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Background: This study focused on the research hotspots and development

trends of the neuroimaging of social anxiety (SA) in the past 25 years.

Methods: We selected 1,305 studies on SA neuroimaging from the Web

of Science and Scopus from January 1998 to December 2023. CiteSpace

was used to analyze the number of published articles visually, cited

references, cooperation among authors and institutions, co-occurrence of

keywords, clustering of keywords, burst of keywords, and time zone of co-

occurring keywords.

Results: A total of 1,305 articles were included, and the annual number of

articles published over nearly 25 years showed the overall trend is on the rise.

The analysis of author and institutional collaboration reveals that most authors

collaborate closely. Among them, the team led by Pine, Daniel S published

59 articles, making it the most central team. Harvard University is identified

as the most central institution in this network. The research hotspots can be

categorized into four areas: research techniques, cognitive processing research

areas, core brain regions and brain networks, and the neural predictors of

treatment outcomes in SA. The most recent burst keywords are “cognitive

behavioral therapy,” “systematic review,” “machine learning,” “major clinical

study,” “transcranial direct current stimulation,” “depression,” and “outcome

assessment,” which provided clues on research frontiers. Based on the burst

map and keyword time zone map, it appears that exploring the activity of brain

regions involved in cognitive processing, such as face processing and attentional

bias, as well as the comorbidity of SA and depression, through brain imaging

technology, using brain signals as predictors of treatment outcomes in SA.

Conclusion: This study conducted a comprehensive, objective, and visual

analysis of publications, and revealed hot topics and trends concerning the
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study of the brain mechanism of SA from 1998 to 2023. This work might

assist researchers in identifying new insights on potential collaborators and

institutions, hot topics, and research directions.

KEYWORDS

social anxiety, brain mechanism, knowledge map, visual analysis, CiteSpace

1 Introduction

Social anxiety (SA) refers to the intense and persistent fear of
social situations or engaging in behaviors that may be perceived
as embarrassing (Hedman et al., 2013). It is estimated that about
10% of people may experience the disease in their lifetime (Alomari
et al., 2022; Keller, 2003). Recent studies have shown that the
global prevalence of SA is significantly higher than previously
reported, with more than one-third (36%) of respondents meeting
the threshold criteria for having SA (Jefferies and Ungar, 2020).
The prevalence of SA symptoms among children, adolescents,
and young adults (aged 6–25) in China is 23.5%, while in other
countries, it ranges from 23 to 58% (Jefferies and Ungar, 2020). At
present, SA has become one of the most common mental disorders.

SA co-occurs with many other disorders, such as depression
disorder, anxiety disorder, and substance use disorder. The
incidence of major depressive disorder (MDD) in SA patients is as
high as 30–70% (Bas-Hoogendam et al., 2017). The comorbidity of
the two disorders complicates treatment, leading to an increased
risk of recurrence, substance use, and suicide (Dalrymple and
Zimmerman, 2007; Liang et al., 2023). Therefore, accurately
distinguishing the similarities and differences between different
diseases has become a challenging issue and a development
opportunity in the field of mental illness. With advancements in
brain imaging technology, researchers have begun exploring the
neural mechanisms underlying SA, which can not only provide
objective neurobiological markers for clinical diagnosis but also
explore the similarities and differences between different anxiety
subtypes and other similar diseases (Kim and Yoon, 2018; Mizzi
et al., 2022). This will provide more accurate therapeutic targets
for future clinical diagnosis and treatment, greatly promoting the
exploration of the pathogenesis, diagnosis, and treatment of SA.

At present, brain imaging studies on SA mainly focus
on cognitive-related fields, such as emotional processing and
attentional biases. Research on brain structure shows that SA is
related to the volume of the amygdala, hippocampus, cingulate
gyrus, and orbitofrontal cortex (Bas-Hoogendam et al., 2020; Brühl
et al., 2014; Crane et al., 2021; Günther et al., 2020). Previous
studies on brain activation have shown that the dysfunction of the
amygdala, insula, hippocampus, and orbitofrontal lobe is related
to SA. Studies on brain functional connectivity have found that
patients with SA were characterized by the dysfunction of the
frontal-limbic (fear) circuit, the hyperactivity of marginal areas
(amygdala, hippocampus, and parahippocampal gyrus), and the
low activity of cognitive control areas including the ventromedial
prefrontal cortex, dorsolateral prefrontal cortex, and anterior
cingulate cortex, which contributes to the inability to regulate SA
effectively (Huang et al., 2022; Yu et al., 2021). Research has found

a relationship between the characteristics of the brain and symptom
networks in patients with SA, and the abnormality of the emotional
network corresponds to the emotional disorder of patients. The
abnormality of the default mode network indicates that patients
have excessive self-reference thinking, the abnormality of the
cognitive control network affects patients’ cognitive strategies, and
the abnormality of the motivation network affects patients’ pleasant
experiences in social activities (Kim and Yoon, 2018; Liu et al., 2024;
Wang et al., 2020).

Most existing studies focus on a single research problem or
subjectively summarize the main findings and progress within a
specific field. At the same time, in the current research on the
brain mechanism of SA, some results are contradictory due to some
experimental errors (Yu et al., 2021). One of the more important
reasons is that different investigators may choose different ROIs
for the study, which may lead to inconsistencies and errors in the
results. Due to the lack of a standardized methodology, there may
be contradictions between the results of different studies, which
makes the interpretation of these results difficult. Meta-analyses
typically use the Activation Likelihood Estimation (ALE) method
to explore SA’s brain mechanisms from a unified perspective.
The results show that anxiety and depression have a common
brain region, which will change after treatment (Liang et al.,
2023). Moreover, SA, PTSD, and specific phobia all show the
overactivation of the amygdala and insula in emotional-related
research (Nicholson et al., 2016; Stefanescu et al., 2018; Stein
et al., 2007). This shows that brain activation can be used to
study the same and specific activities between different diseases.
Most of the literature research methods adopt the traditional
literature induction method and conduct research based on points
of interest (ROI), which has a good effect in the in-depth literature
mining, but there is also a certain subjectivity (Huang et al., 2022).
This leads to the lack of systematic and intuitive presentation of
the development context, research hotspots, and future research
trends of the area, which cannot help readers understand the
dynamics and development trends of this research field quickly
and efficiently. Bibliometrics is a quantitative research discipline
that employs mathematical and statistical methods to mitigate the
subjectivity inherent in literature induction. Bibliometric analysis
can visually analyze the history and present situation of a certain
subject field with the help of statistical software such as CiteSpace,
which transforms a large amount of complex and disorganized
literature information into a structured and coherent knowledge
system through analysis and summarization (Alajmi and Alhaji,
2018). In turn, it provides a relatively objective description and
quantitative evaluation method for predicting the development
trend of this field. It has become the primary tool for scholars to
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analyze the dynamics and development trends of research fields
(Chen et al., 2024; Liu et al., 2024).

Therefore, this paper searched the Web of Science and Scopus
databases and used CiteSpace software to visualize and analyze
the relevant literature to reveal the hotspots in the field of brain
mechanisms of SA and predict future research trends.

2 Methods

2.1 Data sources

In this study, we selected the Web of Science Core Collection
and Scopus database to conduct a literature search on the brain
mechanisms of SA from January 1998 to December 2023. The
WoS and Scopus databases cover nearly the most comprehensive
and authoritative scientific literature available globally and are
widely used for bibliometric analysis and visualization of scientific
literature (Sun et al., 2022).

The search terms of this paper refer to the published meta-
analysis literature related to social anxiety and brain mechanisms
(Cremers and Roelofs, 2016; Deng et al., 2023; Li et al., 2022;
Sun et al., 2022). To make the studies more accurate and to
further limit any bias that may have affected the results of the
study, the research team conducted a comprehensive keyword
search and manually screened and checked the preliminary results.
The retrieval strategy was as follows: select advanced retrieval in
the literature database of WoS and Scopus, using the following
keywords: TS = (“social anxiety” or “social phobia” or “interaction
anxiety” or “social avoid” or “social distress” or “social fear” or “fear
of evaluation” or “fear of negative evaluation” or “fear of positive
evaluation” or “communication anxiety” or “fear of rejection” or
“social inhibition” or “social worry” or shyness or shy or “social
avoidance distress” or “social anxiety” or “performance anxiety”)
AND TS = (neuroimaging or “resting state” or “magnetic resonance
elastography” or “MR elastography” or MRE or “structural
magnetic resonance imaging” or sMRI or “functional magnetic
resonance imaging” or fMRI or “magnetic resonance spectroscopy”
or MRS or rs-fMRI or task fMRI or “near-infrared spectroscopy”
or “NIR∗” or “functional nearinfrared spectroscopy” or fNIRS
or Electroencephalography or EEG or Electroencephalogram∗ or
“quantitative electroencephalography” or QEEG or “quantitative
EEG” or ERP or “event related potential” or “repetitive transcranial
magnetic stimulation” or rTMS or “Transcranial Direct Current
Stimulation” or transcranial direct current stimulation or TMS
or tDCS or “positron emission tomography” or PET or “single-
photon emission computed tomography” or SPECT or “functional
connectivity” or “white matter” or “voxel based analysis” or VBM
or “voxel based m orphometry” or “surface based m orphometry”
or cortical or “diffusion-tens or imaging” or DTI). The TS tag
performs a search of the given words in the title, abstract, keywords,
and keywords Plus fields within a record.

There are a total of 5,527 articles. Literature types are limited
to “Article” and “Review,” and the language of the document is
selected as “English.” After the initial screening, 4,804 papers were
obtained. Subsequently, two independent investigators reviewed
the titles and abstracts, excluding articles not related to SA, which
resulted in the inclusion of 1,305 publications. These retrieved

studies were exported with complete records and cited references
and imported into CiteSpace software. Additionally, the “Remove
Duplicates” function was applied to reevaluate the data to ensure
the validity of the information and accuracy of the results duplicate
records were found. The formatted data files in the “output” folder
were copied and pasted into the “data” folder for subsequent data
analysis. The flow diagram of this study is shown in Figure 1.

