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Introduction: Defensive responses to threat-associated cues are commonly

evaluated using conditioned freezing or suppression of operant responding.

However, rats display a broad range of behaviors and shift their defensive

behaviors based on immediacy of threats and context. This study aimed to

systematically quantify the defensive behaviors that are triggered in response

to threat-associated cues and assess whether they can accurately be identified

using DeepLabCut in conjunction with SimBA.

Methods: We evaluated behavioral responses to fear using the auditory fear

conditioning paradigm. Observable behaviors triggered by threat-associated

cues were manually scored using Ethovision XT. Subsequently, we investigated

the effects of diazepam (0, 0.3, or 1 mg/kg), administered intraperitoneally before

fear memory testing, to assess its anxiolytic impact on these behaviors. We then

developed a DeepLabCut + SimBA workflow for ethological analysis employing

a series of machine learning models. The accuracy of behavior classifications

generated by this pipeline was evaluated by comparing its output scores to the

manually annotated scores.

Results: Our findings show that, besides conditioned suppression and

freezing, rats exhibit heightened risk assessment behaviors, including sniffing,

rearing, free-air whisking, and head scanning. We observed that diazepam

dose-dependently mitigates these risk-assessment behaviors in both sexes,

suggesting a good predictive validity of our readouts. With adequate amount

of training data (approximately > 30,000 frames containing such behavior),

DeepLabCut + SimBA workflow yields high accuracy with a reasonable

transferability to classify well-represented behaviors in a different experimental

condition. We also found that maintaining the same condition between training

and evaluation data sets is recommended while developing DeepLabCut +

SimBA workflow to achieve the highest accuracy.

Discussion: Our findings suggest that an ethological analysis can be used

to assess fear learning. With the application of DeepLabCut and SimBA,

this approach provides an alternative method to decode ongoing defensive

Frontiers in Behavioral Neuroscience 01 frontiersin.org

https://www.frontiersin.org/journals/behavioral-neuroscience
https://www.frontiersin.org/journals/behavioral-neuroscience#editorial-board
https://www.frontiersin.org/journals/behavioral-neuroscience#editorial-board
https://doi.org/10.3389/fnbeh.2024.1440601
http://crossmark.crossref.org/dialog/?doi=10.3389/fnbeh.2024.1440601&domain=pdf&date_stamp=2024-08-01
https://doi.org/10.3389/fnbeh.2024.1440601
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fnbeh.2024.1440601/full
https://www.frontiersin.org/journals/behavioral-neuroscience
https://www.frontiersin.org/


fnbeh-18-1440601 July 29, 2024 Time: 17:10 # 2

Chanthongdee et al. 10.3389/fnbeh.2024.1440601

behaviors in both male and female rats for further investigation of fear-related

neurobiological underpinnings.

KEYWORDS

fear conditioning, ethological analysis, risk-assessment, DeepLabCut, SimBA

1 Introduction

Fear is an aversive emotion that is essential for surviving
threats to both physical and psychological well-being (Steimer,
2002). However, excessive, or maladaptive fear can lead to the
development of psychiatric disorders such as anxiety disorders
and post-traumatic stress disorder (PTSD) (American Psychiatric
Association, 2013; Craske et al., 2017). This has prompted the
necessity for a deeper understanding of the mechanisms underlying
fear responses and their regulation. While fears can be innate,
they can also be acquired through learning. This acquisition often
occurs through the association of a threat with environmental cues,
allowing its exploration through Pavlovian conditioning.

Exposure to threats or threat-associated cues elicits a
shift in behavior, characterized by a decrease in appetitive
behaviors (e.g., food procurement and sexual behaviors) and an
increase in defensive behaviors. The assessment of decreased
appetitive behaviors in response to threats utilizes the conditioned
suppression paradigm pioneered by Estes and Skinner (1941).
In conditioned suppression, the presentation of a cue previously
associated with threatening events suppresses consummatory
behavior quantified as operant responding. The strength of this
approach lies in its objective and easily quantified measurement
of an operant behavior, and its pharmacological validation by
anxiolytic drugs such as benzodiazepines. Defensive behaviors
triggered by threat-associated cues can also be evaluated by
measuring freezing behavior, a natural defensive response in
rodents that is detectable in a laboratory setting. The latter
approach has been the most common readout in recent years and
has uncovered crucial information regarding the neurobiological
mechanisms of fear learning (Maren and Fanselow, 1996; LeDoux,
2000).

However, neither conditioned suppression nor freezing are the
sole behavioral responses that can be triggered by a threat. In rats,
the selection of defensive behaviors is dynamic and influenced by
updated information regarding the immediacy of threats (Fanselow
and Lester, 1988; Blanchard and Blanchard, 1989b; Moscarello and
Penzo, 2022). For instance, rats are more likely to flee to avoid
confrontation in escapable situations (Blanchard and Blanchard,
1971) whereas they tend to hide or freeze when threats are distant.
In situations with ambiguous threat immediacy, rats tend to gather
more sensory information through behaviors like head-scanning,
sniffing, rearing, and stretched-approaching, collectively termed as
“vigilance” or “risk assessment” (Blanchard and Blanchard, 1989a;
Misslin, 2003).

Abbreviations: CS, conditioned suppression; DIAZ, diazepam; PTSD, post-
traumatic stress disorder; SHAP, Shapley additive explanation value; SimBA,
simple behavioral analysis.

According to Blanchard and colleagues, risk assessment does
not only help optimize defensive choices in the face of threats
but also facilitates a return to non-defensive behaviors afterwards
(Blanchard et al., 2011). Fanselow and Lester proposed that these
defensive behaviors are organized along a predatory imminence
continuum, where physical closeness, temporal immediacy, and the
likelihood of encountering the threat will determine the behavioral
response (Fanselow and Lester, 1988). Following this theory, the
defensive behavior system can be divided into three modes that
are activated by different levels of fear, including pre-encounter
(vigilance, risk assessment), post-encounter (freezing), and circa-
strike defensive behaviors. Failure in selecting the appropriate
mode of defense may reflect maladaptive behavioral responses. For
instance, abnormalities in risk assessment can lead to prolonged
defensive states and delay the return to normalcy, as observed
in cases of excessive fear, anxiety, or the hypervigilance of PTSD
(Shumake and Monfils, 2015; Beckers et al., 2023). Thus, a
comprehensive ethological analysis of rat behaviors elicited by
threat-associated stimuli could enhance our understanding of their
responses to threats and provide insights into the underlying
mechanisms.

Despite the complexity of fear responses outlined above,
these have predominantly been assessed through simpler, more
easily quantifiable measurements, such as suppression of operant
responding (i.e., conditioned suppression) and freezing behaviors.
This is largely because accurately measuring multiple defensive
behaviors poses substantial challenges due to the limited sensitivity
of commercial tracking systems (Sturman et al., 2020). As a result,
human annotation has remained the gold standard method for
quantifying ethological behaviors, despite being time-consuming
and prone to subjective bias. Recently, advances in computer
vision and machine learning have provided new tools poised to
attain human-level accuracy and establish standardized behavioral
scoring. For instance, the open-source toolbox DeepLabCut allows
behavioral tracking by extracting the poses of animals without
using markers (Mathis et al., 2018). It relies on deep learning
using neural networks to establish pose estimation data for a
variety of animals. Available studies report a high level of accuracy
with a relatively low requirement for training data, making it
an attractive tool for measuring ethological behaviors (Hardin
and Schlupp, 2022). DeepLabCut can be used in combination
with SimBA (Simple Behavioral Analysis) which integrates pose
estimation data from DeepLabCut with human-labeled behavioral
annotations to autonomously classify specific behaviors (Nilsson
et al., 2020; Goodwin et al., 2024). It then uses these data as input
to create random forest classifiers to label animal behaviors. This
approach has been adopted to assess various behaviors such as
social interactions (sniffing) (Popik et al., 2024), fear responses
(freezing) (Hon et al., 2022), anxiety-related behaviors (head
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dipping in the elevated plus maze) (Sturman et al., 2020; Bühler
et al., 2023), and maternal behaviors (pup retrieval) (Lapp et al.,
2023).

