learners. For example, they might use knowledge of results, a 
type of augmented feedback that informs the learner about the 
success of an action in reference to a goal (e.g., you missed the target 
by 32 cm; Schmidt and Lee, 2019) to assist high-performing learners 
who can rely on a stronger internal model to compute reward-
prediction errors based on the outcome feedback, and select and 
execute movements that maximize the reward-prediction errors. 
Alternately, the practitioner/coach might use knowledge of 
performance, a type of augmented feedback that provides information 
about the movement pattern and, therefore, can be used to guide the 
learner toward the appropriate movement solution (e.g., fully extend 
your arms after you hit the ball to ensure a powerful swing; Schmidt 
and Lee, 2019) to assist low-performing learners who may need more 
guidance due to their poorly developed internal model. In line with 
the challenge-point framework (Guadagnoli and Lee, 2004), another 
strategy that an instructor might consider is adjusting the difficulty 
of the task at hand based on how challenging the task is for the 
learner, which is directly associated with the learner’s current skill 
level, and also the goals of practice (e.g., practice-to-learn versus 
practice-to-maintain; Hodges and Lohse, 2022). According to this 
framework, learning is enhanced when individuals practice within 
their range of optimal difficulty. Drawing parallels with the results of 

the present study, it is possible that our task was within this range of 
optimal challenge for our high-performing participants, but outside 
this range (too functionally difficult) for our low-performing 
participants. Thus, if the goal of practice is to promote learning, an 
instructor working with a low-performing learner should consider 
simplifying the task at hand (e.g., by adjusting task-specific 
constraints; Brocken et  al., 2020) so that this learner has the 
opportunity to practice under a level of challenge that is optimal for 
them. Reducing the difficulty of the task in this scenario satisfies the 
concept of desirable difficulties to promote skill learning (Bjork and 
Bjork, 2020; Christiansen et al., 2020; Guadagnoli and Lee, 2004; 
Hodges and Lohse, 2022) and, at the same time, might lead to reduced 
performance variability, allowing the learner to create a better 
representation of their average performance, which might lead to 
more stable prediction errors and better response-based 
feedback interpretations.

Finally, contrary to our prediction, the analysis of the relationship 
between aggregate RewP and motor learning showed that aggregate 
RewP did not predict performance on the retention test. Similar 
results were found in a categorical learning study by Lohse et al. (2020) 
where aggregate RewP amplitude did not predict performance on 
one-week retention and transfer tests. In another study in the motor 
learning domain, RewP was associated with practice performance but 
not learning (Grand et al., 2017). This lack of association between 
RewP and retention observed in the present and past studies questions 
whether the RewP is a reliable marker of motor skill learning. One 
possibility for this lack of an association is that the RewP may 
be epiphenomenal, reflecting a violation of reward expectation that is 
a byproduct of changes that have already taken place (i.e., internal 
model update), rather than the reward mechanism that causes 
behavioral adaptation. The potentially epiphenomenal nature of the 
RewP is consistent with past work showing that participants are more 
likely to change their responses following a large RewP, controlling 
response accuracy (e.g., Lohse et al., 2020; Philiastides et al., 2010). 
That is, the RewP is more reflective of updated internal models and 
thus participants’ predictions, than it is reward.

Alternatively, the RewP may reflect reward-prediction errors that 
are driving motor adaptation during practice, but successful learning 
(as shown on delayed retention tests) further requires three 
interdependent processes: encoding, consolidation, and retrieval 
(Kantak and Winstein, 2012). Thus, the RewP might be associated 
with behavioral adjustments that occur during practice and that are 
important for encoding relevant information (e.g., making 
associations between movement and movement outcome), but this 
adaptive behavior might not be  consolidated (e.g., contextual 
interference effect; Magill and Hall, 1990). In line with this idea, the 
RewP might influence other learning mechanisms such as reasoning 
inference (Tsay et al., 2024). Under this perspective, the RewP signal 
might assist learners in understanding how their actions map onto 
outcomes either through explicit or implicit strategies (for more 
details, see the 3R framework for motor learning proposed by Tsay 
et al., 2024). In our bean bag tossing task, this means learning the 
association between the arm swing force as well as the wrist angle 
prior to object release and the bean bag’s trajectory and how that 
affects the object’s final landing position in reference to the center of 
the target (i.e., main goal). An exciting avenue for future research 
could explore the relationship between outcome-based feedback and 
trial-by-trial error adjustments during acquisition (e.g., Lohse et al., 
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2024) and whether that relationship is moderated by event-related 
potentials (e.g., RewP, P300; Palidis et al., 2019) and/or oscillatory 
neural markers (e.g., theta lateralization; Rampp et al., 2022). Taken 
together, the present and past studies draw attention to the importance 
of examining the RewP-behavior adaptation relationship over different 
timescales, especially in studies focused on uncovering the basis of the 
learning process, as there may not be a direct correspondence between 
RewP and behavior adaptation over the short and long term. Our 
findings also strengthen the notion that the motor skill acquisition 
process is complex and multifaceted, and that a more complete 
explanation of its neural underpinnings requires an approach that 
considers different learning models, including but not limited to 
reinforcement learning, error-based learning, and/or use-dependent 
learning (Kantak and Winstein, 2012). For instance, research has 
shown that error-based learning and use-dependent learning can 
work together simultaneously to promote motor adaptation 
(Diedrichsen et  al., 2010). Along the same lines, use-dependent 
learning has been shown to be enhanced when relevant outcome-
based feedback is present and reinforcement learning is induced 
(Mawase et al., 2017). Thus, consideration of the interplay between 
different learning models would promote a more comprehensive 
understanding of how humans acquire motor skills.