2.2 Analysis tool

This study uses CiteSpace visualization software developed by
Professor Chen Chaomei based on Java. CiteSpace can visually
analyze the distribution, hotspots, and trends of a certain research
field through the maps, thus effectively helping scholars master the
recent research hotspots and frontier issues in this field. Nowadays,
CiteSpace has been widely used in many research fields, such as
psychology, medicine, and management (Zhang et al., 2022).

In this study, following the import of data into CiteSpace, the
analysis period was established from January 1998 to December
2023. The number of published articles and collaborations
was examined, and research hotspots related to the SA brain
mechanisms were identified through keyword co-occurrence and
clustering analyses. Additionally, keyword burst analysis and
time zone diagrams were utilized to investigate future research
trajectories and development directions.

In particular, the main outcome measures include keyword co-
occurrence, keyword burst analysis, keyword cluster analysis, and
keyword timezone analysis. When analyzing the map, keyword
nodes represent the common keywords in literature research. At the
same time, the node size represented the frequency of occurrence
of the analysis object it represents. The more nodes, the richer the
keywords in this field. Centrality is an index for measuring the
importance of a node in a network, and high centrality is typically
regarded as a pivotal point in a field. The purple circle represents
centrality; the more comprehensive the circle is, the higher the
centrality is. A node with high centrality is typically regarded as the
pivotal point of a field (Liang et al., 2017). The larger the number
of documents, the larger the node. The higher the centrality, the
darker the color of the outer circle of the node. At the same time,
the more connections between the node and other nodes, the closer
the relationship between the two.

The centrality calculation uses the PageRank algorithm, which
is based on the idea that the importance of a web page is determined
by two factors: the number of other pages pointing to the page, and
the quality of those pages. The method takes into account not only
the number of surrounding points but also their quality.

The principle of co-occurrence analysis in CiteSpace is mainly
based on the idea of “co-occurrence clustering.” It extracts
information units in scientific literature, such as keywords, authors,
institutions, etc., and reconstructs them according to the type and
strength of the connection between these information units to form
different network structures. In CiteSpace, co-occurrence analysis
is one of its core functions.

The burst analysis method is based on Kleinberg (2002)
proposal for a burst detection algorithm, the principle of which is
to explore the research hotspots in the field by paying attention to
the changes in the word frequency growth rate of a single word.
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FIGURE 1

Flow chart of the research hotspots and trends of neuroimaging in SA.

It is generally believed that a word with a more incredible growth
momentum indicates that it is more favored by researchers and is a
more studied concern.

Cluster analysis is to cluster keywords by using spectral
clustering algorithm. The algorithm is based on graph theory and
is especially suitable for processing cluster problems based on link
relation. By calculating the similarity and time proximity between
keywords, keywords are clustered into multiple topic clusters.

The core of time zone map is to introduce time factor into
the traditional co-occurrence network analysis, and to reveal the
research hotspot and its evolution path through time division and
combination analysis of co-occurrence network. Introduction of
time factor: Based on the co-occurrence matrix, further increase the
time information of the first occurrence of keywords. Specifically,
the year in which each keyword first appeared in the dataset is
recorded, and each keyword is labeled with a time label (Aydinoglu
and Taskin, 2015; Cobo et al., 2011).

3 Results

3.1 Basic situation analysis

3.1.1 Annual publication trends
Based on the fitted curve of the number of publications, it

can be seen that the annual number of publications in the field
of SA neuroimaging from 1998 to 2023 has generally shown an
upward trajectory. Specifically, the number of annual publications

before 2007 does not exceed 20. 2007–2011 maintains the number
of annual publications at around 30. 2012–2015 was a period of
rapid growth in the number of publications, with more than 100
in 2015. Although publication numbers fluctuated from 2016 to
2023, they remained consistently above 70 per year, reaching an
all-time high of 105 publications in 2023. In summary, the field of
SA neuroimaging has a promising research outlook with substantial
potential for further growth (see Figure 2).

3.1.2 Analysis by authors
After conducting a visualization analysis of the authors

(Selection Criteria: g-index (k = 25), LRF = 3.0, L/N = 10, LBY = 5,
e = 1.0, the co-occurrence plots below all use the same thresholds),
there are 727 authors on the map. Table 1 shows the top ten
authors with the highest publications and centrality. Of these, two
have published more than 50 articles. The most prolific team is
Pine, Daniel S, who has 59 publications related to the field. At the
same time, this team has a centrality of 0.18, making it the most
influential team. In addition, this result suggests that Fredrikson,
Mats and Wei, Z should pay attention to the quality of their articles
while increasing the number of publications. Aghajani, Moji has
much potential in this area of research.

As shown in Figure 3, the field mainly forms a cooperative
group with high-productivity authors as the core and radiating
outwards. Pine, DS occupies an central position and forms
a network radiating outwards by influencing others through
cooperation with others. Among the many collaborators of Pine,
DS, there are relatively central authors, such as Phan, KI, Klumpp,
H. Among them, Klumpp, H is associated with research teams led
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FIGURE 2

Annual number of publications.

TABLE 1 The top 10 authors of neuroimaging in SA.

Rank Author Publication Centrality Year Author Publication Centrality Year

1 Pine, Daniel S 59 0.18 1999 Pine, Daniel S 59 0.18 1999

2 Phan, K Luan 58 0.05 2005 Aghajani, Moji 4 0.1 2012

3 Furmark, Tomas 38 0.08 1999 Gong, Qiyong 10 0.09 2010

4 Schmidt, Louis
A

37 0.05 1999 Lui, Su 27 0.09 2015

5 Klumpp, Heide 37 0.06 2013 Furmark, Tomas 38 0.08 1999

6 Gong, Qiyong 27 0.09 2010 Straube, Thomas 24 0.07 2006

7 Fredrikson,
Mats

27 0.00 2000 Leehr, Elisabeth
J

6 0.07 2022

8 Fox, Nathan A. 26 0.05 1999 Klumpp, Heide 37 0.06 2013

9 Straube, Thomas 24 0.07 2006 Roelofs, Karin 7 0.06 2013

10 Zhang, Wei 22 0.01 2010 Phan, K Luan 58 0.05 2005

by Straube, T and Furmark, T. At the same time, Furmark, T is in
contact with other researchers. Furmark, T collaborates with Lui,
S, who is at the other center, and Lui, S collaborates with Zhang,
W, who is at the center. In addition, some small and relatively
independent research groups have appeared in the Atlas, such as
those led by Gross, Jj, Miltner, Whr, and Westenberg, Pm.

3.1.3 Analysis by institution
As can be seen in Figure 4, 319 institutions have participated

in and published research on the neural mechanisms of SA,
and a close collaborative network has been formed among the
institutions, involving diverse institutions such as the National
Institutes of Health, the US Department of Veterans, and the
AffairsVeterans Health Administration, in addition to universities.
This is conducive to improving the feasibility of research on
brain mechanisms of SA and providing advanced equipment
and resources. At the same time, cross-institutional collaboration
can bring different perspectives and innovative ideas to research,
avoid limitations in thinking, promote multidisciplinary synergistic

research, and facilitate the generation of breakthrough results.
Specifically, three institutions published more than 50 papers, and
the rest had more than 30 publications. Among them, Harvard
University has the highest centrality, having published relevant
papers since 2001, with a centrality of 0.17. Many institutions
and groups are highly focused on the advancements in the neural
mechanisms of SA and continue to conduct research. These
institutions have conducted a large number of studies on brain
mechanisms in the early stage of this field, which has certain
forward-looking and reference significance. The information
related to the top ten institutions is shown in Table 2 below.

3.1.4 Analysis of journal co-citation
Co-cited journals were journals cited together by researchers,

which usually reflected the foundation of a research field and were
one of the most critical indicators in bibliometric analysis. As can
be seen in Table 3, the top three co-cited journals are Biological
Psychiatry, with an IF of 9.6 and cited 661 times; Neuroimage, with
an IF of 4.7 and cited 653 times; American Journal of Psychiatry,
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FIGURE 3

Map of authors of neuroimaging in SA.

with an IF of 15.1 and cited 588 times. The top three in centrality
are Biological Psychology, with an IF of 2.7 and a centrality of 0.
06; Annals of The New York Academy of Science, with an IF of 4.1
and a centrality of 0.05; Child Development, with an IF of 3.9 and a
centrality of 0.05, which suggests these journals were well the most
influential in this field.

3.1.5 Analysis of references co-citation
Table 4 demonstrates the ten articles with the highest total

number of citations in the field of SA neuroimaging. These
frequently cited references are considered landmark literature in
the field and significantly support subsequent research. Overall,
the topics of these highly cited references mainly focus on “meta-
analysis,” “amygdala,” “emotional processing,” and “cognitive
regulation.” This suggests that future scholars should pay more
attention to these research topics in the field.

3.2 Research hotspot analysis

Research hotspots refer to topics frequently emphasized in
interrelated clusters of literature, which are intrinsically connected
and appear within a specific time frame (Zhang et al., 2022).
Analyzing research hotspots helps us understand the topics scholars
focus on in a specific period and clarifies the development context
of these topics. Keywords, as condensed summaries of literature
content, serve to interpret and express the main themes of research.

In visual research studies, topic keyword co-occurrence and cluster
analysis are commonly used to identify research hotspots.

Based on co-word analysis, extracting the distribution of
keyword frequencies from literature information can identify
research hotspots in a specific field (Xu et al., 2024). High-frequency
keywords reflect the core concern in this research field, which
is related to advanced research methods and problems to be
solved in a certain period (Xu et al., 2024). Co-word clustering
analysis is used to identify the scientific clusters of high-frequency
keywords and analyze the co-occurrence matrix of keywords, which
can determine the evolution of the relationship in the research
literature. Therefore, analyzing the keywords of a field can provide
insights into its research hotspots, which is immensely significant
for researchers and constitutes an important aspect of visual
analytics.