The DeepLabCut + SimBA workflow has not yet been used to
assess diverse defensive behaviors in response to threat-associated
cues. Here, we therefore aimed to evaluate DeepLabCut with
SimBA for ethological analysis for this type of data. Specifically,
we first used manual scoring to validate that rat displayed
defensive behaviors in addition to the commonly observed readouts
such as conditioned suppression and freezing elicited by threat-
associated cues. Next, we implemented a machine learning
workflow to simultaneously quantify defensive behaviors during
fear expression. To evaluate the efficacy of utilizing DeepLabCut
combined with SimBA, we then compare the obtained scores to the
scores from manual annotation.

2 Materials and methods

2.1 Animals

Adult male (250–300 g) and female (150–200 g) Wistar
rats (Charles River, Germany) were pair-housed with a same-
sex conspecific in a humidity- and temperature-controlled
environment under a reverse light cycle (light on at 7am). All
experiments took place during the dark phase. Rats had access to
food and water ad libitum and were acclimatized to the facility and
handled by experimenters prior to the experiment.

2.2 Ethics approval statement

Procedures were approved by the Local Animal Ethics
Committee at Linköping university and were in accordance with
the EU Directive 2010/63/EU on the protection of animals used for
scientific purposes as implemented in Swedish national regulations.

2.3 Apparatus

All experiments took place in 16 operant chambers (29.5 cm
× 16–32 cm × 21 cm, Med Associates Inc., St. Albans, Vermont)
equipped with two levers – active and inactive lever, two
receptacles, rod flooring connected to a shock generator, and a
speaker inside an individual sound-attenuated cubicle. Chambers
were cleaned with chlorine-based disinfectant solution between
each session. All chambers were digitally controlled, and numbers
of lever presses were automatically recorded by MEDPC-IV
software (Med Associates Inc., Fairfax, VT, USA).

2.4 Video recording

Behaviors in each chamber were recorded using AXIS
M1065-L network cameras with infrared illumination (Axis
Communications AB, Lund, Sweden). Videos were recorded at
25 frames per second at 1920 x 1080 resolution. Due to the size

of the operant chamber, the camera was placed on the ceiling
of each sound-attenuated cubicle to obtain a 45-degree top-down
recording that provided sufficient viewing of the whole chamber.
Cameras were controlled by MediaRecorder (Version 5, Noldus,
Amsterdam, The Netherlands).

2.5 Behavioral procedures

A total of 180 male and 128 female rats were used, and three
experiments were carried out (Figure 1). In experiment 1 and 2,
the setup was optimized for assessment of conditioned suppression
of operant responding; in these experiments, the full size of the
operant chambers was available to the rats (32 x 29 cm), and
operant levers as well as a liquid receptacle were available. Prior
to assessment of conditioned suppression of responding, rats were
trained on operant responding for saccharin as described below
and in the Supplementary material. In experiment 3, the setup
was optimized for assessment of freezing; for this, chambers were
equipped with dividers that reduced the chamber size to 16–24 ×

29 cm, which in preliminary experiments was found to promote
freezing behavior. In these experiments, rats had no access to levers
nor receptacles and did not undergo any training in the operant
chambers prior to fear conditioning.

2.5.1 Experiment 1 and 2
Experiments to assess conditioned suppression consisted of 4

main phases: training, fear conditioning, recovery period, and fear
testing (see Supplementary material and Supplementary Figure 1
for details on conditioned suppression of operant responding
for saccharin). In experiment 1, we used both male and female
rats, and assessed whether defensive behaviors during conditioned
suppression were affected by shock intensity. Following training
on operant responding and habituation to the tone, rats were
equally divided into 4 groups. Each group underwent cued fear
conditioning using either 0.4mA, 0.6mA or 0.8mA footshock, or no
shock controls (n = 8/group/sex) in chambers with a novel context
without lever introduction (i.e., different disinfectant, illumination,
and wall pattern from the operant responding context). During
conditioning, rats received 3 repeated conditioning trials of 30s
tone (conditioned stimulus, CS, 2.9kHz, 70dB) co-terminating with
2s footshock (unconditioned stimulus, US) with a 3 min intertrial
interval. After fear acquisition, rats underwent 3 sessions of
saccharin self-administration to allow recovery of baseline operant
responding rates. On the next day, expression of conditioned fear
was tested. For this, the CS was presented with a duration of
2 min, starting at the 3rd minute of the self-administration session,
and in the absence of the US. Videos from fear testing were
manually scored and used for training and validating DeepLabCut
+ SimBA workflow.

In experiment 2, we investigated the effect of diazepam (0.3
and 1 mg/kg) on threat responses, using both male and female
rats, under the same protocol as experiment 1 unless stated
otherwise. Following training for operant responding and tone
habituation, rats underwent fear conditioning using either 0.4
mA or 0.8mA. During the recovery period, rats were habituated
to intraperitoneal injections at least twice before fear testing.
Once baseline responding rates were stable, rats from each
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FIGURE 1

Schematic showing timeline of experiment 1, 2, and 3. In total, 192 videos from conditioned suppression experiment and 100 videos from
conditioned freezing experiment were used for training and validating DeepLabCut + SimBA workflow. All schematics were made using Biorender

R©
.

conditioning group were further divided into three subgroups:
vehicle control (saline), diazepam 0.3 mg/kg and diazepam 1 mg/kg
(n = 10–18/subgroup). Rats received an intraperitoneal injection
of the respective treatment 15 minutes before testing. Conditioned
suppression was then assessed during fear testing and videos were
used for training and validating DeepLabCut + SimBA workflow.

2.5.2 Experiment 3
In experiment 3, we investigated the validity of DeepLabCut

+ SimBA workflow to assess defensive behaviors during cued
fear memory testing in a condition without operant responding.
This experiment used the same protocol as previously described
(Barchiesi et al., 2022). On day 1, male rats were randomly divided
into two groups (n = 10/group). One group underwent cued fear
conditioning using 6 repeated conditioning trials of 30s tone co-
terminating with 2s footshocks (30 s CS, 2 s US 0.8 mA, 3 min
intertrial interval) while another group was assigned to be a control
group, in which rats underwent the same procedures without shock
delivery. On day 2, rats were tested for expression of conditioned
fear in a novel context (i.e., different disinfectant, illumination, and
wall pattern from the conditioning context). After a 5 min initial
habituation period, rats were exposed to two CS presentations (30s
CS, 2.9kHz, 3 min intertrial interval) without footshock delivery.

Videos from fear testing were manually scored, and each video
was shortened using FFmpeg module in DeepLabCut into two
separate videos: a 30s video recording during the first CS, and 30 s
video recording during the second CS. Shortened videos during the
second CS were used for training DeepLabCut + SimBA workflow
alongside historical 60 annotated videos (30–90 s duration) of
male rats that underwent fear memory testing in the same context.
Shortened videos during the first CS were used as holdouts for
validating the workflow.