While the present study has many strengths across 
conceptualization (i.e., use of theory-based predictions), 
experimental design (e.g., use of graded, realistic feedback, delayed 
retention test, and large dataset) and data analysis (e.g., 
implementation of mixed-effects regression modeling), some 
limitations are worth discussing. For one, the choice of task might 
raise the question of whether our results can be generalized to tasks 
that have different requirements or constraints, for example when 
learners have to perform under higher cognitive load (e.g., dual-
tasking), the availability of augmented feedback is limited, and/or the 
task itself imposes greater motor demands. Regarding dual-task 
performance, it directly affects attention allocation and working 
memory (Schmidt and Lee, 2019), which might affect one’s ability to 
learn from rewards. Indeed, past research has shown that RewP 
amplitude is reduced when cognitive load increases, suggesting that 
the reward system’s capacity to process rewards is reduced in these 
situations (Krigolson et al., 2015), and that reinforcement learning 
might be  limited in dual-task conditions (Holland et  al., 2018). 
Regarding tasks where augmented feedback is limited or not 
available, learners may rely on intrinsic feedback (e.g., proprioceptive 
and/or visual information) to compute sensory-prediction errors that 
engage error-based learning and/or reward-prediction errors that 
engage reinforcement learning. Research has shown that differences 
in the availability and/or quality of visual feedback might affect the 
extent to which learners rely more on sensory- or reward-predictions 
errors (Izawa and Shadmehr, 2011). Finally, for very complex tasks 
with greater variability in motor commands, learners relying on 
outcome-based feedback might face the credit-assignment problem 
(Dam et  al., 2013; Lohse et  al., 2019). Specifically, they may not 
be able to determine which component of the generated action led to 
their better-than- or worse-than-expected outcome, rendering 
reward-prediction errors less useful for adapting behavior in this 
context. These considerations highlight the importance of studying 
feedback processing across a variety of tasks to promote result 
generalizability. While our bean bag tossing task allowed us to 
successfully quantify feedback processing as it relates to basic aspects 

of motor skill acquisition, it might be considered too simplistic in the 
realm of ecologically-valid motor tasks. Moreover, ecological validity 
was further reduced in our experiment by controlling when 
participants received augmented feedback about the outcome of their 
action. This methodological decision was made so that an event-
maker time-locked to feedback onset could be  reliably recorded. 
Otherwise, it is difficult to determine when participants begin 
processing feedback. It is also worth mentioning that we analyzed 
data from a homogenous sample consisting of college-age, healthy 
young adults. Thus, our convenience sample may limit the 
generalizability of our findings to other populations. This is an 
important limitation as reward processing has been shown to change 
with aging (Vink et  al., 2015). Future research should consider 
investigating the relationship between feedback processing and 
behavioral adjustments in more ecologically-valid tasks and across 
different populations to enhance our understanding of the processes 
underlying motor skill acquisition. Finally, while theoretical and 
methodological considerations were taken into account to build our 
mixed-effects models, we  acknowledge that there may be  more 
complex and sophisticated ways to capture the dynamics between 
RewP, trial accuracy, and average performance. For instance, RewP 
amplitude has been shown to change as a function of practice 
(Williams et al., 2018), presumably due to rewards becoming more 
likely (Frömer et al., 2016) and/or the development of a stronger 
internal model representation (Lohse et al., 2020). In the present 
study, we attempted to capture the effect of practice on the RewP-
accuracy dynamic by creating a within-subject accuracy variable 
(single-trial RE) and a between-subject accuracy variable (average 
RE) and adding these variables as predictors in the model. Other 
researchers have taken different approaches such as creating a 
running average variable representing the mean error up until the 
current trial (Frömer et  al., 2016). Future research interested in 
disentangling these complex dynamics may consider accounting for 
the effect of practice on the RewP by more explicitly modeling time, 
for example by adding trial number to the fixed and/or random 
components of the model.

In summary, the present study showed how the relationship 
between RewP and trial accuracy unfolded in a non-linear manner 
and was moderated by participants’ average performance, which 
can be  explained by reinforcement learning predictions. 
Importantly, these complex dynamics involving graded feedback, 
accuracy, and RewP amplitude were shown across successful 
(on-target) and unsuccessful (off-target) trials, furthering our 
understanding of graded feedback processing in motor skill 
acquisition. Moreover, even though our results support the use of 
reinforcement learning predictions to explain variations in reward-
prediction errors as a function of trial and average accuracy, this 
association was restricted to short-term performance as there was 
no evidence of the relationship between aggregate RewP and motor 
learning. Nonetheless, we argue that reinforcement learning as a 
mode of learning may still be an important model to understand 
behavior adaptation and motor memory consolidation. At least at 
the behavior level, recent evidence suggests that reinforcement 
learning approaches may lead to better motor skill retention 
compared to other modes of learning (Magelssen et  al., 2024; 
Truong et al., 2023). Thus, we encourage future investigations into 
the application of reinforcement learning theory and its neural 
mechanisms to explain motor skill learning.
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