3.2.1 Keyword co-occurrence analysis
Through CiteSpace, we conducted a visual analysis of

keywords. We selected the top ten keywords ranked by frequency
and centrality (Table 4). For better understanding, these keywords
can be roughly divided into four categories: research techniques
(functional connectivity, fMRI, EEG, PET), comorbidities
(comorbidity, depression), areas of interest in the brain (amygdala,
prefrontal cortex, anterior cingulate cortex, brain mapping), and
research fields (faces, behavioral inhibition, attentional bias). The
results in Table 5 are further validated by the co-occurrence map
shown in Figure 5.
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FIGURE 4

Map of the institution of neuroimaging in SA.

TABLE 2 The top 10 institutions of neuroimaging in SA.

Rank Institution Count Time of first
posting

Institution Centrality Time of first
posting

1 University of California
System

70 1998 Harvard University 0.17 2001

2 National Institutes of
Health

60 1999 Humboldt University of Berlin 0.15 1998

3 NIH National Institute of
Mental Health

56 1999 National Institutes of Health
(NIH) - USA

0.13 1999

4 US Department of
Veterans Affairs

47 2002 University of California System 0.1 1998

5 Veterans Health
Administration

46 2004 NIH National Institute of Mental
Health (NIMH)

0.09 1999

6 University of Illinois
System

42 2005 Karolinska Institutet 0.09 2007

7 Harvard University 42 2001 Beijing Normal University 0.09 2014

8 University of Illinois
Chicago

39 2013 US Department of Veterans
Affairs

0.07 2002

9 University of Illinois
Chicago Hospital

39 2013 Veterans Health Administration
(VHA)

0.07 2004

10 McMaster University 36 1999 Columbia University 0.07 1998

From these keywords, we can ascertain that fMRI is the
primary technology currently relied upon in researching the neural
mechanisms of SA. A multitude of functional magnetic resonance
imaging (fMRI) studies have provided crucial information on the
neurophysiological mechanisms of SA at the brain function level

(Picó-Pérez et al., 2023; Pierce and Black, 2023; Zugman et al.,
2023). Studies have suggested that a characteristic of SA patients
is the dysfunction of the limbic-prefrontal circuit, particularly
centering around the prefrontal cortex, and amygdala (Jafari et al.,
2021; Mao et al., 2020). In recent years, with the advancement
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TABLE 3 The top 10 co-cited journals of neuroimaging in SA.

Rank Frequency Centrality Co-cited
Journal

If
(2023)

Frequency Centrality Co-cited
Journal

If
(2023)

1 661 0.00 Biological Psychiatry 9.6 376 0.06 Biological
Psychology

2.7

2 653 0.01 Neuroimage 4.7 217 0.05 Annals of The
New York Academy

of Sciences

4.1

3 588 0.01 American Journal of
Psychiatry

15.1 126 0.05 Child Development 3.9

4 576 0.01 Archives of General
Psychiatry

/ 72 0.05 American
Psychologist

12.3

5 466 0.01 Journal of
Neuroscience

4.4 70 0.05 European Archives
of Psychiatry and

Clinical
Neuroscience

3.5

6 435 0.03 Behavior Research
And Therapy

4.2 412 0.04 Psychological
Medicine

5.9

7 412 0.04 Psychological
Medicine

5.9 136 0.04 Current Opinion in
Neurobiology

4.8

8 397 0.02 Depression And
Anxiety

4.7 62 0.04 Journal of
Neuropsychiatry and

Clinical
Neurosciences

2.4

9 392 0.00 Human Brain
Mapping

3.5 435 0.03 Behavior Research
and Therapy

4.2

10 383 0.01 Trends in Cognitive
Sciences

16.7 347 0.03 Psychiatry Research-
Neuroimaging

2.1

of research techniques, an increasing number of studies have
employed resting-state and task-based functional magnetic
resonance imaging methods to investigate the abnormalities in
functional connectivity patterns among individuals with SA (He
et al., 2024; Pierce and Black, 2023). Research has found that
abnormal insula-prefrontal connectivity indicates that individuals
with SA exhibit a hyperresponsive reaction to threatening stimuli
compared to healthy controls (Klumpp et al., 2012). These
studies contribute to understanding the neural mechanisms of
SA.

In addition, exploring the comorbidity of SA and depression
using brain imaging technology is also a hot research topic (He
et al., 2024). This is because comorbidities are prevalent in people
with SA, occurring in up to 90% of cases. Comorbidities pose
significant etiologic and diagnostic difficulties and can create
treatment challenges. Increasing attention is being paid to the
unique and shared neuroanatomical features of Major depressive
disorder(MDD) and SA (Fayazi and Hasani, 2017; Steiger et al.,
2017). A meta-analysis suggested that reduced GM volume in the
right parahippocampal gyrus, particularly in the amygdala, may
be associated with a high rate of co-morbidity between MDD
and SA as well as similar cognitive patterns (Pei et al., 2023). In
addition, the current meta-analysis identified a distinct pattern
of GM reduction, with lower GM volumes in the right pupillary
nucleus and medial frontal gyrus in patients with SA and the left
parahippocampal gyrus in patients with MDD. This pattern of GM
volume reduction is consistent with the clinical presentation of
MDD and SA. These findings enhance our understanding of the

underlying neuropathogenesis of MDD and SA, offering potential
imaging markers for both disorders (Liang et al., 2023).

Some researchers have used fMRI techniques to explore the
activity characteristics of the corresponding brain regions for
cognitive processing in socially anxious individuals (Evans et al.,
2020; Koban et al., 2023; Lin et al., 2023). For example, some
researchers have used the fMRI-based point-probe paradigm to
reveal distinct patterns of threat-related attention in individuals
with SA. It was found that the process of avoidant attention
and slow disengagement from the threat was associated with
the deactivation of the default mode network and a stronger
connection of the amygdala to the superior temporal sulcus
compared to vigilant orientation and rapid disengagement. This
suggests that different neural processes contribute to distinct
patterns of threat-related attention in SA (Evans et al., 2020). It
was also found that a group of patients with SA showed significant
attention retention effects only to angry face distractors. Neural
activity in the amygdala, insula/inferior frontal gyrus (IFG), and
temporoparietal junction (TPJ) was increased in patients with SA
compared to controls with sudden onset of angry distractors. Brain
regions associated with attentional redirection to distractors (TPJ
and IFG) also maintained higher activity in SA patients, which is
consistent with their behavioral findings regarding the attention
retention effect (Kim et al., 2018). This suggests that patients with
SA exhibit a long-term attentional bias toward task-unrelated social
threats, with the underlying mechanism manifested as overactivity
of the amygdala and persistent activity of bottom-up attention
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TABLE 4 The top 10 references of neuroimaging in SA.

Rank Cited frequency Year Title Journal IF(2023)

1 64 2014 Neuroimaging in social anxiety disorder-a
meta-analytic review resulting in a new

neurofunctional model

Neuroscience and Biobehavioral
Reviews

7.5

2 54 2006 Association between amygdala hyperactivity to
harsh faces and severity of social anxiety in

generalized social phobia

Biological Psychiatry 9.6

3 52 2010 Neuroimaging in social anxiety disorder: a
systematic review of the literature

Progress in
Neuro-psychopharmacology &

Biological Psychiatry

5.3

4 52 2007 Functional neuroimaging of anxiety: a
meta-analysis of emotional processing in

PTSD, social anxiety disorder, and specific
phobia

American Journal of Psychiatry 15.1

5 51 2009 Neural bases of social anxiety disorder:
emotional reactivity and cognitive regulation

during social and physical threat

Archives of General Psychiatry /

6 44 2011 Reduced resting-state functional connectivity
between amygdala and orbitofrontal cortex in

social anxiety disorder

NeuroImage 4.7

7 36 2011 Emotional processing in anterior cingulate and
medial prefrontal cortex

Trends in Cognitive Sciences 16.7

8 35 2011 Diagnostic and Statistical Manual of Mental
Disorders

Psychiatry Research 4.2

9 33 2013 Aberrant amygdala-frontal cortex connectivity
during perception of fearful faces and at rest in

generalized social anxiety disorder

Depression and Anxiety 4.7

10 30 2011 Neural correlates of altered general emotion
processing in social anxiety disorder

Brain Research 2.7

TABLE 5 The top 10 keywords in occurrences frequency and centrality for research hotspots and trends of neuroimaging in SA.

Rank Keywords Frequency Keywords Centrality

1 Comorbidity 547 Amygdala 0.07

2 fMRI 365 Anterior cingulate cortex 0.06

3 Prefrontal cortex 291 Early childhood 0.06

4 Functional connectivity 235 Activation 0.06

5 Faces 222 Brain mapping 0.06

6 EEG 210 Brain cortex 0. 6

7 Behavioral inhibition 208 fMRI 0.05

8 Depression 192 EEG 0.05

9 Amygdala 178 Behavioral inhibition 0.05

10 Attentional bias 171 PET 0.05

networks, including TPJ and IFG (Kim et al., 2018; Santos et al.,
2019).

From the perspective of research fields, face processing,
behavioral inhibition, and attentional bias are currently hot
research topics. In addition to high-spatial-resolution fMRI brain
imaging technology, researchers prefer to use high-temporal-
resolution ERP to investigate the neural physiological mechanism
of SA face processing (Tian et al., 2024). Utilizing high-temporal
resolution ERP technology to investigate the processing of dynamic
emotional faces with high ecological validity in individuals with

SA can help elucidate the essence of emotional processing in
this population, providing more substantial evidence for models
of facial emotion processing (Herrmann et al., 2005). The
model of facial emotion processing suggests that face processing
includes four stages, each involving different ERP components.
Specifically: Emotional faces capture attention (P1, attention
capture process)→ Face structure encoding (N170, face perception
process) → Integration of low-level and structural information
(ERN, selective attention process to facial emotions based on
certain features)→ Ongoing deep processing of specific emotions
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FIGURE 5

Map of keywords in research hotspots and trends of neuroimaging in SA.