2.6 Ethological analysis by manual
scoring

All videos that were used for training the neural network,
building behavior classifiers, and validating DeepLabCut + SimBA
workflow were annotated for observable behaviors using a manual
scoring function in Ethovision XT software (Version 17, Noldus,
Amsterdam, The Netherlands). Each behavior was scored as a
mutually exclusive start-stop event. The definitions were as follows:

– Operant: engagement in the operant responding task, either
pressing the active lever or retrieving the saccharin reinforcer.
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– Grooming: scratching, nibbling, or rubbing on individual’s
own body (Spruijt et al., 1992).

– Sniffing: standing on four paws and sniffing on the wall or the
grid floor, either with or without locomotor activity.

– Rearing: showing vertical exploration by sniffing while
standing on two hind paws, either against the wall or without
support (Dielenberg and McGregor, 2001).

– Free-air whisking: non-contact sniffing while the posterior
portion of the body is immobile (Towal and Hartmann, 2008).

– Head scanning: oscillating movement of the anterior portion
of the body without sniffing while the posterior portion of the
body is immobile (Blanchard and Blanchard, 1988; Kavaliers
and Choleris, 2001). The minimum bout duration was 1s.

– Freezing: immobility except respiratory movement that lasts at
least 1s (Blanchard and Blanchard, 1969).

Following scoring in Ethovision XT, time event plots were
checked to ensure that behaviors did not overlap. In videos
from experiment 1 and 2, behaviors were annotated during the
2 min CS. In videos from experiment 3, behaviors were annotated
during both 30s CS. In historical videos, behaviors were annotated
during 30s CSs, 30s before and 30s after the first CS. Time
spent on each behavior during the CS period was calculated
as a percentage of the CS duration for data analysis. Manual
scoring log files were modified using our custom-made python
script to correct all file paths and trial times and to standardize
annotated terms. The modified log files were later used for building
classifiers in SimBA.

2.7 Hardware for machine learning
models training

Two computers were used for model training:

(1) a HP Z2 Tower G9 Workstation Desktop PC with a 12th Gen
Intel(R) Core i5-12500 3.00 GHz processor, 16.0 GB of RAM,
Windows 11, and a NVIDIA GeForce RTX 4060 GPU.

(2) a ThinkStation P360 Tower with an Intel(R) Core i7-10700
2.90 GHz processor, 16.0 GB of RAM, Windows 10, and a
NVIDIA GeForce RTX 3060 GPU.

2.8 Creating pose estimation data in
DeepLabCut

Pose estimation for each video was created using DeepLabCut
version 2.3.8 (Mathis et al., 2018). A total of 1,915 frames were
extracted from 79 training videos from experiments 1 and 2.
An eight-point labeling system (i.e., ear left, ear right, nose,
center, lateral left, lateral right, tail base, tail end) was used
to match the required inputs for subsequent post-processing
step in SimBA (Supplementary Figure 2A). The default 95% of
labeled frames were used to train ResNet-50 network, while the
remaining 5% were used as a test dataset for neural network
evaluation. Based on training statistics, the neural network
improves its performance as the number of training iterations

increases, reaching a plateau of maximum performance as indicated
by training loss at approximately 500,000 training iterations
(Supplementary Figure 2B). After experimentation with a variety
of number of iterations and shuffles, we decided to use 500,000
training iterations with a shuffle of 1 and batch size of 8 for training
the neural network. This resulted in a training error of 3.67 and
a testing error of 18.9, which was reduced to a training error of
3.46 and a test error of 13.99 with a p-cutoff of 0.6, a standard
probability cutoff that restricts the dataset to confident predictions
with a reported likelihood greater than 60% (Popik et al., 2024;
Supplementary Figure 2C). Pose estimation data was generated for
all videos, and the filtered tracking data were exported as CSV files
and used for extracting features in SimBA.

2.9 Building random forest behavior
classifiers in SimBA

Videos and their corresponding filtered tracking data were
imported to SimBA version 1.79.5 (Nilsson et al., 2020). While
importing the data into SimBA, Gaussian smoothing was applied
over 200ms intervals and the interpolation step was skipped. The
distances in the videos were calibrated into pixel per millimeter
using the width of the operant chamber (16–32 cm) as a reference
value, yielding an approximate 2 pixel per mm value across each
video (Supplementary Figure 3A). A series of SimBA iterations
(iterations 1–4) with an increasing number of human-annotated
videos were created to determine the amount of training data
required to construct a sufficiently robust learning model. Outlier
correction was applied in iteration 1 with a location correction
criterion of 1.5, a movement correction criterion of 1.0, and median
as the aggregation method. This step became unnecessary when the
accuracy of pose estimation from our DeepLabCut neural network
was satisfactory, as indicated by relatively low training and test
errors. Therefore, the outlier correction step was skipped in the
following iterations.

Our training dataset included 191 videos with 30–120 s
duration, which equals a total of 438,000 training frames.
The remaining videos that were not included in the training
dataset were saved as holdouts for validating the model. The
training dataset of iterations 1 and 2 contained only videos from
conditioned suppression of operant responding (i.e. experiments
1 and 2). To increase representations of infrequently observed
behaviors (i.e., free-air whisking, head scanning, freezing), videos
from cued fear testing were added to supplement the training
dataset in the subsequent iteration. Therefore, the training dataset
of iterations 3 and 4 contained videos from experiments 1–3. All
classifiers from iterations 1–4 were evaluated with holdout videos
from the conditioned suppression experiments. To examine if
our behavioral classifiers were transferable between experimental
conditions, we used classifiers from iteration 4, the iteration with
the highest performance while assessing videos from experiment 1
and 2, to assess holdout videos from experiment 3. Concurrently,
we created iteration 5 that was trained on only videos from
experiment 3 and validated the classifiers with holdout videos from
the same experiment. The number of videos/frames used as training
and validation dataset in each iteration are shown in Table 1.
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SimBA used filtered tracking data to extract 221 features
that were divided into 8 categories according to measurement
metrics (Supplementary Table 1). To examine how the model
used extracted features to classify behavior, we calculated feature
permutation importance using a built-in module in SimBA
(see more details in Supplementary material and Supplementary
Figure 5). Although Shapley additive explanation (SHAP) values
were used as an explainability method that indicates contribution
of specific features to the model prediction in the seminal SimBA
work (Goodwin et al., 2024), we failed to compute SHAP values in
our model.

Based on the extracted feature values in each frame, together
with behavior labels from Ethovision manual scoring log files, we
built behavior classifiers using a random forest model, an ensemble
learning model that relies on the majority votes of decision
trees for behavioral classification. The model was computed
with the following hyperparameters: 600–2,000 random forest
estimators, 1–2 minimum sample leaf node, RF_criterion = gini,
RF_max_features = sqrt, and test size = 20%. We acknowledged
an imbalance of behavior representation in our training data;
however, applying oversampling/undersampling in the parameter
worsened the performance of machine learning prediction during
pilot experimentation. Therefore, no sampling adjustment was set.
The minimum bout time was set to 1s for head scanning and
freezing classifiers, and 0.2s for all the remaining classifiers.

Mutual exclusivity correction was performed to avoid classified
behaviors overlapping in the same frames, with the more frequently
detected behaviors being chosen to win any “tiebreakers” (i.e., in
case two or more behaviors were equally likely to be classified
as present at the same time, the more ubiquitous behavior was
favored). Kleinberg smoothing was also leveraged for infrequent
behaviors (i.e. grooming, free-air whisking, head scanning, and
freezing) in iterations 2 and 3. We discarded this smoothing step
in iteration 4 since the representations of these behaviors became
sufficient in the training dataset.

2.10 Assessing accuracy performance
and validating SimBA classifiers

With the analysis of 20% test frames from the training
dataset, the accuracy performance for each classifier was measured
in SimBA, reported as F1 score. This score was calculated
from a harmonic mean of precision, a ratio of true positive
frames over all frames classified as positive, and recall, a
ratio of true positive frames over all frames that should have
been classified as positive. Using a precision-recall curve of
each classifier, we determined a discrimination threshold, a
threshold of probability at which a given behavior is classified
as present (Supplementary Figures 3B–H). The discrimination
thresholds were initially selected to maximize accuracy based
on F1 score (dF1max). Since our training dataset was relatively
small compared to other studies (Lapp et al., 2023; Goodwin
et al., 2024; Popik et al., 2024), the thresholds were then adjusted
(dadj) by experimenters examining 2 samples of validating videos
that contained each behavior alongside the corresponding
probability-time graphs to provide better classification of
validation dataset. For classifiers of underrepresented behaviors,
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we noticed a greater variation among dadj during the first manual
inspection. Therefore, additional 2–3 sample videos were later
examined to calculate mean adjusted discrimination threshold
for grooming, free-air whisking, head scanning, and freezing
classifiers. Adjustment of discrimination threshold was skipped
while validating classifiers from iteration 1 due to an overfitting
issue.

To validate SimBA models, classifiers were assigned with both
dF1max and dadj while scoring validation videos. Similar to data
from manual scoring, data from DeepLabCut + SimBA workflow
were analyzed as percentage time spent on each behavior relative
to the CS duration. Data from machine learning classification by
classifiers assigned with dF1max and dadj were used to determine
inter-method reliability by calculating Pearson’s r with data
from manual scoring. The flowchart of key steps and a step-by-
step guide for implementing DeepLabCut + SimBA workflow to
perform ethological analysis of fear expression can be found in
Supplementary material and Supplementary Figure 6.

2.11 Statistical analysis

All data were analyzed using GraphPad Prism version 10
(GraphPad Software, San Diego, CA) and STATISTICA (StatSoft
13.0 RRID:SCR_014213). Homogeneity of variance was assessed
using the Levene test. When no violation of assumption
was observed, parametric ANOVA was used, with factors for
each analysis indicated in the result section. Data with non-
homogeneous variance were analyzed using Mann-Whitney U
test or Kruskal-Wallis ANOVA test. Post hoc comparisons were
performed using Newman-Keuls test following parametric test and
Dunn’s test following nonparametric test. Data from ethological
analysis were analyzed using factor analysis to extract factors
with a varimax normalized rotation to reduce dimensionality
in an unbiased manner. The Pearson correlation coefficient was
calculated for inter-method reliability to compare data from
DeepLabCut + SimBA workflow with the data from manual
scoring. Outliers were excluded using Grubbs’s test. The accepted
level of significance for all test was p < 0.05.

3 Results

3.1 Threat-associated cue heightens risk
assessment behaviors during fear
expression

In experiment 1, to comprehensively evaluate the range of
behaviors elicited by shock-associated cues, we conducted an
ethological analysis of the responses to the conditioned stimulus
(CS) during fear memory testing in rats subjected to 4 different
shock intensities: 0.0mA (no-shock control), 0.4 mA, 0.6 mA, or
0.8 mA electric footshock. This analysis involved manually scoring
time spent in operant responding, grooming, sniffing, rearing, free-
air whisking, head scanning, and freezing (Figure 2A). We then
conducted a factor analysis to identify the underlying behavioral
dimension and determine whether heightened defensive behaviors
were influenced by threat intensity. Subsequently, we compared

factor scores across conditioning groups (0.0, 0.4, 0.6, or 0.8mA).
Factor loadings of individual behavioral variables on the extracted
factors are shown in Figure 2B for males and in Figure 2D for
females.

In male rats, factor1 explained 30.24% of the variance. This
factor was characterized by reduced engagement in appetitive
and self-care behaviors, evidenced by negative loadings for time
spent on operant responding and grooming. Conversely, this factor
reflected an increase in defensive behaviors as indicated by positive
loadings for time spent in sniffing, rearing, free-air whisking, and
head scanning. Subsequently, we investigated whether factor scores
of individual rats were affected by shock intensity using one-
way ANOVA. Our analysis indicated a significant main effect of
Intensity (F(3,26) = 17.10; p < 0.001; df = 3; Figure 2C), indicating
that defensive behaviors are elicited by shock-associated cues as a
function of shock intensity. Further post hoc analysis (Newman-
Keuls test) showed a significant increase in Factor1 scores in the
0.4, 0.6, and 0.8 mA compared to 0.0 mA groups (p < 0.001).

Similar findings were found in female rats. Factor analysis
identified Factor1 that accounted for the highest proportion of
variance (36.44%) in the data. This factor was characterized by
reduced time allocation for operant responding and grooming
as indicated by negative loadings. In contrast, engagement in
defensive behaviors such as sniffing, rearing, free-air whisking, and
head scanning demonstrated positive loadings on the same factor
(Figure 2D). Similarly to the analysis in the male data, one-way
ANOVA showed a significant effect of intensity on factor scores for
Factor 1 (F(3,23) = 8.69; p < 0.001; df = 3; Figure 2E), indicating
that female defensive behaviors are also elicited by shock-associated
cues as a function of shock intensity. Post hoc analysis (Newman-
Keuls test) showed that the 0.6 and the 0.8 mA significantly differed
from the 0.0 mA group (p < 0.01). Collectively, these data indicate
that both male and female rats show a reduction in consummatory
behavior alongside an increase in defensive behaviors in response
to the CS.

3.2 Heightened risk assessment
behaviors are reduced by diazepam

To further validate that the ethological readouts evaluated in
experiment 1 accurately depict defensive behaviors, we conducted
experiment 2 to examine the effect of the anxiolytic diazepam
on these behaviors. In this experiment, male and female rats
underwent a conditioning session with either 0.4, or 0.8 mA electric
footshock, and were tested one week later for fear expression
after receiving either 0.3 mg/kg, 1 mg/kg diazepam, or vehicle.
Ethograms of observed behaviors in male rats during the first CS
presentation are shown in Figure 3A. Similar to experiment 1,
in male rats, factor analysis identified Factor1, characterized by
negative loadings from time spent on operant responding and
grooming, alongside positive loadings from sniffing. This factor
accounted for a significant proportion of the variance (32.14%)
(Figure 3B). Rearing, free-air whisking, and head scanning loaded
on two additional factors that accounted for smaller variance
components, 20.50% and 15.53%, respectively. We conducted a
two-way ANOVA, using Factor1 scores as the dependent variable,
with diazepam dose and shock intensity as categorical factors. The
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FIGURE 2

Ethological analysis of observed behaviors during conditioned suppression of operant responding. (A) Ethograms showing proportion of time spent
on each behavior upon the first CS presentation in fear testing with an effect of footshock intensity during conditioning in males and females. In
male rats, factor analysis shows that Factor1 was characterized by decreased operant responding and grooming, and increased sniffing, rearing, and
head scanning. (B) Factor loading of each behavior in male rats. (C) Factor scores for Factor 1 in each conditioning footshock group of male rats. In
female rats, factor analysis shows that Factor 1 was characterized by decreased time spent in operant responding and grooming, and increased
sniffing, rearing, and free-air whisking. (D) Factor loading of each behavior in female rats. (E) Factor scores for factor1 in each conditioning
footshock group of female rats. All data in this figure were derived from manual annotations. Circles show data from 0.0 mA group. Triangles show
data from 0.4 mA group. Squares show data from 0.6 mA group. Diamonds show data from 0.8 mA group. *p < 0.05 compared between different
footshock groups. CS, conditioned stimulus. Data are present as mean ± SEM.

analysis showed a significant main effect of dose (F(2,80) = 4.62;
p = 0.013; df = 2), showing that diazepam had a significant effect
to reduce defensive behaviors. We also found a significant main
effect of Intensity (F(1,80) = 10.12; p = 0.002; df = 1), but not a
significant interaction of Intensity X Dose (F(2,80) = 0.41; p = 0.7;
df = 1; Figure 3C). Post hoc comparison using the Newman-Keuls
test showed that the main effect of dose was largely driven by the
1mg/kg dose of diazepam, as rats exposed to 1 mg/kg diazepam
significantly decreased Factor1 scores compared to 0.3 mg/kg

diazepam (p = 0.03) and vehicle (p = 0.01), while no significant
effect vs. vehicle was seen in the 0.3 mg/kg dose group.