(LPP, evaluation process) (Schindler and Bublatzky, 2020). Existing
studies have found that the ERP components related to the
processing of emotional faces in individuals with high SA include
P100, P200, N170, P300, ENP, LPP, LPC, etc (Günther et al.,
2021; Pei et al., 2023; Schindler and Bublatzky, 2020). The P100
component of people with high SA was enhanced, indicating
that they were more alert to emotional stimuli in the early
stage of expression processing. The P200 wave is only stronger
when processing angry expressions, which means that it has an
anger evaluation bias, and more cognitive resources need to be
consumed when evaluating angry expressions. The P300, LPP,
and LPC components were enhanced when people with high SA
processed expressions such as threat and anger, indicating that
they processed all negative expressions more deeply and had more
difficulty detaching from them (Botelho et al., 2023; Pei et al.,
2023; Tian et al., 2024). These studies show that SA patients
have a significant selective attention bias toward threats, which is
manifested in the fact that they are more likely to notice threatening
information and more difficult to divert attention from threatening
information. The aberrant attentional processing theory proposes
that there is an initial over-vigilance or facilitation of the hypothesis
of clinically relevant threats and subsequent defensive avoidance
in SA and, more broadly, anxiety disorders. Some studies have
used steady-state visual evoked potential (ssVEP) as an indicator

of attention allocation to investigate the time course of changes
in socially anxious subjects’ attention bias to threatening stimuli
(McTeague et al., 2018). The results showed that socially anxious
patients exhibited the most significant ssVEP amplitude in response
to aversive facial expressions and sustained visual cortical ease,
suggesting that socially anxious patients exhibited a persistent
pattern of hypervigilance. Other researchers further explored the
dynamic attention patterns of socially anxious individuals toward
threatening social stimuli, validating and expanding the discussion
on the relationship between anxiety, attentional control abilities,
and negative attention bias within the framework of attentional
control theory. The results showed that the high SA was more
sensitive than the happy and neutral faces. The amplitude of ssVEP
induced by consistently angry faces was the highest (Zheng et al.,
2023). At the same time, the scores of attention concentration
and attention transfer ability were negatively correlated with the
scores of SA. There was a significant negative correlation between
attention transfer ability score and negative attention bias index.
This study revealed the attention pattern of socially anxious
individuals to threatening stimuli; that is, they initially showed
attention vigilance to threatening social stimuli, then failed to make
adaptive avoidance due to impaired attention control ability, and
finally showed difficulty in attention detachment (Zheng et al.,
2023). Negative bias toward threatening stimuli and poor control
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may be risk factors for the emergence and development of SA
symptoms (Botelho et al., 2023). This will help to understand
further the pathogenesis of the emergence and maintenance of
SA and develop more targeted and effective forms of treatment,
providing a theoretical basis and empirical support for intervention
strategies of SA.

Moreover, SA is the developmental outcome most frequently
studied in behaviorally inhibited children, with prolonged high
levels of behavioral inhibition leading to a vulnerability to SA
(Fox et al., 2021; Thai et al., 2016). Additionally, research has
found that behaviorally inhibited children are at greater risk for
developing psychological disorders in the future due to similar
neural processes or structural characteristics to certain individuals
with SA. The identification of these neural process associations has
laid the foundation for cognitive neuroprocesses as predictors of
risk in behaviorally inhibited children. Roy et al. (2014) focused on
the extensive amygdala system. This article suggests that functional
disorders in the amygdala, prefrontal cortex, striatum, anterior
insula, and cerebellum are risk indicators for anxiety disorders
in behaviorally inhibited individuals. Previous ERP studies on
attention processes in behaviorally inhibited individuals have also
focused on the P1, N2, et al. Components (Thai et al., 2016).
For instance, Jetha et al. (2012) found in adult subjects that shy
individuals exhibited a reduction in the P1 component when
confronted with emotional faces (Jetha et al., 2012). Researchers
believe this is due to the cognitive avoidance and attentional
inhibition of socially anxious individuals. This study confirmed
the association between shyness and early cortical responses to
fearful faces, consistent with the amygdala sensitivity model. The
study also found that early behavioral inhibition in children can
predict an increase in socially specific ERN and the emergence of
SA symptoms in adolescence. The increase in ERN may be due
to the overactive fear system in behaviorally inhibited children,
requiring higher levels of inhibitory control (Lahat et al., 2014;
McDermott et al., 2009). The ERN may be a neurobehavioral
mechanism that links behavioral inhibition to adolescent SA
symptoms and diagnosis. Further research has found that the
connection between behavioral inhibition and SA is influenced
by attentional control and attentional bias (Gilbert et al., 2022).
Studies have assessed whether ERP responses related to attention
to angry and happy faces mediate the longitudinal association
between BI and SA in preschool children. The results showed
that P1 responses to happy faces and N2 responses to angry faces
mediated the relationship between behavioral inhibition and SA.
P2 and N2 amplitudes were associated with SA and attentional bias,
respectively. This highlights the importance of observing individual
differences in the developmental study of neural predictors of SA
(Thai et al., 2016). Future research could further explore effective
intervention methods based on the cognitive and neural processes
of behaviorally inhibited individuals, helping children reduce the
risk of social withdrawal and psychological disorders.

3.2.2 Keyword cluster analysis
The article selected a g-index of 25 for clustering analysis.

The keywords in the literature are highly concise, summarizing
the content and theme of the literature. Therefore, through the
keyword clustering research analysis, we can better understand the
relevant direction and hot spots in this field (Xu et al., 2024).

The map displays the top ten cluster labels. Figure 6 indicates
that the subject terms related to retrieval strategies were removed.
A more detailed clustering is shown in Table 6, where the research
can be divided into four main areas. Among them, #0, #3, and #9
can be classified as research techniques for the neurophysiological
mechanisms of SA; #1 can be categorized as the neurophysiological
mechanisms of cognitive processing in SA; #6 and #7 can be
grouped as the core brain regions, and networks focused on in
SA brain imaging research. #2, #4, #5, and #8 can be classified
as the neural predictors of treatment outcomes in SA. The
following analysis will explore the current hotspots in research
from three aspects: research techniques for the neurophysiological
mechanisms of SA, research fields, core brain regions and their
networks, and the neural predictors of treatment outcomes in SA.

(1) Research methods mainly include fMRI, EEG, and Event-
related potentials. This shows that fMRI, EEG, and Event-related
potentials (ERP) are commonly used techniques in SA research
(Al-Ezzi et al., 2020; Mizzi et al., 2022; Parsaei et al., 2024; Pei
et al., 2023). Among them, fMRI can reveal the brain mechanisms
underlying social disorders with high spatial resolution, accurately
differentiating similar conditions at the neurobiological level and
thereby assisting in clinical diagnosis and treatment (Peterson
et al., 2014). Especially in clinical practice, the identification of
comorbidities is very vital. The presence of one disease may mask
another or lead to more complex clinical manifestations, increasing
the risk of misdiagnosis and possibly leading to poorer treatment
outcomes (Koyuncu et al., 2019). About half of people with SA
have comorbidities of mental illness, drug addiction, or alcohol
problems (Robichaud and Koerner, 2019). SA has long been shown
to suffer from comorbidities, with post-traumatic stress disorder
(PTSD), obsessive-compulsive disorder (OCD), and SA all carrying
core symptoms of anxiety (Cheng et al., 2015). Comorbidities
not only hinder treatment but also increase the risk of suicide in
patients with these diseases, so precise differentiation is essential
for clinical treatment (Rozen et al., 2022). Researchers use fMRI to
study mood disorders, such as depression and bipolar disorder, and
distinguish the difference between SA and other diseases, which is
conducive to the diagnosis and treatment of SA (He et al., 2024;
Liang et al., 2023). For example, one fMRI study compared gray
matter volume (GMV) in magnetic resonance images obtained
from PTSD patients, OCD patients, SA patients, and healthy
controls. GMV was different in the left hypothalamus and left
inferior parietal lobe in all four groups, and this difference was
mainly due to reduced GMV in the PTSD group relative to the
other groups. The PTSD group exhibited decreased GMV in the
frontal, temporal, and cerebellar lobes compared to the OCD group,
as well as reduced GMV in the bilateral frontal lobes compared to
the SA group. Additionally, GMV in the left hypothalamus showed
a significant negative association with anxiety symptoms in all three
disorder groups (Cheng et al., 2015). The study also found evidence
of structural differences in the brain that provide biomarkers for the
diagnosis of SA and support the idea of using MRI in the clinical
classification of these diseases (Al-Ezzi et al., 2020).

In addition, EEG is also an effective way to study neural
correlates of SA and to obtain large-scale connectivity models of
brain function. Among them, the spectral coupling between delta
and beta oscillations is associated with SA (Al-Ezzi et al., 2020). At
the same time, EEG bands were associated with different functional
and behavioral correlations. For example, slow wave (SW) brain
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FIGURE 6

Clustering map of keywords about research hotspots and trends of neuroimaging in SA.

TABLE 6 Cluster analysis of SA brain mechanism studies.

Cluster ID Size Silhouette Mean
(year)

Label (LLR)

0 69 0.89 2009 fMRI; bipolar disorder; mood disorders; functional neuroimaging; tic;

1 50 0.829 2007 Facial expressions; amygdala activation; functional MRI; medial prefrontal cortex;
cerebral blood-flow;

2 43 0.94 2007 Serotonin uptake inhibitor; 4 aminobutyric acid; treatment response; monoamine
oxidase inhibitor; benzodiazepine derivative;

3 41 0.851 2016 Evoked potentials; evoked response; event-related potential; neurosciences & neurology;
electroencephalography;

4 39 0.895 2008 Neurosciences & neurology; psychiatry; obsessive-compulsive disorder; posttraumatic
stress disorder; nuclear magnetic resonance imaging

5 35 0.935 2017 Mental disease; transcranial direct current stimulation; quality of life; cognitive
behavioral therapy; test-retest reliability;

6 35 0.857 2013 Cerebral cortex; brain cortex; default mode network; generalized social phobia; neural
bases;

7 35 0.93 2013 Social anxiety; anterior cingulate cortex; generalized anxiety; functional connectivity;
psychiatry;

8 33 0.949 2006 Clinical article; neurosciences & neurology; psychiatry; controlled study; double-blind
procedure;

9 32 0.956 2009 Event-related potentials; trait anxiety; selective attention; psychology; ERP;

oscillations such as delta are associated with subcortical regions
responsible for motivation, emotion, and reward processing
(Knyazev, 2012; Newson and Thiagarajan, 2019). In contrast, fast
waves reflect intercortical connections that are activated when

attention is needed for control, cognitive processing, and regulation
(Poole et al., 2021). It has been found that longitudinal patterns
of neuroendocrine stress activity and SA in early childhood may
be related to the EEG power of slow and fast brain oscillations in
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the frontal lobe (Poole and Schmidt, 2019). Meanwhile, previous
studies have found evidence that the level of spectral coupling
between frontal SW and FW (fast wave) can be used to distinguish
socially anxious individuals and quantify the severity of SA during
social interactions (Miskovic and Schmidt, 2010).