The effect of diazepam to reduce defensive behaviors was
also observed in females (Figure 3A, right panels). Similar to
the findings in the male data, the factor analysis on behaviors
exhibited during the first CS identified a factor characterized by a
decrease in time allocated to operant responding and grooming,
associated with an increase in sniffing and rearing (Figure 3D). This
factor explained the highest proportion of variance in the female
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FIGURE 3

Effects of diazepam on defensive behaviors when fear is assessed by conditioned suppression. (A) Ethograms showing proportion of time spent on
each behavior upon the first CS presentation in fear testing with an effect of diazepam in males (left panels) and females (right panels). (B,C) Factor
analysis shows that Factor1 in males was characterized by negative loadings from time spent on operant responding, grooming and positive loading
from time spent on sniffing. (B) Factor loading of each behavior of male rats. (C) Factor scores for Factor1 in each group of male rats. (D,E) Factor
analysis shows that Factor1 in females was characterized by negative loadings from time spent on operant responding and grooming, and positive
loadings from time spent on sniffing and rearing. (D) Factor loading of each behavior of female rats. (E) Factor scores for Factor1 in each group of
female rats. Circles show data from 0.0 mg/kg diazepam treatment group, triangles show data from 0.3 mg/kg diazepam treatment group, squares
show data from 1 mg/kg diazepam treatment group. All data in this figure were derived from manual annotations. CS, conditioned stimulus; DIAZ,
diazepam. *p < 0.05 compared between diazepam treatment groups. Data are present as mean ± SEM.

data, 30.36%. Time spent on free-air whisking and head scanning,
and freezing loaded on two additional factors, which accounted
for a smaller proportion of the variance, 28.28% and 17.64%,
respectively. Two-way ANOVA using Factor1 scores as dependent

variable with diazepam dose and shock intensity as categorical
factors indicated a significant main effect of dose (F(2,43) = 3.95;
p = 0.027; df = 2; Figure 3E), suggesting that diazepam influenced
defensive behaviors in female rats. No main effect of Intensity
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(F(1,43) = 1.09; p = 0.30; df = 1), or significant interaction Dose
X Intensity (F(2,43) = 0.58; p = 0.58; df = 2) were found. Post
hoc analysis using Newman-Keuls test showed that diazepam at
the dose of 1 mg/kg showed a trend of decreased Factor1 scores
compared to the vehicle group in the 0.8 mA conditioned females
(p = 0.09). Collectively, these results demonstrate that diazepam
reduced defensive behaviors in response to shock-associated cues in
both male and female rats, and suggest that our ethological readouts
have a good predictive validity.

3.3 Development of DeepLabCut +
SimBA workflow for ethological analysis
of fear responses

Machine-learning tools have been recently used to automate
simultaneously quantification of multiple behaviors in rats but
have not yet been applied to the type of fear-related experiments
conducted here. We therefore developed a workflow using
DeepLabCut and SimBA to assess fear-related behaviors. A series
of SimBA iterations were developed, and the accuracy performance
of classifiers was evaluated and reported as precision, recall, and
F1 score (Table 2). After determining discrimination thresholds,
classifiers were validated by scoring validation videos. The obtained
scores were then used for calculating Pearson’s correlation with
scores from standard manual scoring to assess inter-method
reliability.

In the first iteration, the overall performance of SimBA
classifiers was high as indicated by F1 score > 0.89 for all classifiers.
However, while evaluating the validation videos, we observed near
zero correlations between the obtained scores from our SimBA
model and the scores derived from manual scoring (Figures 4A–G).
This suggests that the model only accurately classified training data
but was unable to classify other data, demonstrating overfitting of
the model. To overcome this problem, subsequent SimBA iterations
were then developed by lowering the number of estimators and
adding more training datasets (Table 2). The following models
attained moderate to high accuracy performance (F1 score ranging
from 0.671 to 0.902) and showed better generalizability to score
validation videos (Figures 4H–AB).

When the behaviors were commonly represented (> 30,000
frames in the training dataset), such as operant responding, sniffing,
and rearing, scores from SimBA classifiers strongly correlated
with manual annotation (r = 0.72–0.95, all with p < 0.001;
Table 2), demonstrating high reliability between scoring methods.
When the behaviors were moderately frequent (∼15,000–25,000
frames in the training dataset), such as grooming and free-air
whisking, scores from the classifier showed a moderate to strong
correlations with manual annotation as indicated by Pearson’s
r (grooming classifier: r = 0.54, 0.67, 0.62; free-air whisking
classifier: r = 0.57, 0.53, 0.83 in iteration 2, 3, 4, respectively;
all with p < 0.001. Interestingly, in cases where the training
dataset was relatively limited (i.e., free-air whisking in iteration
2), employing dadj rather than dF1max for the classifier resulted in
performance improvement, as indicated by an increased Pearson’s
r (from r = 0.57 to 0.63; p < 0.001; Figure 4L and Table 2).
However, when the number of training dataset was high (i.e.,
iteration 4), assigning dadj only marginally improved the accuracy

for detecting free-air whisking (from r = 0.83 to 0.85, both
with p < 0.001; Figure 4Z). This highlights that increasing the
training dataset is the major parameter for improving classifier
performance.

When the behaviors were underrepresented in the training
dataset (< 15,000 frames), classifiers showed weak to moderate
inter-method reliability: for grooming (r = 0.54–0.66; all with
p < 0.001; Figures 4I, P, W), head scanning (r = 0.09, 0.16, 0.71;
p = 0.33, 0.09, < 0.001; Figures 4M, T, AA) and freezing (r = 0.38,
0.12, −0.02; p < 0.001, 0.22, 0.85; Figures 4N, U, AB). Notably, the
performance evaluation of head scanning and freezing classifiers
remained non-optimal due to the infrequent occurrence of these
behaviors in the holdout videos used for classifier validation.
Besides, low inter-method reliability among these classifiers may be
because outlier data were excluded while calculating Pearson’s r.

3.4 Transferability of SimBA model to
detect defensive behaviors

To evaluate the transferability of our SimBA model to a
different experimental condition, we used the classifiers from
iteration 4, which had the largest training dataset, to assess
validation videos from the conditioned freezing experiments.
Comparing the scores derived from the SimBA model with manual
annotation indicated a significantly high inter-method reliability
for rearing and freezing (r = 0.93 and 0.89, respectively, both
with p < 0.001; Table 3 and Supplementary Figures 4B, E).
Although the sniffing classifier was trained on the highest number
of frames (154,176) among all classifiers in this iteration, its
performance in SimBA only showed a moderate correlation with
manual annotation (r = 0.46, p < 0.05; Supplementary Figure 4A).
Furthermore, the model detected free-air whisking less frequently
than manual annotation, resulting in a non-significant correlation
between the two scoring methods (r = 0.20; p = 0.39; Supplementary
Figure 4C).

Notably, grooming was absent in the validation videos, which
prevented the assessment of this classifier’s performance. Overall,
these findings suggest that SimBA classifiers demonstrate an
acceptable accuracy for detecting frequently occurring behaviors
but are less reliable for detecting infrequent behaviors in videos
recorded from different experimental condition.

We then examined whether behavioral classification achieves
higher accuracy when training data is exclusively gathered under
identical conditions. To assess this, we compared the performance
of iteration 4, trained on dataset from conditioned suppression
experiments and conditioned freezing experiments (experiment
1 and 2) with that of iteration 5, exclusively trained on videos
from conditioned freezing experiments (experiment 3). Classifiers
in iteration 5 reported satisfactory accuracy, ranging from F1
score = 0.83 (free-air whisking) to 0.977 (sniffing). When
comparing between iteration 4 and 5, we found that iteration 5
showed better performance than iteration 4 as indicated by higher
Pearson’s correlation coefficients (Table 3 and Supplementary
Figures 4F–J). Specifically, scores from SimBA iteration 5 and
manual scoring showed significant correlations with manual
annotations for sniffing, rearing, and freezing, with Pearson’s
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TABLE 2 Validation of DeepLabCut + SimBA workflow using videos from conditioned suppression experiment (experiment 1 and 2).

Classifier SimBA
iteration

Number of frames in
training dataset

Random forest
estimators

Precision Recall F1 dF1max r p-
value

dadj r p-
value

Operant 1 41634 2000 0.98 0.96 0.97 0.437 0.32 <0.001 N/A N/A N/A

2 58077 1000 0.95 0.85 0.90 0.358 0.92 <0.001 0.312 0.92 <0.001

3 57159 1000 0.96 0.85 0.90 0.363 0.91 <0.001 0.312 0.93 <0.001

4 74898 1000 0.97 0.83 0.89 0.330 0.94 <0.001 0.270 0.95 <0.001

Grooming 1 2592 2000 0.98 0.94 0.96 0.437 0.00 N/A N/A N/A N/A

2 7047 600 0.99 0.70 0.82 0.231 0.54 <0.001 0.216 0.54 <0.001

3 6264 600 0.99 0.67 0.80 0.208 0.67 <0.001 0.216 0.68 <0.001

4 8760 700 1.00 0.64 0.78 0.190 0.62 <0.001 0.209 0.66 <0.001

Sniffing 1 47952 2000 0.95 0.93 0.94 0.439 0.18 0.028 N/A N/A N/A

2 70956 1000 0.99 0.83 0.90 0.409 0.72 <0.001 0.387 0.71 <0.001

3 73341 1000 0.99 0.78 0.88 0.387 0.76 <0.001 0.387 0.76 <0.001

4 154176 1000 0.99 0.91 0.95 0.434 0.91 <0.001 0.412 0.91 <0.001

Rearing 1 26892 2000 0.94 0.89 0.92 0.375 0.21 0.010 N/A N/A N/A

2 38880 750 0.98 0.63 0.77 0.341 0.81 <0.001 0.316 0.82 <0.001

3 43587 750 0.99 0.67 0.76 0.333 0.86 <0.001 0.316 0.86 <0.001

4 77964 750 0.99 0.73 0.84 0.339 0.88 <0.001 0.295 0.89 <0.001

Free-air
whisking

1 7938 2000 0.95 0.84 0.89 0.343 0.01 0.856 N/A N/A N/A

2 14580 600 0.99 0.51 0.67 0.227 0.57 <0.001 0.180 0.63 <0.001

3 18531 600 0.99 0.50 0.67 0.230 0.54 <0.001 0.180 0.67 <0.001

4 28470 750 1.00 0.56 0.72 0.217 0.83 <0.001 0.180 0.85 <0.001

Head
scanning

1 2592 2000 0.99 0.97 0.98 0.366 0.00 N/A N/A N/A N/A

2 6318 750 1.00 0.74 0.85 0.219 0.20 0.038 0.150 0.09 0.328

3 6786 750 1.00 0.71 0.83 0.185 −0.01 0.879 0.150 0.16 0.091

4 8760 750 1.00 0.68 0.81 0.175 0.76 <0.001 0.150 0.71 <0.001

Freezing 1 1296 2000 0.95 0.89 0.92 0.364 0.00 N/A N/A N/A N/A

2 3402 600 0.99 0.60 0.75 0.173 0.53 <0.001 0.142 0.38 <0.001

3 8091 600 0.99 0.73 0.84 0.205 0.00 0.000 0.142 0.12 0.220

4 19272 700 1.00 0.83 0.91 0.269 −0.02 0.848 0.142 −0.02 0.854

Accuracy parameters (i.e., Precision, Recall, F1) within the 20% holdout frames were calculated from SimBA. Discrimination thresholds at maximum F1 value (dF1max) and after adjustment (dadj) were applied to score behaviors on validation videos and Pearson
correlations between scores from DeepLabCut + SimBA workflow and manual scoring were calculated. Using dadj slightly improved accuracy in general but it was insufficient to improve accuracy for rarely observed behaviors. Since overfitting was observed from
behavior classification using Iteration 1, dadj was not determined for classifiers in this iteration. Numbers with underline: an outlier was excluded while calculating Pearson’s correlation. Number in bold: a significant strong correlation (Pearson’s r > 0.7).
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FIGURE 4

Comparison of scores from DeepLabCut + SimBA workflow with scores from manual scoring while evaluating holdout videos from conditioned
suppression experiment (experiment 1 and 2). Correlation analyses of holdout videos that were not included in the training dataset using classifiers
from iteration 1 (A–I), iteration 2 (H–N), iteration 3 (O–U), and iteration 4 (V–AB). Outliers were excluded from correlation analyses of head scanning
classifier in iteration 3 and free-air whisking and freezing classifiers in iteration 4. The axes represent the percentage of time spent on each behavior
relative to the CS duration. Note that head scanning and freezing infrequently occurred in the validation dataset. CS, conditioned stimulus. *p < 0.05;
**p < 0.01; ***p < 0.001 compared between scoring methods.

r = 0.81, 0.93, and 0.95, respectively (all with p < 0.001). The free-
air whisking classifier in iteration 5 detected this behavior more
frequently than that in iteration 4, yet the detection remained less
frequent than manual annotation (r = 0.37; p = 0.11). Compared
to manual annotations, head scanning was underestimated in both
iterations (Supplementary Figures 4D, I). This may be partly due to
an apparent low number of training frames (1155 frames; Table 3).
Collectively, our findings suggest that behavior classifiers have
better scoring performances when the model is trained from videos
with the same experimental condition than when the model is
trained from videos with different condition.

3.5 DeepLabCut + SimBA workflow yield
similar behavior findings as manual
scoring

To underscore the efficacy of DeepLabCut + SimBA workflow
in ethological analysis, we made ethograms and conducted a factor
analysis using the data acquired through DeepLabCut + SimBA

model (iteration 4) from videos with conditioned suppression of
operant responding (experiment 2). Our findings indicate that the
ethograms generated through the DeepLabCut + SimBA workflow
are comparable to those generated through manual scoring
(Figure 5A, compared to Figure 3A). Furthermore, factor analysis
yielded similar results when compared to the manual scoring.
Specifically, in male rats, Factor1 explained the highest proportion
of variances (31.73%) in the data. Factor1 was characterized by
negative loading from time allocation for operant responding and
grooming together with positive loading from time allocation for
sniffing (Figure 5B). Similar to what found with manual scoring
(Figure 3C) two-way ANOVA shows a significant main effect of
Dose [F(2,80) = 4.31; p = 0.017; df = 2; Figure 5C], and of Intensity
[F(1,80) = 9.20; p = 0.003; df = 1] with no significant interaction
[Intensity X Dose; F(2,80) = 0.48; p = 0.620; df = 2].