The evoked potential is the third major development
in clinical neurophysiology after electroencephalogram and
electromyography, and it can help diagnose the abnormal function
of the nervous system (Knyazev, 2012). The event-related potential
is an exceptional evoked potential which can objectively reflect
the cognitive processing of the brain. Event-related potentials
(ERPs) are direct measures of brain activity that can be correlated
with individual differences, helping to clarify the similarities and
differences between seemingly related disorders and their features
(Hajcak et al., 2019). ERP research on SA mainly involves attention
bias, cognitive control, emotional response, and other cognitive
processing processes involving P1, N170, N2, ERN, FPN, LPP,
and other EEG components (Al-Ezzi et al., 2020; Pei et al., 2023).
Among them, P1 and N170 are mainly related to bottom-up
automatic processing of information and are often used to explore
attention bias, early emotional information, and face processing in
patients with SA and anxiety disorders (Song et al., 2022). ERN,
FRN, and N2 involve the top-down monitoring process of internal
and external threat information (Pei et al., 2023). One ERP study
showed that healthy people showed more significant adjustment of
late components, such as changes in P3 components, compared to
anxious people. Index conscious and assessed processing of threats
and emotions and post-processing disengagement difficulties
(Gupta et al., 2019). This phenomenon is indicative of SA patients’
awareness and evaluation of threat and emotion processing and
disengagement difficulties in the later stages of processing. The ERP
component was also able to predict changes in SA symptoms. For
example, multiple studies have demonstrated the unique predictive
power of ERN in describing how children will become anxious at
ages 6–9, i.e., ERP can be used to predict changes in diagnostic
status (Filippi et al., 2020). Other studies have suggested that ERPs
may also help predict changes in symptom dimensions. At the
same time, ERPs can predict treatment outcomes. For example,
attention deviation correction (ABM) is a potential intervention
for alleviating symptoms of SA. An ERP study intervened for
attention bias in SA by modulating the early allocation of attention
to material-related stimuli. The results showed that the training
group showed similar reductions in late positive latency (LPP), and
the reduction of LPP was positively associated with improvements
in behavior and symptoms (Pan et al., 2019). Other studies have
found that the attention bias correction task can induce the vMMN
component, and this component can effectively predict the clinical
treatment effect of SA (Arad et al., 2019).

Neuroimaging techniques, such as fMRI, EEG, and event-
related potentials (ERP), have critical applications in the clinical
diagnosis and treatment of SA (Al-Ezzi et al., 2020). By providing
high spatial resolution images of the brain, fMRI can reveal
differences in brain function in patients with SA and help
distinguish SA from other comorbidities (such as PTSD and OCD),
thereby providing accurate diagnostic markers for clinical use,
avoiding misdiagnosis and optimizing treatment (Pannekoek et al.,
2015). EEG helps assess the functional status of SA patients by
monitoring the coupling relationship between brain waves (such as
delta waves and beta waves) and provides a basis for personalized

treatment. For example, EEG can identify patterns of a patient’s
neural response in the face of a social threat, which can guide the
clinical selection of appropriate treatment (Al-Ezzi et al., 2020).
ERP analyzes EEG components such as P1, N170, and ERN to
reveal the differences in cognitive processing in social situations in
SA patients, which is helpful for early diagnosis and prediction of
treatment response. For example, ERP-based attention bias training
is effective in reducing SA symptoms and predicting treatment
outcomes (Hajcak et al., 2019). In conclusion, neuroimaging
technology not only promotes the accuracy of SA diagnosis but
also provides new tools for clinical treatment, especially in the
identification of comorbidities and personalized treatment, which
improves the scientificity and effectiveness of clinical decision-
making.

(2) Research fields mainly include face processing. Emotional
faces are among the most common emotional stimuli in daily
life, conveying information related to physical and psychological
states, such as age, emotion, purpose, and desire. They hold
significant social and evolutionary importance (Lacombe et al.,
2023). Heightened sensitivity to facial expressions is often observed
in SA, especially those that are threatening or scrutinizing. A classic
symptom of SA is an increased emotional reactivity to potential
social threats, showing a persistent pattern of hypervigilance (Chen
et al., 2020; Wauthia et al., 2023). The abnormal processing of facial
expressions may be a significant cause of social communication
disorders. Using brain imaging techniques, the researchers found
that SA was associated with abnormal amygdala responses
to threat-related stimuli (Demenescu et al., 2013). One study
examined and confirmed the hypothesis that the high reactivity
of the amygdala check-in faces conditioned on social evaluative
significance is a candidate for the endophoric phenotype of SA
(Bas-Hoogendam et al., 2020). The prefrontal area is involved
in the attention and processing of facial features (Clark et al.,
2015). A meta-analysis showed that the face elicited a higher SA
response in the bilateral amygdala, pallidum, superior temporal
sulcus, visual cortex, and prefrontal cortex (Gentili et al., 2016).
For example, a study using emotional faces as stimulus information
found that socially anxious individuals showed higher activation of
the left and right amygdala than control samples when stimulated
with high-stress faces (Yoon et al., 2007). Crane et al. (2021)
explored neural differences in socially anxious individuals when
confronted with different emotional faces using emotional faces
as stimulus material. Results showed that anxious individuals
had higher amygdala activation when dealing with angry faces
(Crane et al., 2021). Günther et al. (2020) measured the automatic
responses of the amygdala in anxious individuals when confronted
with emotional faces using fMRI, confirming the central role of
the amygdala’s response to unconsciously perceived threats in
understanding and predicting personality anxiety. Meanwhile, a
study verified the high responsiveness of the amygdala to faces
conditioned with socially evaluative meaning, validating that the
amygdala is involved in responding to conditioned faces with
socially evaluative meaning and is an important research brain
region and clinical indicator of SA (Bas-Hoogendam et al., 2020).
Meanwhile, the connection between the amygdala and the medial
prefrontal cortex (mPFC) was found to be associated with anxiety
(Liu et al., 2020). The amygdaloid-MPFC connection plays a
vital role in the diagnosis of SA. When anxiety is negatively
associated with the amygdaloid-ventral mPFC connection, it
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indicates impaired emotional regulation in the individual, while a
positive association with the amygdaloid-dorsal mPFC connection
indicates heightened alertness to external stimuli (Porta-Casteràs
et al., 2020; Sun et al., 2023). In a study using fMRI to explore
performance differences between individuals with SA and healthy
controls on facial emotion-processing tasks, researchers found
that patients with SA exhibited overactivation of the amygdala,
along with reduced functional coupling of the left amygdala
with the medial orbitofrontal cortex and the posterior cingulate
cortex/precuneus during emotional tasks The strength of this
functional connection was inversely correlated with the severity of
state anxiety (Hahn et al., 2011).

The current research is to examine the neural mechanisms of
SA to find out how to objectively diagnose patients and provide
individualized treatment recommendations. Reliable and effective
biomarkers provide a solid basis for the diagnosis and treatment
of SA (Al-Ezzi et al., 2020). To prevent and treat SA more
effectively, researchers have been exploring the pathophysiological
mechanism of SA. Early explorations focused on individual brain
regions related to self and emotion, such as the prefrontal cortex,
amygdala, and cingulate gyrus (Freitas-Ferrari et al., 2010). With
the continued advancement of research, particularly in fMRI and
other technologies, some scholars have suggested exploring changes
in connectivity patterns between different brain regions from the
perspective of brain networks. We can better understand the
role of specific brain regions in the formation and development
of mental disorders such as SA, and also better understand the
neurobiological mechanisms behind it, rather than just looking at
reduced activity in a single brain region (Mizzi et al., 2022, 2024).

Studies have shown that abnormal processing of facial
expressions in SA has important clinical significance, especially
sensitivity to threatening or scrutinizing expressions (Chen et al.,
2020). Through neuroimaging techniques, studies have found that
SA patients have abnormal activation of brain regions such as
the amygdala when faced with emotional faces, especially when
stimulated by threatening faces, which provides the potential
for biomarkers in clinical practice (Demenescu et al., 2013). At
the same time, the connection pattern between amygdala and
prefrontal cortex is closely related to the ability to regulate
emotions, which provides a new idea for personalized treatment
(Bas-Hoogendam et al., 2020). In recent years, neural network
research has also highlighted changes in connectivity between brain
regions, helping to understand the formation and development of
SA more comprehensively (Sun et al., 2023). Therefore, the study
based on brain activity and connectivity patterns can promote the
early diagnosis of SA and the formulation of personalized treatment
plans, improve the treatment effect, and further open up a new
direction of neuroscience and clinical treatment.

(3)The core brain regions and networks mainly include the
default network (DMN) and the anterior cingulate cortex (ACC).
So far, researchers studying the brain mechanisms of SA have
identified several brain networks associated with SA, including the
central executive network, default network, and dorsal attention
network, with the prefrontal cortex and amygdala as core
regions. Additionally, they have found functional connectivity
abnormalities between the amygdala and the prefrontal cortex,
which may serve as important neural representations of cognitive
regulation failure, biases in self-information processing, and

attention biases in SA (Caldiroli et al., 2023; Klumpp et al., 2014).
These findings show promise as potential biomarkers.

Among them, DMN is one of the classical resting state brain
networks and the most studied network (Kim and Yoon, 2018;
Wang et al., 2020). The DMN is a set of time-related brain regions
that are most active at rest and deactivated when performing
cognitively demanding goal-oriented tasks. This network includes
the medial prefrontal cortex (mPFC), the posterior cingulate cortex
(PCC)/anterior cuneus, and the ventral/pregenicular cingulate
cortex (pgACC). Default mode network plays an important role in
individuals’ social cognition and self-referential processing (SRP),
and is also closely related to social-emotional processing (Jamieson
et al., 2023; Yoon et al., 2019). It is believed that the functional
connectivity of the DMN region is abnormal in SA patients due
to high self-attention. The functional connectivity of DMN in
mild to moderate SA patients is enhanced, while the functional
connectivity of DMN in severe SA patients is decreased (Liao et al.,
2010; Zhang et al., 2023). It has also been shown that low RS-
connectivity between DMN regions is inversely associated with
task-non-specific hyperactivity in DMN and amygdala (AMG)/SN.
At the same time, we propose a model of “anxious self-terrain”
in SA (TAS-SA). The model shows that the abnormal DMN-
AMG/SN topography observed in individuals with SA at rest,
which reflects an “unstable social self,” is significantly aggravated in
sensitive patients, leading to increased activity in the relevant brain
networks (Lucherini Angeletti et al., 2023). The high connectivity
of the anterior cingulate cortex (ACC) and the medial prefrontal
cortex (mPFC), the core brain regions of the default network,
to the amygdala also suggests the relevance of this region to
threat processing in SA (Lucherini Angeletti et al., 2023). At
the same time, an enhanced functional connection between the
bilateral dorsal ACC and PCUN was also found in SA patients.
This enhanced connection links CN with DMN and may be the
neural basis for the enhanced attention of SA patients to self-
related information in the external environment (Pannekoek et al.,
2013). Liao et al. (2010) found that the functional connectivity of
the dorsal anterior cingulate cortex (ACC) and middle cingulate
cortex (MCC) is enhanced in patients with SA. This connectivity
is significantly positively correlated with scores on the Leibowitz
SA Scale, further suggesting that there may be an enhanced
effect of brain region connectivity associated with self-related
representation in SA (Liao et al., 2010). Therefore, the enhancement
of connections in the cingulate subregion may be one of the
crucial signs that SA has a self-focused attention bias to external
information.

In addition, people with anxiety disorders are likely to
experience chronic anxiety, and one of the reasons for maintaining
this state is the patient’s persistent and debilitating focus on
negative or potentially threatening life experiences (Robinson et al.,
2013). The amygdala is a key brain region in the emotional
regulation circuit. The study also found that, in addition to
the amygdala, the anterior cingulate cortex (ACC) is another
core brain region of concern in the emotional regulation of SA
(Frick et al., 2018). The anterior cingulate cortex (ACC) also
plays a crucial role in regulating emotions. It involves explicitly
dealing with social rejection and coping with stress caused by
social interactions (Klumpp et al., 2012; Schmid et al., 2015).
Studies in the meta-analysis found that the activation of the left
anterior cingulate gyrus was significantly reduced in SA patients
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FIGURE 7

Top 25 keywords with the strongest citation burst.

compared to healthy controls (Yu et al., 2021). In a simple emotion
recognition task, the researchers found an interaction of whole-
brain amygdala connections within the anterior cingulate cortex
cluster, which was caused by a significant increase in circuit
coupling when patients processed fearful faces versus happy faces.
Notably, this is consistent with contemporary psychiatric theory
that circuit coupling is positively associated with self-reported
anxiety symptoms, providing evidence for a persistent association
between this circuit and subjective symptoms (Robinson et al.,
2014).

(4) The method of treatment includes drug options,
psychotherapy, and neuroregulatory interventions such as
tDCS, which have been found to alter brain function (Frick et al.,
2020; Li et al., 2016). Some researchers used brain signals as
neural predictors of treatment outcomes in SA. Selective Serotonin
Reuptake Inhibitor (SSRI) is the most commonly used medication
for SA (Rappaport et al., 2021). Clinical and preclinical evidence
suggests that SSRI is involved in the pathogenesis of SA (Arad
et al., 2023). Research has found that 5-HT levels in the basal
amygdala (BA) decrease during anxious states and increase during
social activities (Yu et al., 2022). Other studies have shown that

5-HT promotes social behavior by affecting different brain regions
(Wu et al., 2021). One study also examined the effects of selective
serotonin reuptake inhibitors (SSRIs) on brain function in patients
with OCD, PTSD, and SA, and found that patients with SA, OCD,
and PTSD experienced reduced activity in the anterior cingulate
gyrus, right thalamic cingulate gyrus, and left hippocampus after
SSRI treatment (Bandelow et al., 2012). The study conducted
by Azriel et al. (2024) further confirmed that SSRIs are both
effective treatments for SA and lead to increased activation of the
right inferior frontal gyrus and anterior cingular cortex during
implicit social threat processing. These brain regions may be the
neurobiological basis of SSRI efficacy. This suggests that SSRIs
can have an impact on brain function in people with psychiatric
disorders such as SA (Bandelow et al., 2012). This suggests that
abnormal neural activity can be reversed by selective serotonin
reuptake inhibitor treatment, and the activity in these brain regions
may also serve as potential targets for predicting the efficacy of
selective serotonin reuptake inhibitors.

Among psychotherapy, cognitive behavioral therapy (CBT) is
the most well-studied non-pharmacological approach to treating
SA, and its effectiveness has been demonstrated in numerous
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FIGURE 8

The keyword time zone map about research hotspots and trends of neuroimaging in SA.

studies (Kindred et al., 2022). CBT is a time-bound and
present-oriented psychotherapy approach that teaches patients the
cognitive and behavioral skills needed to function adaptively in
both interpersonal and intrapersonal contexts (Bemmer et al.,
2021). CBT is considered the standard treatment for SA, and
the study of the neuro predictors of its efficacy is conducive to
personalized treatment. Preliminary evidence suggests that the
higher visual cortex, dorsal anterior cingulate gyrus, medial/lateral
dorsal prefrontal cortex, and orbitofrontal cortex are potential
predictors of functional activation in brain areas related to
cognitive control before intervention. Meanwhile, the amygdala is
structurally and functionally connected with brain areas related to
emotional regulation. Additionally, ERP components induced by
emotional stimulation are associated with symptom improvement
after treatment (Frick et al., 2020; Jiang et al., 2024; Sandman et al.,
2020; Young et al., 2019). For example, right amygdaloid-right
ventrolateral prefrontal cortex (vlPFC) connectivity was found to
be a predictor of treatment response(Jafari et al., 2021). Decreased
amygdaloid-DACC connectivity predicts the long-term efficacy of
iCBT for SA (Månsson et al., 2013). Recent long-term studies
have also confirmed that CBT for SA is effective in reducing
SA symptoms for 12 months or more after stopping treatment
(Kindred et al., 2022). The researchers also found that increased
activity in the right prefrontal cortex and right middle occipital
gyrus, along with decreased activity in the left posterior superior
temporal gyrus, was associated with reduced symptoms of SA in
individuals. This association was observed during the reevaluation
of social criticism when comparing pre-CBT and post-CBT brain
activity. This suggests that the potential effect of CBT changes the
individual’s brain circuitry (Goldin et al., 2021). The findings could
potentially be used to target brain circuits associated with clinical
improvement to improve treatment effectiveness. It also suggests
that neuroimaging can be used to predict treatment outcomes in
patients with SA (Picó-Pérez et al., 2023).

In addition, neuroregulation has been emphasized as a form
of treatment for a variety of conditions, including those with SA

symptoms (Vergallito et al., 2021). tDCS is a viable treatment
option for high-prevalence neuropsychiatric disorders and is
important for understanding pathological and neuropsychological
adaptation processes (Mohammadabadi et al., 2021). Dysfunction
of the amygdala-frontal network is the core of SA pathophysiology,
and the reaction process is decreased activity of the lateral
prefrontal cortex (PFC) and hypersensitivity of the medial PFC and
amygdala (Mizzi et al., 2022). The study found that modulating
lateral-medial PFC activity through intensive stimulation can
improve cognitive control, motivation, and emotional networks
in SA patients, resulting in therapeutic effects (Jafari et al., 2021).
Previous studies have linked anxiety to low activation of the
left DLPFC, resulting in an inability to suppress the amygdala,
making it overly involved in neural activity for threat detection
and processing (Etkin and Wager, 2007). On the other hand,
there is evidence that the right side DLPFC is more activated
in anxiety disorders (White et al., 2023). This can lead to the
emergence and chronicity of cognitive/emotional deficits (i.e.,
exaggerated fear response/threat perception). In a tDCS study,
researchers used excitatory stimulation of the left prefrontal
cortex and inhibitory stimulation of the right prefrontal cortex
to reduce the severity of anxiety symptoms. The results produced
by this method validate previous studies of tDCS and create
an innovative model for up-down regulation mechanisms, which
may serve as a guide for future systematic studies in this area
(Vicario et al., 2019).

3.3 Research trend analysis

Analyzing the development trends of a research field helps
scholars track cutting-edge topics and predict research trends,
thereby guiding their research direction. In the field of visual
studies, keyword burst maps and keyword co-occurrence
timezone maps can help identify future research trends
(Jamieson et al., 2023).

Frontiers in Behavioral Neuroscience 16 frontiersin.org

https://doi.org/10.3389/fnbeh.2024.1448412
https://www.frontiersin.org/journals/behavioral-neuroscience
https://www.frontiersin.org/


fnbeh-18-1448412 December 2, 2024 Time: 16:32 # 17

Zhang et al. 10.3389/fnbeh.2024.1448412

3.3.1 Keyword burst analysis
The burst of keywords refers to a sudden increase in the number

of occurrences of a keyword within a specific period, making it
suitable for characterizing the research frontier and development
trends in that field. This map not only illustrates changes in research
focus but also highlights the most enduring and popular core
keywords, helping researchers identify and understand the hotspots
and their contexts within the field.