Likewise, in female rats, Factor1, a factor that explained the
highest variance in the data (30.90%), had negative loadings from
time allocation for operant responding and grooming, but positive
loadings from time allocation for risk assessment (i.e., sniffing
and rearing; Figure 5D). We conducted two-way ANOVA using
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TABLE 3 Validation of DeepLabCut + SimBA workflow using videos from conditioned freezing experiment (experiment 3).

Classifier SimBA
iteration

Number of
frames in

training dataset

Random forest
estimators

Precision Recall F1 dF1max r p-
value

dadj r p-value

Grooming 4 8760 700 1.00 0.64 0.78 0.190 N/A N/A N/A N/A N/A

5 1050 600 1.00 0.66 0.80 0.178 N/A N/A N/A N/A N/A

Sniffing 4 154176 1000 0.99 0.91 0.95 0.434 0.42 0.068 0.412 0.46 0.040

5 54075 1000 0.97 0.98 0.98 0.541 0.80 <0.001 0.590 0.81 <0.001

Rearing 4 77964 750 0.99 0.73 0.84 0.339 0.90 <0.001 0.295 0.93 <0.001

5 21525 750 0.99 0.87 0.93 0.401 0.95 <0.001 0.401 0.93 <0.001

Free-air whisking 4 28470 750 1.00 0.56 0.72 0.217 0.27 0.255 0.180 0.20 0.394

5 8190 600 1.00 0.72 0.83 0.230 0.23 0.323 0.145 0.37 0.106

Head scanning 4 8760 750 1.00 0.68 0.81 0.175 0.00 N/A 0.150 0.00 N/A

5 1155 600 1.00 0.85 0.92 0.253 0.00 N/A 0.021 −0.24 0.317

Freezing 4 19272 700 1.00 0.83 0.91 0.269 0.92 <0.001 0.142 0.90 <0.001

5 14595 600 0.99 0.95 0.97 0.340 0.89 <0.001 0.260 0.95 <0.001

Accuracy parameters (Precision, Recall, F1) within the 20% test frames were calculated from SimBA. Discrimination threshold at maximum F1 (dF1max) and adjusted discrimination thresholds (dadj) was applied on classifiers for behavior classification of non-training
validating videos before calculating Pearson’s correlation coefficient between DeepLabCut + SimBA scoring and manual scoring. Scoring obtained from iteration 5 that was only trained on videos from experiment 3 has higher accuracy (i.e. Higher F1 and higher
Pearson’s correlation coefficient) than those from iteration 4 that was trained on videos from all experiment. Number in bold: a significant strong correlation (Pearson’s r > 0.7).
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FIGURE 5

Ethological analysis of behaviors in conditioned suppression experiment (experiment 2) using data derived from DeepLabCut + SimBA workflow.
(A) Ethograms showing proportion of time spent on each behavior upon the first CS presentation in fear testing with an effect of diazepam in males
(left panels) and females (right panels). All data in this figure were annotated using SimBA model that was trained on the highest number of training
dataset (iteration 4). Factor analysis shows that Factor1 in males was largely characterized by negative loadings from time spent on operant
responding, grooming and positive loading from sniffing. (B) Factor loading of each behavior of male rats. (C) Factor scores for Factor 1 in each
group of male rats. Factor analysis shows that Factor1 in females was characterized by negative loadings from time spent in operant responding and
grooming, and positive loadings from time spent sniffing and rearing. (D) Factor loading of each behavior of female rats. (E) Factor scores for factor1
in each group of female rats. Circles show data from 0.0 mg/kg diazepam treatment group, triangles show data from 0.3 mg/kg diazepam treatment
group, squares show data from 1 mg/kg diazepam treatment group. Note that these analyses were performed using both training and validation
dataset of the SimBA model. CS: conditioned stimulus. DIAZ: diazepam. *p < 0.05 compared between treatment groups. Data are present as
mean ± SEM.
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Factor1 score as a dependent variable and diazepam dose and
intensity as categorical factors. Consistent with the analysis using
manual scoring data, we observed a significant main effect of Dose
[F(2,43) = 4.24; p = 0.021; df = 2; Figure 5E compared to Figure 3E].
No main effect of Intensity [F(1,43) = 0.54; p = 0.467; df = 1], or
significant interaction Dose X Intensity [F(2,43) = 0.29; p = 0.750;
df = 2] were found.

These findings indicate that the results obtained from
DeepLabCut + SimBA workflow align closely with those derived
from manual scoring. However, it is important to note that a
substantial portion of the videos, nearly half, were incorporated
into the training dataset, potentially introducing a positive bias
due to overfitting. To address this, we also compared data from
manual scoring with that obtained from the DeepLabCut + SimBA
workflow (iteration 5) in experiment 3 (Figure 6A). In this
experiment, the videos used for scoring were not included in the
model training dataset. This approach ensures that the similarities
and differences observed in the ethograms are not influenced by the
training data.

Factor analyses were then performed from dataset obtained
from DeepLabCut + SimBA workflow and manual scoring. Two
factors were extracted from the manually scored data (Figure 6B).
In particular, Factor1 was characterized by negative loadings from
time spent on sniffing and rearing and positive loadings from
time spent in free-air whisking and freezing, explaining 51.31%
of the variance. One-way ANOVA analysis on Factor1 scores
showed a significant increase in Factor1 scores in the 0.8mA
group compared to the 0mA group [0 vs. 0.8mA; F(1,18) = 70.5;
p < 0.001; df = 1; Figure 6C]. A similar pattern of extracted
factors and factor loadings was found when a factor analysis was
conducted using the scores from DeepLabCut + SimBA workflow.
Specifically, time spent on free-air whisking and freezing showed
negative loadings, while time spent in rearing showed positive
loading positively in factor1 (Figure 6D). This factor accounted
for the highest proportion of variance (42.90%). Comparable to
manual scoring, one-way ANOVA conducted with data from the
DeepLabCut + SimBA workflow showed a significant difference
in Factor1 score between group (0 vs. 0.8mA F(1,18) = 40.3;
p < 0.001; df = 1; Figure 6E). Collectively, these findings indicate
that the DeepLabCut + SimBA workflow was able to perform
ethological analysis of a broad range of defensive behaviors similar
to traditional manual scoring.

4 Discussion

Expanding on prior research (Blanchard and Blanchard, 1988;
Fanselow et al., 1988; Hoffman et al., 2022), our study emphasizes
the importance of investigating defensive behaviors within a
broader, ethological framework. Our findings indicate that both
male and female rats exhibit defensive behaviors when exposed
to fear-associated cues. This shows that, besides freezing and
conditioned suppression, these responses could serve as additional
indicators of fear and fear-related pathologies. Moreover, we
demonstrate that DeepLabCut in conjunction with SimBA can
effectively measure these behaviors, thereby addressing a significant
challenge in evaluating ethological behaviors.

Our results indicate that, in response to a fear-associated cue,
rats reduce the time spent on operant responding for a high-value

reinforcer and on self-care activities like grooming. This aligns with
previous studies showing conditioned suppression of food or water
intake in response to a tone associated with a footshock (Estes and
Skinner, 1941; Annau and Kamin, 1961; Bouton and Bolles, 1980).
We observed that when presented with a fear-associated cue, rats
shift their attention to risk-assessment behaviors such as rearing,
sniffing, and head scanning. The prevalence of these behaviors
increases with the intensity of footshocks, and is reduced by the
anxiolytic drug diazepam, providing initial support for predictive
validity. Our observations also highlight the rich repertoire of
defensive behaviors, underscoring the value of taking a broad
range of behaviors into account in studies aimed at furthering the
understanding of fear learning and memory mechanisms.