As shown in Figure 7 using 2023 as the cutoff time for
burst analysis reveals that the keywords with significant growth in
recent years are “cognitive behavioral therapy,” “systematic review,”
“machine learning,” “major clinical study,” “transcranial direct
current stimulation,” “depression,” and “outcome assessment.” The
respective burst strengths are 7.17, 7.59, 5.93, 5.6, 6.97, 6.54, and
4.95. These keywords are expected to appear frequently in the
coming years and will become trends in research within this field.

Cognitive behavioral therapy (CBT) is an effective intervention
for the treatment of SA, and the neuro markers to evaluate
the treatment effect are at the forefront of research (Kindred
et al., 2022; Su-Shou et al., 2021). Although existing studies have
shown that CBT can improve anxiety symptoms, differences in
the association of various neural markers with treatment response
have been identified. This finding provides a new perspective for
understanding the treatment mechanism and enhancing treatment
outcomes (Frick et al., 2020; Sandman et al., 2020). Studies have
shown that there are powerful neural predictors of CBT outcomes
for anxiety-related disorders. Ultimately, these predictors can be
combined with other data to develop a tailored treatment approach
for these mental disorders (Picó-Pérez et al., 2023). In the future,
it is necessary to combine multiple data sources and adopt big
data and multimodal methods to more comprehensively identify
the risk factors associated with SA treatment outcomes to improve
treatment outcomes (Khosravi et al., 2022). CBT is an important
way to treat anxiety and depression, and clinical practice can use
the brain mechanism to see the treatment changes of patients more
objectively, and then promote the following treatment plan. At the
same time, CBT can also be co-treated with mindfulness to bring a
better prognosis (Goldin et al., 2021).

At the same time, in the face of similar diseases, there is an
urgent need for clinical treatment to derive quantitative measures
based on coherent neurobiological dysfunction or “biotype.” Using
the study of brain mechanisms, by designing different brain
region activation tasks, it is possible to determine the type of
disease in patients before clinical diagnosis. The results of brain
activation provide a new, theoretically driven, clinically validated,
and explainable quantitative approach to resolving the biological
heterogeneity of depression and anxiety, representing a promising
approach that can advance precision clinical care in psychiatry
(Tozzi et al., 2024).

A systematic review, especially meta-analysis, was used to
summarize existing research on brain function and brain structure
in SA and to identify abnormal brain regions. Through the meta-
analysis of different paradigms, we can further understand the
neural mechanism of SA (Deng et al., 2023). Moreover, some
meta-analytic studies have differentiated SA from other disorders,
such as generalized anxiety disorder, post-traumatic stress disorder,
specific phobia, and depression, revealing characteristic activation
patterns in the brain (Liang et al., 2023; Pierce and Black, 2023;

Yu et al., 2021). This approach helps uncover the neurobiological
underpinnings of SA and provides a basis for identifying reliable
biological markers, which has become a trend in recent years
(Deng et al., 2023). In recent years, neurobiological research
has primarily focused on comparing the mechanisms underlying
anxiety with those of other disorders (Chavanne and Robinson,
2021; Schaffner, 2020). As well as using ALE meta-analysis to
investigate the consistency of activation patterns elicited by anxiety
(Yu et al., 2021). It can be inferred that examining the consistency
and heterogeneity of anxiety pathogenesis using multidimensional
modeling approaches, in comparison to other disorders, is a trend
for future research.

The use of computers to assist in the treatment of mental
illnesses aims to achieve this through interdisciplinary approaches
that combine various aspects of psychiatry, neuroscience,
mathematics, and artificial intelligence. By analyzing how changes
related to diseases affect behavior at different levels of brain
structure, diseases can be distinguished and explained (Khaleghi
et al., 2022). Among them, machine learning (ML) techniques
have been applied to SA neuroimaging research data to identify
important neurobiological predictors of psychopathology (Al-Ezzi
et al., 2020; Rezaei et al., 2023). ML is an advanced data analysis
method that has the potential to enhance clinical decision-making,
such as diagnostic evaluation. It can provide evidence-based
insights to identify which brain regions exhibit the most significant
differences between individuals with different diseases. (Pereira
et al., 2009). One study showed that a machine learning model
with resting-state brain functional radionics features has been
successful in predicting SA levels in young adult participants by
training them (Kim et al., 2022). Other researchers have used
the neural correlations of threatening social signals to perform
support vector machine analysis to classify SA (Xing et al., 2020).
It was found that the support vector machine (SVM) of the
brain’s response to the threat surface is a promising method
for classifying SA. This method requires recording whole-brain
activity on threatening or happy faces for optimal classification
performance. Brain regions outside the fear circuit (e.g., amygdala)
that appear relatively important in the classification highlight brain
regions that contribute to the diagnosis of SA. Al-Ezzi et al. (2020)
found that graph-theoretic network features combined with PDC
are effective tools for SA identification, using SVMs to achieve
maximum classification performance with accuracy (92.78%),
sensitivity (95.25%), and specificity (94.12%). Tian et al. (2024)
also studied the effect of EEG signals on SA induced by facial
expression processing under the psychological paradigm from the
perspective of deep learning. The results show that the ERP features
show better anxiety classification performance than other features,
especially the late positive potential, and show the advantages of
stability and high accuracy. These findings provide new insights
into the field of SA testing and help advance the development of its
objective identification methods (Tian et al., 2024). In psychiatry,
data-driven ML methods can be effectively used to predict
treatment response outcomes (Chen et al., 2023). ML methods
process large amounts of data to stratify patients based on specific
clinical phenotypes for individualized treatment. To date, accuracy
values exceeding 50% are considered clinically acceptable (Dadi
et al., 2021). Emerging evidence highlights the potential benefits of
machine learning approaches in the field of depression, including
the application of diagnostic and personalized treatment strategies
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(Aleem et al., 2022). ML is expected to address the significant
variability observed in treatment outcomes in the SA domain by
providing a method for objectively assessing heterogeneous data.

Non-invasive neurostimulation, as a “non-invasive,
economical, safe, and easy to operate” non-invasive physical
therapy method, is increasingly favored in the clinical treatment
of mental psychology and has become a research hotspot in the
field of neuropsychiatric diseases (Jafari et al., 2021). The use
of transcranial stimulation techniques, including transcranial
magnetic stimulation, transcranial direct current stimulation,
and transcranial photon biomodulation, has gained increasing
attention for the intervention of anxiety disorders. Transcranial
direct current stimulation (tDCS) is considered an effective method
for treating anxiety disorders and fear responses (Mohammadabadi
et al., 2021; Sousa et al., 2021). The core of the physiological and
pathological mechanisms of SA lies in the dysfunction of the
amygdala-prefrontal cortex network, characterized by insufficient
activity in the dorsal prefrontal cortex (PFC) and hypersensitivity
in the medial PFC and amygdala. Additionally, the amygdala is
functionally modulated by both cortical and subcortical structures.
Stimulating the dorsolateral prefrontal cortex to alter the activity
of the prefrontal-amygdala pathway can effectively regulate the
attention of anxious individuals to fear-inducing stimuli (Ironside
et al., 2019; Jafari et al., 2021) tDCS can achieve non-invasive and
precise neural circuit regulation of cortical targets (D’Onofrio
et al., 2023). For example, some studies use tDCS to modulate
dorsolateral and medial PFC activity to reduce the core symptoms
of SA and attention bias in response to threatening stimuli (Jafari
et al., 2021). These findings provide important theoretical guidance
and experimental evidence for improving individual clinical
anxiety disorders and predicting post-intervention efficacy by
precisely targeting cortical targets (George et al., 2009). tDCS has
broad application prospects in the treatment of anxiety, mood,
cognitive impairment, etc.

“Major clinical study” and “Outcome assessment” are also
a keyword that has proliferated in recent years, which also
suggests that on the one hand, although advanced and multivariate
neuroimaging techniques have been used to probe the neural
mechanisms and core brain regions of SA, the results still
need a large number of clinical studies to evaluate the research
results (Groenewold et al., 2023). On the other hand, it is also
important to improve the evaluation of the effect of treatment plans
through objective “outcome assessment” to promote the design
and implementation of “major clinical study.” In recent years, the
use of fMRI and ERP to study the neural markers of treatment
effects in SA and to predict treatment outcomes has become a
research hotspot (Jiang et al., 2024; Picó-Pérez et al., 2023). It was
found that the variability of transient fMRI signals may be a highly
reliable and valid prognostic indicator for the clinical prognosis of
SA (Månsson et al., 2022); visual mismatch negativity (vMMN) is
also a neuro marker of the clinical treatment effect of SA, which
is a neuro marker reflecting the clinical efficacy of ABM in SA
(Arad et al., 2019).

3.3.2 Time zone map analysis
The time zone map analysis can visualize the evolution and

development trend of keywords in different periods. In CiteSpace,
we select “keyword” as a node, and use time zone view to help
us better understand and analyze the evolution of hot topics in

the field of SA brain mechanism, and observe the emergence of
new keywords over time. The location of the nodes in the graph
represents the year of the first discovery of the keywords, and the
greater the number and richer the color of the lines formed between
the nodes, the more active the keywords are in the related scientific
research application fields. In this paper, we select the literature
from 1998 to 2023 and present the time zone graph with 1 year as a
phase (Figure 8).

By 2003, Research began using emotional paradigms such as
faces to explore the facial processing mechanisms of SA, with fMRI
and PET being the primary tools for studying the internal brain
mechanisms of the disease. The research objectives and methods
were relatively clear and focused, with some topics receiving in-
depth exploration and investigation, as seen in the early stages of
Figure 8 with terms like “comorbidity,” “phobia,” “faces,” “emotion,”
“fMRI,” “amygdala,” “depression” etc.

After 2003, with the increased focus on the field of SA, the
frequency of use of the term “SA” continued to rise, and the scope
of research became more diversified. In addition to focusing on
faces and emotions, Researchers paid more attention to the study of
brain regions interested in this disease, the functional connections
between different parts of the brain, and the exploration of
comorbidity mechanisms with SA, such as the terms “attentional
bias,” anterior cingulate cortex,” and “functional connectivity”
found in the middle section of Figure 8.