Notably, under the conditions used in experiment 1 and 2, we
observed robust fear responses as supported by a suppression of
operant responding, and reversal of this effect by diazepam, yet
we saw minimal freezing episodes. This result may be explained
by the conditions in these experiments, where rats are placed in a
large chamber, a setup that likely favors behaviors associated with
vigilance or risk assessment (Bolles and Collier, 1976). In line with
this hypothesis, we observed robust freezing behaviors in response
to the fear-associated cue in experiment 3, when rats were tested
for fear expression in smaller chambers without access to operant
levers of reinforcer delivery. These findings suggest that the absence
of freezing does not necessarily indicate that fear learning has not
occurred, highlighting the value of evaluating a comprehensive
ethological profile when assessing fear-associated responses.

A limitation of our paradigm was that the camera recording
was from semi-top view, which prevented accurate measurement
of cued-induced locomotion (Le et al., 2023; Chu et al., 2024) and
darting (Gruene et al., 2015). Additionally, other fear responses
identified in previous rodent studies, such as jumping (Fadok et al.,
2017) and tail rattling (Salay et al., 2018), were not detected in any
of our settings. This discrepancy may be due to different protocols
and species.

Analyzing complex behaviors has proven challenging due to
limited sensitivity of available commercial software and the labor-
intensive nature of manual scoring. Moreover, manual scoring
is susceptible to low inter-rater reliability (Kafkafi et al., 2018).
Recent advances in computer vision and machine learning offer
promising tools to achieve human-level accuracy and standardizing
behavioral assessments (Datta et al., 2019). For instance, social
interaction in rats or mice can now be reliably evaluated using
DeepLabCut together with SimBA (Lapp et al., 2023; Goodwin
et al., 2024; Popik et al., 2024). Furthermore, a recent study
comparing DeepLabCut + SimBA workflow with manual scoring
indicated that this combination provides accurate quantification
of grooming time but does not reliably measure grooming bouts
(Correia et al., 2024), suggesting that the accuracy of this approach
depends on the specific behavior being assessed.

In our study, we evaluated whether DeepLabCut combined
with SimBA could perform ethological analyses of behavioral
responses to fear-associated cues as effectively as manual scoring.
To this end, we tested different parameters in a series of SimBA
iterations, including the number of training frames and number
of estimators. We found that the use of a default setting of 2,000
estimators with a relatively low number of training frames leads
to overfitting (iteration 1). By optimizing the estimator to 600–
1,000 and increasing the number of training frames containing
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FIGURE 6

Comparison of ethological analysis of behaviors in conditioned freezing experiment (experiment 3) using data from two scoring methods.
(A) Ethograms showing proportion of time spent on each behavior upon the first CS presentation in fear testing. These ethograms were derived
from manual scoring (left panels) and SimBA model that were trained from only videos from conditioned freezing experiment (iteration 5) (right
panels). Factor analyses of observed behaviors using data from manual scoring (B,C) and from DeepLabCut + SimBA workflow (D,E). (B) Factor
loading of each behavior using data from manual scoring. (C) Factor scores for Factor1 in 0.8mA-conditioned rats vs. no-shock controls. Factor
analysis shows that Factor1 derived from manual scoring data was characterized by negative loading from time spent in sniffing and rearing and
positive loading from free-air whisking and freezing. (D) Factor loading of each behavior using data from DeepLabCut + SimBA workflow. (E) Factor
scores for Factor1 in 0.8 mA-conditioned rats vs. no-shock controls. Circles show data from 0.0 mA group (no shock). Triangles show data from
0.8mA-conditioned group. Factor analysis shows that Factor1 derived from DeepLabCut + SimBA workflow had negative loading from time spent
free-air whisking and freezing together with positive loading by time spent rearing. Note that these analyses were performed using videos that were
not included in training dataset of any SimBA model. CS, conditioned stimulus. ***p < 0.001 compared between groups. Data are present as
mean ± SEM.

well-represented behaviors to at least 30,000 frames, we achieved
consistently high accuracy (F1 > 0.75) and high inter-method
reliability (r > 0.7) during the cross-validation. Our optimization
aligns with a study from Lapp et al., which reported a range of 1000–
1500 estimators for 84,000–750,000 training frames to identify
maternal behaviors in rats (Lapp et al., 2023). In contrast, we
reported lower amounts of training data compared to the seminal
paper describing SimBA (Goodwin et al., 2024). This indicates that
the required number of training datasets may be dependent on
the experimental conditions and behaviors evaluated. In line with
this hypothesis, we found that only 21,525 training frames were
sufficient to train the rearing classifier in iteration 5 to achieve
satisfactory accuracy when assessed videos from the conditioned
freezing experiment, whereas more than 78,000 training frames
may be needed to train a classifier for the same behavior in iteration

4 to match the same level of accuracy in the larger chamber used
for conditioned suppression of operant responding. Together, this
suggests the need for testing the optimal number of estimators and
training frames before analysis.

Additionally, we also tested whether similar behaviors can
be reliably detected under varying experimental conditions. The
ability to transfer the learning model would eliminate the need
to retrain DeepLabCut + SimBA when experimental conditions
change. SimBA model is hypothesized to have better transferability
than other machine learning approaches since features are
extracted from a body point-labeling system, providing more
flexibility for behavior detection across different setups (von
Ziegler et al., 2021). Our findings show that SimBA classifiers
in iteration 4 exhibit satisfactory accuracy in detecting rearing
in all experimental conditions. However, an accurate detection
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of other well-represented behaviors such as sniffing was limited
to the conditioned suppression experiment, indicating that the
chamber size plays a role in the representation of such behavior.
To our knowledge, this study represents the first investigation
into the transferability of DeepLabCut + SimBA workflow across
fear-related experimental conditions. Goodwin et al., developed
separate classifiers to identify similar social behaviors across
four different resident-intruder datasets with a comparison of
classifiers through interpretability tools such as Sharpley additive
explanation (SHAP) value (Goodwin et al., 2024). However,
their study did not evaluate whether classifiers trained on
videos from one experimental condition effectively transferred to
videos from another condition. Previous research has evaluated
the performance of learning models for automated behavioral
recognition across setups using alternative deep learning-based
methods such as end-to-end system, demonstrating a lack of
model transferability (van Dam et al., 2020). Collectively, these
findings suggest that DeepLabCut + SimBA may offer enhanced
transferability compared to other deep learning methods (i.e., end-
to-end systems). However, it is important to note that all behavior
classifiers from DeepLabCut + SimBA may not always transfer to
different conditions reliably.

Another challenge we faced in developing the machine
learning model for ethological analysis was dealing with imbalance
in the representation of different behaviors, similar to previous
studies (Nilsson et al., 2020; Popik et al., 2024). Specifically,
behaviors like free-air whisking and head scanning were relatively
infrequent in our data. While increasing frames containing
such behaviors in the model training dataset is a cornerstone to
improve classifier performance, we acknowledge that building
classifiers may require more experimentation with oversampling-
undersampling parameters without worsening accuracy by
introducing meaningless new frames or removing important
frames (Krawczyk, 2016).

In conclusion, our data support the utility of evaluating a
large panel of ethological behaviors as a readout of conditioned
fear. Moreover, our study demonstrates the utility of DeepLabCut
+ SimBA workflow in ethological analysis of complex defensive
behaviors, albeit demanding significant numbers of training
resources. Together, this approach holds a potential for
decoding underlying mechanisms of a different spectrum of
fear learning and memory.
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