Since 2012, research into the neural mechanisms of SA has
been in an explosive state, with comprehensive and specific
studies. The research includes using machine learning methods
for the classification and diagnosis of mental disorders; exploring
the mechanisms of cognitive-behavioral therapy, exposure
therapy, virtual reality, and tDCS as neuro-regulatory treatments;
revealing the neural mechanisms of cognitive dysfunction,
such as executive control and cognitive reappraisal; comparing
the neural mechanisms of co-morbidity with ADHD; and
summarizing the research findings using meta-analysis and
systematic literature review methods.

In general, the research process of SA has undergone an
evolution from a single study to a multidisciplinary approach,
from simple methods to high-tech methods, and from superficial
phenomena to deep mechanisms. In recent years, researchers have
begun to try to construct models to better understand and explain
the brain mechanisms of SA, which indicates a possible direction
for future SA research.

4 Limitations and future research

However, there are also some limitations to our study. Since
the literature screening criteria in this study were limited to
English, some important literature in other languages may have
been omitted. Therefore, the results of this study should be carefully
extrapolated to countries with different languages. For example,
cultural and individual differences need to be taken into account,
particularly the role of the collective orientation of Eastern cultures
versus the individualistic orientation of Western cultures, which
will help deepen and refine our understanding of SA.

Combined with the development track of SA research and the
analysis of CiteSpace, we analyze future research and development
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trends in the field of SA brain mechanisms. Future research
directions include the following:

Firstly, expanding the research population to reveal the
developmental and changing patterns of SA is necessary. According
to our bibliometric analysis, we found that the subjects in the field
of SA brain mechanisms are often relatively young individuals.
This may be due to factors such as the early onset of the disease
and the fact that younger individuals are in a developmental
stage, leading most researchers to choose children and adolescents
as their subjects. Considering that individuals of different ages
may experience varying degrees and causes of anxiety, age and
physiological factors could also be reasons for some divergent
research findings. However, psychological research should serve the
entire society, and given that the lifetime prevalence of SA ranges
between 8.4 and 15% with a high rate of comorbidity with other
disorders (Weise et al., 2024), it is essential to broaden the scope
of research in the SA field. We should not be limited to childhood,
adolescence, and early adulthood, patients in middle adulthood and
seniors also need attention.

Secondly, employing multimodal technologies is crucial to fully
uncover the brain mechanisms of SA. Meanwhile, neurobiological
models of SA were constructed based on brain imaging research
findings. Due to the complexity of the causes of SA and the
incomplete uniformity of research conclusions, researchers need to
explore its pathogenesis from multiple perspectives so that cross-
cultural and multimodal technologies will become the general trend
in research. Currently, research into the brain mechanisms of SA
primarily utilizes various brain imaging techniques independently,
especially magnetic resonance imaging (MRI). These studies
investigate changes in brain structure among patients and various
control groups across different cognitive and emotional task
paradigms (Al-Ezzi et al., 2020; Bas-Hoogendam et al., 2020;
Poole et al., 2021). However, given the diverse characteristics
of SA patients and the similarities with other diseases, it is
necessary to conduct examinations from multiple dimensions,
such as physiological and behavioral aspects, and even through
the analysis of audio and video data (Weise et al., 2024).
Among these, functional near-infrared spectroscopy (fNIRS) has
a better temporal resolution than fMRI and offers superior spatial
resolution compared to EEG, making it suitable for use in
conjunction with these techniques, depending on the experimental
objectives. Future researchers should integrate multimodal data
to build predictive models for the classification and diagnosis of
SA. This contributes to a deeper understanding and prediction of
the pathogenesis of SA (Chavanne and Robinson, 2021; Jamieson
et al., 2023). Despite the substantial evidence from psychological
and clinical perspectives supporting cognitive models of SA (Nd
et al., 2020; Neumann et al., 2010), data from neurobiology
research has been scarce. Technological advances in genetics,
biology, and functional neuroimaging have enabled researchers to
demonstrate that genetic and biological factors and their impact
on neural function play a significant role in the onset and
maintenance of SA (Bas-Hoogendam et al., 2016, 2020; Carvalho
et al., 2020). Numerous studies have provided a framework for
the relationship between cognitive processes, neural dysregulation,
emotional disturbances, social context, and SA (Hofmann et al.,
2012; Neumann et al., 2010; Schaffner, 2020). These research
advancements have significantly enhanced our understanding of
the relationship between cognitive, biological, and social factors

in the pathogenesis of SA. They have also achieved breakthrough
progress. Genetic and neurobiological studies have elucidated some
potential pathogenic pathways for SA and suggested the biological
relevance of cognitive models to SA, which have significant
practical implications (Frick et al., 2020).

Thirdly, employing hyperscanning brain imaging technology
to investigate the characteristics of brain activity during real social
interactions can enhance the ecological validity of research (Carollo
and Esposito, 2024; Saul et al., 2022). One of the primary barriers
to SA is difficulty in interpersonal communication, and hypers-
canning is an effective technique for examining neural activity
synchronization and information flow between brains (Saul et al.,
2022). However, existing studies have participants lying inside
an fMRI machine imagining interaction scenarios, which fails to
observe the brain’s interactive characteristics of SA in natural
interaction contexts. This suggests that the choice of study design
and research method needs to be coordinated with the choice of
instrument. In recent years, interbrain cognitive synchrony has
become a hot topic (Al-Ezzi et al., 2020), which could facilitate
research on the brain activity of socially anxious individuals during
social interactions, thereby improving the external validity and
applied value of the research (Deng et al., 2024; Konrad et al., 2024).

Fourth, there is a need to strengthen research on non-invasive
brain stimulation interventions such as tDCS. Although existing
neurofeedback technologies have identified several effective EEG
targets for treating anxiety disorders and are gradually being used
in clinical interventions, current targets mostly focus on neural
oscillations in localized brain regions (Ferrarelli and Phillips, 2021).
There is a lack of research targeting neural circuit-level biomarkers.
As the neural circuits associated with SA are gradually uncovered, it
becomes possible to modulate these circuits through neurofeedback
techniques to intervene in anxiety disorders, and there is already
research confirming this (Paes et al., 2013). By examining the
modulatory effects of neurofeedback training on neural circuits and
its alleviating effects on anxiety disorders, we aim to determine
the effectiveness of new targets and ultimately develop active
neuromodulation techniques that can effectively alleviate anxiety.

In conclusion, future research should conduct in-depth studies
on the brain mechanisms of SA by applying multimodal techniques
systematically. Meanwhile, machine learning methods should be
utilized to construct neural prediction models, addressing the
challenges of comorbidity in the clinical diagnosis of SA, enhancing
the accuracy of clinical diagnosis of SA, precisely predicting
individual differences in the treatment effects of SA, providing
objective neurobiological markers for the diagnosis and treatment
response of SA, and facilitating differentiated clinical decision-
making.

5 Conclusion

This study quantitatively analyzed the publication volume,
journals, cited references, authors, institutions, and keywords in the
field of brain mechanisms of SA from 1998 to 2023. It aims to help
researchers get a clear picture of the research overview, hotspots,
and trends in the field. The main findings are as follows:
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(1) From the current analysis of the brain mechanisms of SA,
the number of publications has been steadily increasing. Most
authors collaborate closely. Among them, Pine’s team, which
published a total of 59 articles, is also the most central. There
are 3 institutions with more than 50 publications each, and
Harvard University has the highest centrality. At present, This
field has significant development prospects for the future. But
at the same time, the correlation between article frequency and
centrality and the brain mechanism of SA is not linear, that is,
the wider the scope of the study design, the more attention it
receives. This suggests that we need to consider both centrality
and relevance when selecting core literature for reference.

(2) Based on keyword co-occurrence and cluster analysis, the
research hotspots in this field can be categorized into research
techniques, research areas, core brain regions and brain
networks, and the neural predictors of treatment outcome
in SA. fMRI and ERP are widely used to explore the neural
mechanisms of cognitive processing (such as face processing,
attentional bias, and behavioral inhibition) in SA, as well as
using brain signals as predictors of treatment outcomes in
SA. tDCS as a neuromodulation technology has been used
to explore the effectiveness and mechanism of treatment SA.
Studies have suggested that a characteristic of SA patients is
the dysfunction of the limbic-prefrontal circuit, particularly
centering around the prefrontal cortex and amygdala, as well
as DMN, which is the most studied network. In addition,
exploring the comorbidity of SA and depression using brain
imaging technology is also a hot research topic. Due to the
complexity of the causes of SA and the incomplete uniformity
of research conclusions, researchers need to explore its
pathogenesis from multiple perspectives. Multimodal research
can more comprehensively understand the complexity of
SA, occupy a higher research perspective, and obtain more
accurate and insightful research results.

(3) The analysis of the keyword burst map and time zone map
shows the evolution results in the time dimension. This
change in research focus is that as researchers continue to ask
about the results, each node is a breakthrough in the field
of research on the brain mechanism of SA. Currently, there
is a shift toward investigating the abnormalities in functional
connectivity patterns among individuals with SA, conducting
meta-analyses to identify abnormal brain regions in this
field, and consequently building models to explore the neural
mechanisms underlying SA. The future research trend in SA
brain mechanisms will mainly focus on the precise prediction
of SA onset and using meta-analysis and modeling to detect
neurobiological markers of SA, constructing neurobiological
models of SA based on brain imaging research findings as
well as using brain signals as predictors of treatment outcomes

in SA, aiming to identify the neural mechanisms of SA and
ensure more accurate clinical diagnosis associated with clinical
improvement to improve treatment effectiveness.

Through this study, we analyzed the literature on the brain
mechanisms of SA and found that the research focus in this field
has evolved, giving readers a clear context. At the same time, based
on the research results and the analysis of the current situation in
this field, we discussed future research directions and challenging
but urgent problems to be solved, hoping to provide new ideas and
directions for readers and the study of the brain mechanism of SA.
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